Tillmann Kubis

Tillmann Kubis' Publications

[48] J. Charles, P. Sarangapani, R. Golizadeh-Mojarad, R. Andrawis, D. Lemus, X. Guo, D. Mejia, J. E. Fonseca, M. Povolotskyi, T. Kubis, G. Klimeck, Incoherent transport in NEMO5: realistic and efficient scattering on phonons, J. Comput. Electron. 15, 1123 (2016)

[47] K. Miao, S. Sadasivam, J. Charles, G. Klimeck, T. S. Fisher, T. Kubis, Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures, Appl. Phys. Lett. 108, 113107 (2016)

[46] T.Kubis, Y. He, R. Andrawis, and G. Klimeck, General Retarded Contact Self-energies in and beyond the Non-equilibrium Green’s Function Method, Journal of Physics: Conference Series 696, 012019 (2016)

[45] Y. He, Y. Tan, Z. Jiang, M. Povolotskyi, G. Klimeck, and T. Kubis, Surface Passivation in Empirical Tight Binding, IEEE Trans. on Electron Devices 63, 954 (2016)

[44] F. W. Chen, L. A. Jauregui, Y. Tan, M. Manfra, G. Klimeck, Y. P. Chen, and T. Kubis, In-surface confinement of topological insulator nanowire surface states, Appl. Phys. Lett. 107, 121605 (2015)

[43] Y. P. Tan, M. Povolotskyi, T. Kubis, T. Boykin, and G. Klimeck, Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic resolution, Phys. Rev. B 92, 085301 (2015)

[42] R. Vedula, S. Mehrotra, T. Kubis, M. Povolotskyi, G. Klimeck, and A. Strachan, Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: technology limit from atomic simulation, J. Appl. Phys. 117, 174312 (2015)

[41] P. Sengupta, T. Kubis, Y. Tan, and G. Klimeck, Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures, J. Appl. Phys. 117, 044304 (2015)

[40] P. Y. Long, M. Povolotskyi, B. Novakovic, T. Kubis, G. Klimeck, and M. J. W. Rodwell, Design and Simulation of Two-Dimensional Superlattice Steep Transistors, IEEE Electron. Dev. Lett. 35, 1212 (2014)

[39] Y. He, Y. Wang, G. Klimeck, and T. Kubis, Non-equilibrium Green's Functions Method: Non-trivial and Disordered Leads, Appl. Phys. Lett. 105, 213502 (2014)

[38] G. Hedge, M. Povolotskyi, T. Kubis, J. Charles, and G. Klimeck, An Environment-dependent Semi-Empirical Tight Binding Model Suitable for Electron Transport in Bulk Metals, Metal Alloys, Metallic Interfaces and Metallic Nanostructures. II - Effect of Confinement and Homogeneous Strain on Cu Conductance, J. Appl. Phys. 115, 123704 (2014)

[37] G. Hedge, M. Povolotskyi, T. Kubis, J. Charles, and G. Klimeck, An Environment-dependent Semi-Empirical Tight Binding Model Suitable for Electron Transport in Bulk Metals, Metal Alloys, Metallic Interfaces and Metallic Nanostructures. I - Model and validation, J. Appl. Phys. 115, 123703 (2014)

[36] C. Jirauschek and T. Kubis, Modeling techniques for quantum cascade lasers, Appl. Phys. Rev. 1, 011307 (2014)

[35] J. E. Fonseca, T. Kubis, M. Povolotskyi, B. Novakovic, A. Ajoy, G. Hedge, H. Ilatikhameneh, Z. Jiang, P. Sengupta, Y. Tan, and G. Klimeck, Efficient and realistic device modeling from atomic detail to the nanoscale, J. Comput. Electron. 12, 592 (2013)

[34] S. R. Mehrotra, M. Povolotskyi, D. C. Elias, T. Kubis, J. J. M. Law, M. J. W. Rodwell and G. Klimeck, Simulation study of thin-body ballistic n-MOSFETs involving transport in mixed Γ-L valleys, IEEE Elect. Dev. Lett. 34, 1196 (2013)

[33] P. Sengupta, T. Kubis, Y. Tan, M. Povolotskyi, and G. Klimeck, Design principles for HgTe based Topological Insulator Devices, J. Appl. Phys. 114, 043702 (2013)

[32] S. R. Mehrotra, S.G. Kim, T. Kubis, M. Povolotskyi, M. S. Lundstrom, and G. Klimeck, Engineering Nanowire n-MOSFETs at Lg < 8 nm, IEEE Trans. Elect. Dev. 60, 2171 (2013)

[31] L. Zeng, Y. He, M. Povolotsky, X.Y. Liu, G. Klimeck, T. Kubis, Low Rank Approximation Method for Efficient Green's Function Calculation of Dissipative Quantum Transport, J. Appl. Phys. 113, 213707 (2013)

[30] Y. Tan, M. Povolotskyi, T. Kubis, Y. He, Z. Jiang, G. Klimeck, T. Boykin, Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping, J. Comput. Electron. 12, 56 (2013)

[29] Z. Jiang, M. A. Kuroda, Y. Tan, D. M. Newns, M. Povolotskyi, T. B. Boykin, T. Kubis, Gerhard Klimeck, and G. J. Martyna, Electron transport in nano-scaled piezoelectronic devices, Appl. Phys. Lett. 102, 193501 (2013)

[28] C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, P. Klang, T. Kubis, G. Klimeck, M. E. Schuster, W. Schrenk, G. Strasser, and K. Unterrainer, Probing scattering mechanisms with symmetric quantum cascade lasers, Optics Express 21, 7209 (2013)

[27] K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy, Optics Express 20, 20647 (2012)

[26] R. Kotlyar, T. Linton, R. Rios, M. Giles, S. Cea, K. Kuhn, M. Povolotskyi, T. Kubis, G. Klimeck, Does the low hole transport mass in <110> and <111> Si nanowires lead to mobility enhancements at high field and stress: a self-consistent tight-binding study, J. Appl. Phys. 111, 123718 (2012)

[25] H. Yasuda, T. Kubis, I. Hosako, and K. Hirakawa, Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures, J. Appl. Phys. 111, 083105 (2012)

[24] T. Liu, T. Kubis, G. Klimeck, and Q. J. Wang, Design of three-well indirect pumping terahertz quantum cascade lasers for high optical gain based on nonequilibrium Green's function analysis, Appl. Phys. Lett. 100, 122110 (2012)

[23] S. Steiger, M. Povolotskyi, H.-H. Park, T. Kubis, and G. Klimeck, NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool, IEEE Transactions on Nanotechnology 10, 1464 (2011)

[22] S. Steiger, M. Salmani-Jelodar, D. Areshkin, A. Paul, T. Kubis, M. Povolotskyi, H.-H. Park, and G. Klimeck, Enhanced valence force field model for the lattice properties of gallium arsenide, Phys. Rev. B 84, 155204 (2011)

[21] T. Kubis and P. Vogl, Assessment of approximations in nonequilibrium Green’s function theory, Phys. Rev. B 83, 195304 (2011)

[20] T. Kubis, S. R. Mehrotra, and G. Klimeck, Design concepts of terahertz quantum cascade lasers: Proposal for terahertz laser efficiency improvements, Appl. Phys. Lett. 97, 261106 (2010)

[19] C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, Terahertz Quantum Cascade Lasers based on Type II InGaAs/GaAsSb/InP, Appl. Phys. Lett. 97, 261110 (2010)

[18] S. Agarwal, M. Povolotskyi, T. Kubis, and G. Klimeck, Adaptive quadrature for sharply spiked integrands, J. Comput. Electron. 9, 252 (2010)

[17] T. Kubis and G. Klimeck, Rough interfaces in THz quantum cascade lasers, 14th International Workshop on Computational Electronics (IWCE) 26-29 Oct. 2010, Pisa, Italy

[16] P. Vogl and T. Kubis The non-equilibrium Green's function method: an introduction, Journal of Computational Electronics, J. Comput. Electron. 9, 237 (2010)

[15] A. Matyas, T. Kubis, P. Lugli, and C. Jirauschek, Comparison between semiclassical and full quantum transport analysis of THz quantum cascade lasers, Physica E 42, 2628 (2010)

[14] A. Matyas, T. Kubis, P. Lugli, and C. Jirauschek, Carrier transport in THz quantum cascade lasers: Are Green's functions necessary?, Journal of Physics: Conference Series 193, 012026 (2009)

[13] T. Kubis and P. Vogl, How periodic are quantum cascade lasers?, Journal of Physics: Conference Series 193, 012063 (2009)

[12] H. Yasuda, T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa, Nonequilibrium Green's function calculation for four-level scheme terahertz quantum cascade lasers, Appl. Phys. Lett. 94, 151109 (2009)

[11] T. Kubis and P. Vogl, Predictive quantum theory of current and optical emission in quantum cascade lasers, Proc. SPIE 7230, 723019 (2009)

[10] T. Kubis and P. Vogl, Predictive Quantum Theory of Current and Optical Gain in Quantum Cascade Lasers, Laser Physics 19, 762 (2009)

[9] T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Theory of non-equilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers, Phys. Rev. B 79, 195323 (2009)

[8] T. Kubis and P. Vogl, Microscopic theory of spin-filtering in non-magnetic semiconductor nanostructures, phys. stat. sol. (c) 5, 290 (2008)

[7] T. Kubis, C. Yeh, and P. Vogl, Non-equilibrium quantum transport theory: Current and gain in quantum cascade lasers, J. Comput. Electron. 7, 432 (2008)

[6] T. Kubis, C. Yeh, and P. Vogl, Quantum theory of transport and optical gain in quantum cascade lasers, phys. stat. sol. (c) 5, 232 (2008)

[5] S. Birner, T. Kubis, and P. Vogl, Simulation of quantum cascade lasers - optimizing laser performance, Photonik international 2, 60 (2008)

[4] S. Birner, T. Kubis, and P. Vogl, Simulation zur Optimierung von Quantenkaskadenlasern, Photonik 1/2008, 44 (2008)

[3] S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, and P. Vogl, nextnano: General Purpose 3-D Simulations, IEEE Trans. Elect. Dev. 54, 2137 (2007)

[2] T. Kubis and P. Vogl, Self-consistent quantum transport theory: Applications and assessment of approximate models, J. Comput. Electron. 6, 183 (2007)

[1] T. Kubis, A. Trellakis and P. Vogl, Self-consistent quantum transport theory of carrier capture in heterostructures, Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors, M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, Springer Proceedings in Physics, vol. 110, pp. 369-372