Autonomous Horizon-based Asteroid Navigation with Observability Enhancing Maneuvers
Asteroid exploration is a pertinent challenge due to the varying complexity of their dynamical environments, shape and communication delays due to distance. Thus, autonomous navigation methods are continually being developed and improved in current research to enable their safe exploration. These methods often involve using horizon-based Optical Navigation (OpNav) to determine the spacecraft’s location, which is reliant on the visibility of the horizon. It is critical to ensure the reliability of this measurement such that the spacecraft may maintain an accurate state estimate throughout its mission. This paper presents an algorithm that generates control maneuvers for spacecraft to follow trajectories that allow continuously usable optical measurements to maintain system observability for safe navigation. This algorithm improves upon existing asteroid navigation capabilities by allowing the safe and robust autonomous targeting of various trajectories and orbits at a wide range of distances within optical measurement range. It is adaptable to different asteroid scenarios. Overall, the approach develops an all-encompassing system that simulates the asteroid dynamics, synthetic image generation, edge detection, horizon-based OpNav, filtering and observability enhancing control.