As semiconductor device sizes shrink, chip design software is increasingly flying blind. With nanoscale-sized components, performance often hinges on the precise arrangement of atoms and the predictable behavior of electrons or phonons (vibrations) passing through their atomic structures. Yet, today’s commercial device design software treats matter as a continuum and views electrons only as classical particles.
“The number of atoms in today’s transistors are so small they have become countable,” says Gerhard Klimeck, director of the Network for Computational Nanotechnology, Reilly Director of the Center for Predictive Materials and Devices, and professor of electrical and computer engineering. The 22nm-nanometer fabricated Intel transistors that fuel entry-level desktop computers, for example, have silicon feature sizes that are only 8nm thick and 64 atoms wide. With the latest 14nm and 10nm transistors, some critical layer thicknesses are as small as 10 atoms.