ECE 50024: Lecture

  • 13-Jan, 2025. Lecture 0. Course overview. Mathematics review.

    • Lecture Slides (TBD)

    • Tutorial Python Basics (PDF)

    • Tutorial Python for Image Processing (URL)

    • Tutorial Python for Matrices (URL)

    • Tutorial Python for Plotting (URL)

  • 15-Jan, 2025. Lecture 1. Linear Regression Concept and Geometry

  • 17-Jan, 2025. Lecture 2. Underdetermined and Overdetermined Systems

  • 20-Jan, 2025. No Class. MLK

  • 22-Jan, 2025. Lecture 3. L1 and L2 Regularization

    • Lecture Slides PDF (2.7MB)

    • See Chapter 7.4 of my book (URL)

    • Read the references in reading list page of the slides.

    • Python demo for Ridge and LASSO (URL)

  • 24-Jan, 2025. Lecture 4. Kernel Methods

  • 27-Jan, 2025. Lecture 5. Optimization basics; optimality; convexity

    • Lecture Slides PDF (1.8MB)

    • Tutorial 4 Optimization Review (PDF)

    • Read the references in reading list page of the slides.

    • Python demo for CVX (URL)

  • 29-Jan, 2025. Lecture 6. Gadient descent

    • Lecture Slides PDF (939KB)

    • Read the references in reading list page of the slides.

    • Tutorial 4 Optimization Review (PDF)

    • Python demo for gradient descent (URL)

  • 31-Jan, 2025. Lecture 7. Linear Discriminant Analysis

    • Lecture Slides PDF (663KB)

    • Read the references in reading list page of the slides

    • Python demo for linear separability (URL)

  • 3-Feb, 2025. Lecture 8. Linearly Separable

    • Lecture Slides PDF (750KB)

    • Read the references in reading list page of the slides

    • Python demo for linear separability (URL)

  • 5-Feb, 2025. Lecture-A. Guest Lecture: Feature extraction and convolution

  • 7-Feb, 2025. Monthly Test 1

  • 10-Feb, 2025. Lecture 9 Bayesian Decision

    • Tutorial 2 Probability Review (PDF)

  • 12-Feb, 2025. Lecture 10 Probability of Error

  • 14-Feb, 2025. Lecture 11 Model parameter estimation

  • 17-Feb, 2025. Lecture 12 Connecting Bayesian with regression

  • 19-Feb, 2025. Lecture 13 Why are classifier vulnerable to attacks?

  • 21-Feb, 2025. Lecture 14 Min-norm perturbuation

  • 24-Feb, 2025. Lecture 15 Max-loss and regularized perturbation

  • 26-Feb, 2025. Lecture 16 Improving robustness

  • 28-Feb, 2025. Lecture 17 Variational autoencoder

  • 3-Mar, 2025. Lecture 18 Evidence lower bound

  • 5-Mar, 2025. Lecture 19 Parameterization Trick

  • 7-Mar, 2025. Monthly Test 2

  • 10-Mar, 2025. Lecture 20 DDPM building blocks

  • 12-Mar, 2025. Lecture 21 DDPM evidence lower bound

  • 14-Mar, 2025. Lecture 22 Distribution of the reverse process

  • 17-Mar, 2025. Spring Break

  • 19-Mar, 2025. Spring Break

  • 21-Mar, 2025. Spring Break

  • 24-Mar, 2025. Lecture 23 Training DDPM

  • 26-Mar, 2025. Lecture 24 DDIM

  • 28-Mar, 2025. Lecture 25 Score matching and Langevin sampling

  • 31-Mar, 2025. Lecture 26 Score functions

  • 2-Apr, 2025. Lecture 27 Score matching techniques

  • 4-Apr, 2025. Monthly Test 3

  • 7-Apr, 2025. Lecture 28 Is learning always feasible?

  • 9-Apr, 2025. Lecture 29 Probability inequality

  • 11-Apr, 2025. Lecture 30 Probably approximately correct

  • 14-Apr, 2025. Lecture 31 Generalization bound

  • 16-Apr, 2025. Lecture 32 Growth function

  • 18-Apr, 2025. Lecture 33 Growth function examples

  • 21-Apr, 2025. Lecture 34 VC dimension

  • 23-Apr, 2025. Lecture 35 Bias and variance

  • 25-Apr, 2025. Lecture 36 Overfitting

  • 28-Apr, 2025. Lecture 37 Regularization

  • 30-Apr, 2025. Lecture 38 Validation

  • 2-May, 2025. Monthly Test 4 (Or during final exam week. TBD)

Tutorials

  • Tutorial 0 Python Basics (PDF)

  • Tutorial 1 Linear Algebra Review (PDF)

  • Tutorial 2 Probability Review (PDF)

  • Tutorial 3 Linear Regression Examples (PDF)

  • Tutorial 4 Optimization Review (PDF)

  • Tutorial 5 Python for Image Processing (URL)

  • Tutorial 6 Python for Matrices (URL)

  • Tutorial 7 Python for Plotting (URL)