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Pitch Control During Autonomous Aerobraking
for Near-Term Mars Exploration
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Conventional aerobraking requires propellant to dump the spacecraft’s angular momentum and to maintain
attitude control during the atmospheric flythrough. We consider how reaction wheels can be used to control the
spacecraft’s pitch during each atmospheric flythrough and to reduce angular momentum simultaneously. Control
laws are developed for minimum onboard instrumentation (where the only state information are the angular rates
of the spacecraft and the reaction wheels) to compensate for large variations in entry time and atmospheric density.
Simulations indicate that pitch attitude and angular momentum can be controlled with reaction wheels alone, thus
saving precious propellant while significantly increasing the timing margin for sequencing.

Nomenclature

system matrix

reference area of spacecraft, m?

input matrix or momentum bias

output matrix

coefficient of drag

coefficient of lift

derivative of spacecraft’s aerodynamic moment
coefficient with respect to angle of attack, deg™!
affine term

eccentricity

momentum gain

gravitational acceleration, m/s?

angular momentum, kg - m%/s

moment of inertia, kg - m?

feedback gain vector

reference length of spacecraft, m

mass of spacecraft, kg

radius of spacecraft’s orbit, km

control input to reaction wheel

(commanded torque), N.m

velocity of spacecraft relatlve to planet, km/s
state vector

angle of attack, deg

inverse scale height of atmosphere, km™!
flight-path angle, deg

true anomaly, deg

gravitational parameter, km?/s?

atmospheric density, kg/m?

bank angle, deg

latitude, deg

B 2
g
Honon

o
>]
W

-n

o

e
<3

EYISR~TOQC M
n i

n nun

[ T | L B 1

SATE DR THR B <

Presented as Paper AAS 01-388 at the AAS/AIAA Astrodynamics Spe-
cialists Conference, Quebec, QC, Canada, 30 July—2 August 2001; received
14 July 2002; revision received 23 October 2002; accepted for publication
12 November 2002. Copyright © 2003 by the authors. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission,
Copies of this paper may be made for personal or internal use, on condi-
tion that the copier pay the $10.00 per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code
0022-4650/03 $10.00 in correspondence with the CCC.

*Doctoral Candidate, School of Aeronautics and Astronautics; currently
Senior Engineer, Navigation and Mission Design, Jet Propulsion Laboratory,
California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA,
91109. Student Member AIAA.,

. TProfessor, School of Aeronautics and Astronautics. Associate Fellow
AJAA.
fSenior Engmeer, Navigation and Mission De31gn, 4800 Oak Grove Drive.

37

¥ = spacecraft heading, deg

Q = inertial angular rate of reaction wheel, rad/s
) = inertial angular rate of spacecraft about pitch axis, rad/s
Subscripts

e = equilibrium

f = postflyby condition

i = preflyby condition

P = periapsis

rw = reaction wheel

sc = spacecraft (not including reaction wheel)

0 = reference value

Introduction

ROPELLANT is a cost driver in launching and delivering an
interplanetary spacecraft to its final destination, but upon arrival
expenditure of additional propellant to insert the spacecraft into orbit
is wasteful if there are alternative strategies. Additional propellant
for orbit insertion means a heavier spacecraft at launch. Reducing
or eliminating the need for propulsive maneuvers is essential to
minimize cost. Aeroassist, which is the use of atmospheric forces
to improve mission performance, is a proven technique and one that
figures prominently in future missions.! The Mars Global Surveyor
(Fig. 1) used aerobraking to reduce propulsive costs by 1200 m/s
(about 380 kg of propellant) to reduce the orbit period from 48 h to
2 h (eccentricity from 0.9 t0.0.1).>~¢ Similar aeroassisted techniques
in the literatufe also provide reduction in propulsive maneuvers.”~°
Aerobraking methods as.currently: practiced have several disad-
vantages. Continuous ground observations of the spacecraft are re-
quired to control the orbital decay process safely. Communication
is subject to a round-trip time delay, which is a significant fraction
of the orbit period during the final stages of aerobraking. For ex-
ample, a 40-min communications lag (the worst case at Mars) is
severe for a 2-h orbit (a typical final orbit at Mars). Furthermore,
aerobraking requires propulsivé maneuvers after each drag pass to
dump accumulated angular momentum. Although this dump maneu-
ver typically requires only a few grams of propellant per orbit, the
aerobraking phase can last for over 1000 orbits. In future missions
demand for Deep Space Network links might outstrip availability
making current (nonautonomous) aerobraking practices difficult.!
Lyons provides an overview of aerobraking automation-options, !

Hanna and Tolson provide accelerometer-based prediction. of pe-
riapsis flythrough,!! and Jah provides. techniques for enboard
navigation.'? In this paper we consider several reaction-wheel con-
trol laws for a single-axis model, which automatically dump angular
momentum (about the pitch axis) during atmospheric flythrough.
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Fig. 2 Orbit decay during aerobraking.

We consider large off-nominal variations in atmospheric density for
both large- and small-period orbits and evaluate the behavior of each
control law. These reaction-wheel control laws can provide practi-
cal solutions to the problem of atmospheric timing error and to the
larger problem of autonomous aerobraking.

Problem Description

Figure 2 illustrates how a spacecraft’s orbit decays using aero-
braking. The aerobraking phase begins in a high-energy orbit. Dur-
ing each pass, drag slows the spacecraft down, and the next orbit is
smaller than the one before.'?

Unfortunately, during the flythrough the spacecraft’s attitude
" “weathervanes” about its two aerodynamically stable axes (pitch and
yaw) as it flies through the atmospheric pass. When the spacecraft
exits the atmosphere, it continues to rotate. On prior aerobraking
missions propellant was needed to stop this rotation.

We devise a reaction-wheel control law for the pitch axis that
meets several guidelines in order to support autonomous aerobrak-
ing. First and foremost, the control law must allow for a large timing
margin for sequencing. The major contributions to timing errors are
the uncertainty in the atmospheric density and in the orbit period.
Next, the control law should be able to manage the total system
angular momentum (i.e., by dumping it) so that propulsive desatu-
ration of the reaction wheels is no longer needed. The control law
should also require minimum instrumentation to avoid using expen-
sive hardware. This guideline would also tend to make the controller
easier to install on other spacecraft. We assume that the only state
information available are the spacecraft and reaction-wheel spin
rates. We also assume that the reaction wheels are small (i.e., they
produce much smaller torques than that generated from the atmo-
sphere). Finally, the control law should be simple to implement and
to test.

In our scenario the reaction wheels absorb the angular momen-
tum gained during the flythrough so as to negate the momentum
already accumulated by the spacecraft. Because the aerodynamic
torque is much stronger than the reaction-wheel torque, the pitch
controller is unable to overcome weathervaning oscillations, but it
can provide some damping——and it is able to dump angular momen-
tum. By the end of the drag pass, the net total angular momentum is
close to zero. Our approach uses only electrical power, which is re-
plenished by the solar panel, thus saving precious propellant. After
exiting the atmosphere, the spacecraft uses the reaction wheels to
slew into position to communicate with Earth. Then, the spacecraft
is given an inertial-attitude-hold command:at the predicted attitude

for zero entry angle of attack for the next flythrough, and the pro-
cess repeats. In the following analysis we only consider rotation
about the pitch axis. We expect yaw-axis behavior to be similar to
that of the pitch axis. The roll axis is aerodynamically unstable but
could be stabilized by using propellant or by articulating the solar
panels. In either case the roll-axis dynamics do not contribute to the
atmospheric timing margin.

Equations of Motion
Orbital :
For three-dimensional gliding flight with 1ift and bank, about a
nonrotating planet, the equations of motion are'3

F=Vsiny ' (€8]

V=—=—gsiny Q)
m
L v?
Vy = cosa —gcosy+——-—-—iosy 3
9.=Vcosycos1//‘ @
rcos¢o
. Vcosysiny
p=— &)
r
. Lsine VZcosycosytang
Vi = - (6)
mcosy r

In this study we make a few idealized modeling assumptions.
Aerobraking spacecraft [such as the Mars Global Surveyor (MGS)]
tend to be symmetric and operate in the free-molecular flow regime.
Thus, the instantaneous lift is -very small, whereas the average
lift is zero. (No lift effects were observed on the MGS mission.)
Thus, we assume that the lift coefficient C; is zero. Furthermore,
we use a point-mass gravity field (g = u/r?%). Finally, we assume
the spacecraft’s orbit is planar (¢ = ¢ =0), and the atmosphere is
exponential:

P = poexp[—B(r —ro)] M
where the model parameters are given in Table 1.

Attitude .
Figure 3 depicts the position and velocity of the spacecraft. The
angle of attack o is defined as the angle between the spacecraft

Table1l Mars htmosphere parameters

Parameter Reference value
00 . 55 kg/‘km3
ro . 3507 km
B 0.145 km™Y
local
horizon

s/c

Inertial
reference
direction

Fig. 3 ‘Orbital position of spacecraft (r, 8) and velocity magnitude and
flight-path angle (V, ).
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velocity vector and the body —Z axis. We can calculate the inertial
spin rate of the spacecraft as

w=0-y+a @®
By substituting Egs. (3) and (4) into Eq. (8), we find the equation
of motion for the angle of attack o:

cosy

¢=w-
rv

&)

The angular momentum of the spacecraft along the axis of rotation
is

H, = Iy (10)

The spacecraft has two torques along the axis of rotation: the
external atmospheric torque and the internal reaction-wheel control
torque. By differentiating Eq. (10) with respect to time and using
Euler’s law, we have

H.=M an
Lo = %_py2ArefLrefCM,xa - Uu (12)

The (frictionless) reaction wheel only has one external torque
acting on it: the control torque from the dc motor.. This torque is
identical in magnitude, but opposite in direction from the torque
used for the spacecraft. Thus, the governing equation for the reaction
wheel i§

[w2=u 13

In summary, the attitude equations of motion are

Y = sy : 1
d=w- 3y (14)
pVZArefLrefCM 14 _
= 2 — — 15
2L L (1
. u ‘
Q= - (16)

Reaction-Wheel Control Laws
Inertial-Attitude-Hold Controller

In normal spacecraft operation the spacecraft is held in an iner-
tially fixed attitude to either conduct science experiments or commu-
nicate with Earth. In our scheme we also have the spacecraft hold an
inertially fixed attitude prior to atmospheric entry so that the angle
of attack at entry is approximately zero, When the spacecraft does
enter the atmosphere, no aerodynamic torques are present at first
because the spacecraft is at a zero angle of attack. But as the space-
craft descends toward periapsis, the angle of attack decreases (to
negative values), and the total system angular momentum changes
as it is subjected to a growing external torque. The angle of attack
decreases as a result of the natural motion of a nonrotating space-
craft to remain inertially fixed [which is also apparent in Eq. (14) for
w=0 and y ~0]. Because the reaction wheels are commanded to
maintain an inertial attitude, the change in momentum is transferred
to the reaction wheels. Thus, the spacecraft senses atmosphericentry
when the commanded torque u (or equivalently, the instantaneous
change in total system angular momentum) exceeds some threshold.
After this threshold is exceeded, the reaction wheel switches modes
to an atmospheric control mode.

A risk in this type of threshold is the possibility that it will never
be reached: the spacecraft can stay in an inertial attitude for an
entire drag pass without ever activating the atmospheric control
mode. Fortunately, this is almost never the case. Because the angle
of attack starts at nearly zero and decreases monotonically after
that, the torque magnitude u will increase monotonically, causing
the threshold to eventuaily be met. In simulations we find that the
atmospheric control law is not triggered when the trigger threshold
is 100% of the maximum available reaction-wheel torque and the
dynamic pressure at periapsis is less than 10% of the nominal case.

For a more reasonable trigger threshold of 5%, the atmospheric
density must be 0.5% nominal (a —3.3¢ variation) or less to not
trigger the control law. However, when the control fails to trigger in
the 5% threshold case no harm is done: the atmospheric density is’
too low to change the spacecraft’s velocity or angular momentum.

Once atmospheric entry is detected, and the reaction wheel
switches to atmospheric control mode, an onboard timer is started.
The timer counts down the time until the spacecraft is predicted to
exit the atmosphere, at which point the reaction wheels will once
again switch modes—this time, back to the inertjal-attitude-hold
mode. This timed event can be calculated a priori by simulations of
anominal atmospheric flythrough.

Spin-Down Controller :

We introduce a simple control law that despins the reaction wheel
during the atmospheric flythrough. Upon reaching zero-spin rate,
the applied reaction-wheel torque is shut off. After exiting the at-
mosphere, all residual spacecraft momentum is transferred back to
the reaction wheel. \

During the flythrough, the spacecraft can torque against the at-
mosphere. The atmosphere tends:to keep the spacecraft in place
(oscillating about an average angle of attack near zero) while the
wheel is desaturated. Ideally, the spin-down control law is activated
at periapsis, where the atmosphere is densest. For a given orbit the
time between atmospheric entry and periapsis passage can be com-
puted a priori for the nominal atmosphere. In this ideal case the
reaction wheels begin to-spin down at periapsis. If the density is off
nominal, the spin-down law will be activated a little before or after
periapsis. The effect of these timing errors is most detrimental in
high-period orbits, when the drag pass is short in duration. ‘

This control law has the advantage of being exceedingly simple
to implement and being independent of spacecraft and planetary pa-
rameters. However, it turns out to be the least robust of our proposed
controllers.

Affine Partial-State Controller

With the exception of the second term of Eq. (14), Eqs. (14-16)
describe a system of linear equations, where we are considering the
dynamic pressure term, pV2/2 to be a time-varying parameter. To
simplify our analysis, we approximate the term y cos y /r2V with a
constant, its value at periapsis. We can now rewrite Eqs. (14-16) as

¥=AWx+Bu+E an
where
x=[e o QU (18)
0 1 0
A@®) = | =a@®) 0 0 (19)
0 0 0
B=[0 -17' 13 (20)
E=[-w/rv, 0 0] ey

where a(t) = —pV?AretLetC, /21 5.

The output we ar¢ interested in is Hioy, the total system angu-
lar momentum, which we wish to drive to zero. We observe that
H,oi1 = Cx, where

=[0 Ic Iwl (22)

We can further simplify the analysis by assuming a(¢) ~a,. In
this final form we have a set of affine time-invariant differential
equations. This form is equivalent to a linearized system (with the
same A, B, and C matrices) where the state vector x would be rede-
fined by subtracting off its equilibrium value Xe. This equilibrium
state is computed by solving Eqgs. (14—16) ford=w=R=u=0.
This process yields . -
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we=pfriv, | (23)
a; =0 24)

For the total momentum to be driven to zero, we have

Htotal,e = lyew, + Irwsze (25)
0= Iyw, + 1,2 (26)
Q, = Thsce @n
i 1w

—dsc b
- (28)

Inr2V,

Thus,

xe=(nfrVp)l0 1 ~Lo/In]" (29)

If the system (A, B, C) can be stabilized with an appropriate
c¢ontrol u, then our system angular momentum H will be asymptoti-
cally driven to zero. To convert the affine system into a linear system
using state feedback, we require that it =K (x — x,). A control feed-
back gain vector K = [K, K, Ko7 is selected to stabilize the
closed-loop system. Because this is a time-varying system, having
eigenvalues of A + BK in the open left-half plane does not guarantee
asymptotic stability. From a practical standpoint the state variables
w and € can be measured with a body-fixed gyro and reaction-wheel
tachometer (where the inertial rate 2 is the sum of the body rate w
and the relative rate as measured by the tachometer). Unfortunately,
the spacecraft does not have any instrumentation onboard to mea-
sure the state variable . Thus, we add the constraint K, = 0 to our
optimization problem.

We take a minimax approach, where we pick the gain vector K
that minimizes the maximum real part of the eigenvalues of A + BK.
This minimax problem has an analytic solution'*:

Table 2 Reference spacecraft parameters

Parameter Reference value
Mass 1000 kg
Cp 2.0
Ch, —0.00366 deg~!
Ages 17.44 m?
Lref 8.73 m
Max reaction-wheel torque 0.18 N-m
Reaction-wheel capacity 270N-m-s
I 1000 kg - m?
J 0.0645 kg - m?
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Fig. 4 ‘Sample time history during a single flythrough for no atmo-
spheric control (i.e., u = 0): a) angle of attack o, b) total system momen-
tum H’u,m/me, and c¢) commanded reaction-wheel torque w/tyax.

K, =81/3a, /9 (30)
Kq = —(7,/3a,/9) | @1

Numerical simulations demonstrate stable behavior.

The equilibrium value x, is a function of the orbit. Two indepen-
dent parameters are needed to specify the orbit size and shape. We
use the dynamic pressure at periapsis as one of these, which we set
to 0.5 N/m? for the nominal case (a typical heating constraint on
prior aerobraking missions*). The remaining parameter can be dealt
with in two ways. The first method is to use the orbit period (which
the spacecraft can roughly measure by timing the interval between
successive drag passes) and then use a look-up table on each orbit
to ascertain the optimum K. The second is to design a fixed K to
be used for all drag passes using the “average” aerobraking orbit as
the specification (e.g., we assume the orbit eccentricity is 0.4). The
second approach is simpler to implement and yields results only
slightly worse than the first approach.

The resulting affine partial-state control law stabilizes the sys-
tem, even though the angle of attack cannot be measured. Sim-
ulations show that an affine full-state control law yields superior
performance. One idea for implementing the full-state feedback
controller is to use a state observer to estimate «. Unfortunately,
applying the minimax approach to an observer does not work with
this time-varying system because the state estimate of « turns out
to be unstable. ‘

20 T . . :
$ 10t .
k=2
3 0’-
-1g . X - ,
a) . "-300 -200 ~100 0 100 200 300
é 1 r r : . .
;30.5' J
s of I
T .
b) 0300 -200 -100 0 100 200 300
1 T . r — y
go |
=)
£ | ] J
50 -200 -100 0 . . 100 200 300
c) Time since periapsis [sec]

Fig. 3 ~Time history for the spin-down controller: a) angle of attack
o, b) total system momentum Hiotai/Hmax, and ¢) commanded reaction-
wheel torque u/umax.

5 r . . .
gl
3
a) <800 -200- -100 0 100 200 300
x 1 T . T — :
EEO.S' ’ ]
LR N— —
T \ .
_o‘ i 1 1 1 1
b) =300 -200 ~100 0 100 200 300
1 . ' . - .
% 0._‘_’_V-\—[\" -
S ‘ ‘
5 -1 ; : .
oo -200 -100 . 0O . 100 200 300
) Time since periapsis [sec]

Fig. 6 Time history for the affine partial-state controller: a) angle of
attack «, b) total system momentum Hisa1/Hmax, and ¢) commanded
reaction-wheel torque u/umax. ‘
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Fig. 7 Time history for the two-stage controller: a) angle of attack o,
b) total system momentum Hy/Hpmayx, and ¢) commanded reaction-
wheel torque #/umax.
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Fig. 8 Final momentum of the spacecraft using no atmospheric con-
trol as a function of eccentricity and atmospheric density. The initial
momentum for this case is 50% of the reaction-wheel maximum,

A
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log,, p/p, eccentricity

Fig. 9 Final momentum of the spacecraft using the spin-down
controller. ’

Two-Stage Controller

In simulations the affine partial-state control law tends to damp
out oscillations rapidly in angle of attack. Under ideal conditions the
spacecraft’s attitude reaches its equilibrium state before periapsis.
But for low atmospheric density and high-orbit-period cases, the
affine partial-state controller can take longer to stabilize than the
flythrough time. We note that the affine partial-state controller tends
to do most (if not all) of its work before periapsis, whereas the
spin-down controller does all of its work after periapsis. We thus
combine the two control laws into a “two-stage” controller, with the
expectation that it will be more robust than the other two.

No Control

Let us consider the case of no control, where the attitude-hold
mode of the reaction wheel is turned off once the atmosphere is
detected. That is, let u = 0. Following the linearization procedure
just outlined (and examining just the attitude and attitude-rate state
variables), we have the linearized system

X=A(x-x) (32)
where
x=[a ol (33)
A@) = 0 ' (34)
—a() 0

-05
04
_1 0.2

log,, p/p, eccentricity

Fig. 10 Final momentum of the spacecraft using the affine partial-state
controller.

~0.5
0.4

0.2

-1

log,, p/p, eccentricity

Fig. 11 Final momentum of the spacecraft using the two-stage
controller. i
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x=[0 —u/rv,]" (35)
The eigenvalues of this system are on the imaginary axis, and thus
the system is undamped. The angle of attack will tend to-oscillate
with a fixed amplitude. The AH incurred on such a drag pass will
depend on the relative phasing of « with the dynamic. pressure.
Each half-oscillation will cause ' momentum to be gained or lost.
The net gain after:the drag pass will depend on the initial conditions
of the pass. But because of the natural revolution of the spacecraft
around: the planet, the average angle of attack is biased (toward
negative values). Most uncontrolled orbits will result in a net gain
of angular momentum, whereas some will result in a net loss of
angular momentum. Thus, on average the angular momentum will
tend to grow over the course of many atmospheric flythroughs.

Results

~+In'general, the performance of a controller dunng an atmospheric
drag pass depends on a number of parameters: the orbit period,
periapsis altitude, atmospheric density, initial angular momentum,
‘and the atmospheric trigger threshold. We target the periapsis al-
titude so that the dynamic pressure is 0.5 N/m.> (We assume. the
atmospheric density is nominal, which may not be the case.) We
also set the trigger threshold to 5%, which yields the best results in
our simulations. There are still too many remaining “free” param-
eters to be able to examine the entire simulation space. Instead,
we examine some representative cases and some cross sections
of the solution space. Dispersions in parameters included in a(z)

14 T T T T T T T

12

0 50 100 150 200 250 300 350 400
Orbit Number
-a) No.control

o8} ' ]
0.6} ]
0.4} ]
o2} T 1
; OM

0.2} o ‘ ‘ ‘ ]
‘ 04k C ’ 1

-o.8f i .

-0.8} _ .

-10 50 100 150 200 250 300 380 400

Orbit Number
b) Spin down-

(A,ef, ref> C, » Isc) ill tend to hiave the same effect as a dispersion
in the atmospheric density.

Simulation Methods

We use an RK45 method with a relative tolerance of 1077 to in-
tegrate the equations of motion. The controller output is sampled at
each integration' timestep. The controller would typically run at a
sampling rate of 10 ms. The Nyquist rate for the controller sampling
rate is thus 20 ms (or 50 Hz). As seen in the time histories (Figs. 4-7),
this sampling rate is more than sufficient to keep up with the gov-
erning dynamics (i.e., there are no high-frequency components in
the control). Table 2 presents the reference spacecraft parameters
used in the simulations.

Single Drag Pass

. Figures 4-7 present sample time histories for each of our con-
trollers. The initial reaction-wheel momentum in all cases is 50%
of capacity. The applied torque, until about 200 s before periapsis,
is the torque required to maintain an inertial attitude. Afterward, the
atmospheric controller is triggered.

In the no-control case (Fig. 4) the natural osc111atory motion of
the angle of attack is apparent. This motion causes the total system
momentum to oscillate as well. The final momentum is a function
of the peak amplitude of « and the value of « at periapsis. For
the net change in angular momentum to be zero, any momentum
gained before periapsis needs to be lost after periapsis. A zero net -
change is only possible when the angle of attack is an odd function

-0.8 4

- 80 100 160 200 250 _ 300 . 350 400
- Orbit Number :

' c) Affine partial state ‘

1 T v T T T v T
od | 4

0.6t 4

-0.2} L L 1

~0.4} _ . ‘ -
~0.6} S 1
~0.8F S

0 100 180 200 250 300 350 400

- Orbit Number

d) Two stage

-Fig. 12 Normalized total system angular momentum after consecutive drag passes; The initial «orbit period is 48 h, and the final orbit period is 2 h.

The atmospheric density is assumed to be nominal.”
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[oe(t — t,) = —a(t, ~ 1)), The timing with respect to periapsis is im-
portant because the density profile is approximately an even function
[p(t —t,) = p(t, —t)]. When the value of & at periapsis is zero, the
gain in angular momentum is nearly zero.

The spin-down controller (Fig. 5) performs somewhat better than
the no-control case. At periapsis the spacecraft begins its momen-
tum dump. This controller is not able to damp the angle-of-attack
oscillations and thus acquires some residual angular momentum by
the end of the drag pass. However, this controller is able to dump
its initial momentum and thus does not tend to accumulate momen-
tum over repeated drag passes. In the special case where the initial
momentum is zero, this controller is identical to the no-control case
- because there is no momentum to dump.

The affine ‘partial-state controller (Fig. 6) almost immediately
drives the momentum to zero. By periapsis the angle of .attack is
driven to nearly zero.

The two-stage controller (Fig. 7) exhibits features similar to the
preceding two. In this case the momentum dump at periapsis is detri-
mental because angle-of-attack oscillations continue (but at a sig-
nificantly reduced amplitude), and thus the total system momentum
slightly increases. As mentioned earlier, the two-stage controller is
more effective than the affine partial-state controller in thin atmo-
spheric conditions.

The time histories of Figs. 4-7 are valid for only one set of .ini-
tial conditions. To get a better idea of the overall performance, we

16 T T v T v T v T

[} 80 100 160 . 200 250 300 350  400. 450
Orbit Number

a) No control

0.8} 4

0.6 p

~0.4F ]
-0.8} .
-0.8}¢ .
i 50 100 150 200 © 250 300 350 400
Orbit Number
b) Spin down

Fig. 13 - Normalized total system angular momentum after consecutive drag passes. The atmospheric ‘dens’ity is "assumed

o =30%. .

simulate each controller over a range of orbit sizes and density fluc-
tuations, These results are shown in Figs. 8-11. Each point on the
surface plot represents a single drag pass for a.given eccentricity and
periapsis density. Uncertainty in atmospheric densities at periapsis
ranges from 10% nominal (—1 on the log scale) to 200% nominal
(0.3 on the log scale), Nominal density is zero on the log scale.

In the no-control case (Fig. 8) the initial bias. of 50% capacity
remains in the final momentum. Again, the fluctuations are merely
a geometric representation of the amplitude and phase of the angle-
of-attack oscillations. The same rippling effect is present in the spin-
down case (Fig. 9). The spin-down controller removes the initial
bias (except in the low-density; high-eccentricity case, where the
remaining flythrough time after triggering is too short) but still has
residual angular momentum after the flythrough. The affine partial-
state controller (Fig. 10) is flat for most cases. As already noted,
this controller must be configured for a specific eccentricity, In this
case that eccentricity is 0.4, which roughly marks the halfway point
of a typical aerobraking phase. Because of the discrepancy between
the actual orbit size and the assumed orbit size, Fig. 10 has a gentle
downward slope, as density decreases. In a similar manner to the
spin-down controller, when the density is very low and the orbit
period high, the flythrough time is short, and thus this controller
runs out of time before it is able to reach equilibrium.

To address the problem of short fiythrough times,. the two-
stage controller (Fig. 11) switches. from the partial-state law to

0.8} . . -

0.4} ' .

-0} 4

-0.4} 4

-0.6F J

=08} o

o % 100 60 200 20 a0 360 400
Orbit Number

¢) Affine partial state '
0.8l ]
0.6l ]
0.4} .

-0.4} )
-0.6 1
=0.8 9

- 50 100 150 200 250 300 350 400
‘ Orbit Number
&) Pwo:stage.” - R o

to-be. Gaussian, with

RS



378 JOHNSON, LONGUSKI, AND LYONS

the spin-down law at the estimated time of periapsis passage. This
switch results in a much flatter plot overall, which indicates the final
momentum is consistently closer to zero.

Multiple Drag Passes

A control 1law that performs well on one drag pass might not nec-
essarily perform well on repeated drag passes. We thus simulate an
entire aerobraking mission, starting at a 48-h orbit and terminating
when-a 2-h orbit is achieved. Figure 12 depicts the total system
momentum history-as a function of orbit number for a nominal
atmosphere.

‘The no-control case has a-positive bias in the change in angu-
lar momentum, as expected from our analysis of the equations of
motion. We note that after only a few orbits the total angular momen-

_tum exceeds the reaction wheel’s capacity (by 1200%). Propulsive
momentuin dumping would therefore have to be repeatedly used to
offset this bias.

The spin-down case is similar to the no-control case, but with the
sécular term (i.e., the bias) removed. Becausé the spin-down law is
capable of keeping the'momentum well within the physical limits
of the reaction wheel, this law is feasible.

The affine partial-state law works very well. The eccentricity bias
is clearly visible in Fig. 12c, where the angular momentum becomes
zero at about orbit 200, which corresponds to an eccentricity of 0.4.

" Unfortunately, the Martian atmosphere is highly variable, with a
1-0 atmospheric density variation of about 30%. Figure 13 illus-
trates a multiple drag pass analysis, which takes density variations
into account. The atmospheric densities are assumed independent
from pass to pass. In this random-atmosphere case the no-control
case is still unbounded. The spin-down law has a much noisier mo-
mentum history. The affine partial-state law has a response very
similar to the nominal case, but with a few spikes coinciding with
the low-density passes. Finally, the two-stage controller is noisier
than affine partial-state controller, but with a lower peak deviation.

Momentum Gain Analysis

We now consider the effect of random initial momentum. Up
until now, the initial momentum for each drag pass has either been
arbitrarily set to 50% of reaction-wheel capacity (for the single-
pass case) or set to the final momentum of the previous pass (for the
multiple pass case).

In this analysis we simulate thousands of drag passes for 19 spe-
cific atmospheric densities (ranging from 10 to 200% of the nominal
case) for random orbit sizes and random initial momenta. Eccen-

tricities are selected from a uniform distribution, ranging from 0.1 .

to 0.9. Initial momeénta are assumed Gaussian, with zero mean and
a standard deviation of 25% reaction-wheel capacity. We then cal-
culate the gain as the standard deviation of the postflyby momienta,
normalized by the standard deviation of the preflyby momenta. We
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,Fig. 14.: Normalized gain G and the normalized bias.B for each con-
troller as a function of atmospheric density.

also calculate the resulting bias as the mean postflyby momenta,
normalized by the standard deviation of the preflyby momenta. We
will refer to these two quantities as the gain G and the bias B given
by

O'(Hf)

U(H) (36)
_Avg(Hy)
= —__U(H,') 37

The square of G represents the transfer function gain from the
preflyby momenta to the postflyby momenta. A nonzero value of B
indicates a bias in the final momentum. The normalized gain and
bias are shown in Fig. 14,

For densities greater than 20% nominal, the. affine partial state
performs better than the spin-down controller. In all cases the two-
stage controller has the smallest gain. For most densities the affine
partial -state controller has the smallest bias. Finally, the no-control
case is the only one that has a gain greater than one, indicating
instability.

Conclusions

A reaction-wheel controller can provide robust control durmg at-
mospheric drag passes while providing a free desaturation of stored
angular momentum. In this paper three reaction-wheel controllers
are compared: spin down, affine partial state, and two stage. Each of
these controllers enables the timing margin for sequencing to be in-
creased significantly, making autonomous aerobraking more robust.
A larger timing margin can even enable autonomous aerobraking at
moderately large orbit periods for spacecraft that do not carry an
accelerometer.

Of the proposed control laws the spin-down controller is the sim-
plest. This controller is spacecraft independent and works equally
well in thick or thin atmospheres. The affine partial-state controller
is more complex than the spin-down, while still only relying on read-
ily available angular rate information. This controller is much better
at dumping momentum in moderate to thick atmospheres and still

- works in thin atmospheres. The two-stage controller enjoys the ad-

vantages of both the spin-down and affine partial-state controllers.
All of these controllers can achieve robust attitude control in the
environment of large atmospheric density and timing uncertainties. -
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