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Annihilation of Angular Momentum
Bias During Thrusting and Spinning-up
- Maneuvers'

J. M. Longuski?, T. Kia® and W. G. Breckenridge®

Abstract

During spinning-up and thrusting maneuvers of rockets and spacecraft, undesired transverse
torques (from error sources such as thruster misalignment, center-of-mass offset and thruster
mismatch) perturb the angular momentum vector from its original orientation. In this paper a
maneuver scheme is presented which virtually annihilates the angular momentum vector bias,
even though the magnitude and direction of the perturbing body-fixed torques are unknown. In
the analysis it is assumed that the torques are small and constant and that the spacectaft or
rocket can be approximated by a rigid body, which may be asymmetric. Typical maneuvers of
the Galileo spacecraft are simulated to demonstrate the technique.

Introduction

Rockets and spacecraft are often spun up to provide stability. The angular momen-
tum vector remains inertially fixed, unless acted upon by an external torque.

When a spinning rocket performs an axially-thrusting maneuver, however, there
are always body-fixed torques due to various error sources such as thruster misalign-
ment and center-of-mass offset. An example configuration is illustrated in Fig. la in
which the thruster offset creates a body-fixed torque into the page. The effect of a
constant body-fixed transverse torque, M, , on the orientation of the angular momen-
tum vector, H, in inertial space is illustrated in Fig. 2a, where XYZ represent inertial
coordinates. If the initial orientation of the angular momentum vector is H, and the
body axis x coincides with the space axis X at the commencement of the maneuver,
then the angular momentum vector traces a circular path in inertial space. The aver-
age orientation of H is given by the angle p, which is in the YZ plane. As a conse-
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FIG. 1a. The Thrusting Problem. FIG. 1b. The Spinning-Up Problem.

quence, the change of velocity, AV, from the thrusting maneuver is delivered along
the same biased orientation. This is the fundamental mechanism for AV pointing errors
in axially-thrusting spin-stabilized spacecraft and rockets.

During spinning-up maneuvers, thruster couples are usually used so that, ideally,
only axial torque (and no force) is applied. In practice, however, error sources such
as thruster mismatch can lead to a transverse torque. In the case of the Galileo space-
craft, only one thruster is used which results in a large deterministic transverse
torque, as illustrated in Fig. 1b. The corresponding behavior of the angular momen-
tum vector in inertial space is shown in Fig. 2b. The angular momentum vector traces
out a spiral path about a line in inertial space having an angle p, from the inertial Z
axis and in the YZ plane. After the completion of the spin-up maneuver and the
damping out of nutation, the vehicle will have an attitude error or bias of angle p,.

In this paper, a maneuver scheme is presented which virtually annihilates the angular -

momentum vector bias, py, for both spinning-up and thrusting maneuvers. By breaking
the maneuver up into two “burns” with a “coast” or delay time in between, the bias

angle, p,, can be reduced to zero. In the first part of the “two burn” scheme the angu- -
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FIG. 2a. The Angular Momentum Vector During Thrusting.

FIG. 2b. The Angular Momentum Vector During Spinning-Up.
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lar momentum vector begins to move in a circle or spiral, as before, but then the
thruster is turned off. Without any external torques the angular momentum vector
becomes stationary in inertial space, but the vehicle continues to spin. When the
thruster reaches the appropriate orientation the second “burn” causes the angular
momentum vector to encircle the inertial Z axis. The appropriate burn and coast times
are given by a transcendental equation similar to Kepler’s time equation. The equation
only requires knowledge of the initial spin rate and the axial angular acceleration.
Knowledge of the transverse torques is not required, but they are assumed to be small
and constant. ‘

The paper is organized as follows. First, analytic solutions for the behavior of the
angular momentum vector are briefly reviewed. Next the thrusting problem at constant
spin rate is discussed and the effect of the two-burn scheme is demonstrated. Finally,
the application of the two-burn scheme to the spinning-up problem is discussed and
conclusions are drawn.

Analytic Solutions
A Simple Model for the Angular Momentum Vector
Considerable ihsight can be gained by working directly with Euler’s law,
M=H | (1)

Assume the spin rate, (2, is constant and that the transverse body-fixed torques M,
and M, are constant and remain in the inertial XY plane (Fig. 2a). Then equation (1)
becomes '

Hy= My =M, cos Qt — M, sin )
H,=M, ="M, sin (4 + M, cos Oz 3
H,=0 4)

where XYZ refer to inertial coordinates and xyz refer to body coordinates. For the initial
conditions Hy(0) = H,(0) = 0 and H,(0) = 1.4 the integration of equations (2)-(4)
provides ‘

Hy = (M, /Q) sin Qr + (M, /Q) (cos Qr — 1) (5)
Hy=M/Q)(1 — cos Q) + M,/Q) sin Q¢ (6)
H,=10Q (N

Equations (5)—(7) indicate that when M, = 0, the angular momentum vector follows
the circular path in space described by Fig. 2a.

This simple model is useful in providing the correct behavior of the angular momen-
tum vector for constant spin rate, but it has serious limitations. ‘There is no indication
of stability. The equations do not distinguish between spinning about the principal
axes of minimum, intermediate or maximum moment-of-inertia. Another problem is
that the equations give no hint as to the allowable size of the bias angle, p,, of
Fig. 2a. Finally, the extension to the spinning-up maneuver is not clear, for if the M,
and M, torques are assumed to remain in the XY plane then should not the M, torque
remain along the Z axis? If this assumption is made, then an incorrect result is obtained
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for the spinning-up maneuver, because it will be demonstrated that the angular
momentum vector increases along the line indicated by the angle p, in Fig. 2b. _

The formal approach of solving Euler’s equations of motion, finding the Eulerian
angles and obtaining the angular momentum vector will be described next.

Euler’s Equations of Motion

Euler’s equations of motion are

M =Lo + (I, - L)oo, 8)
M, =l + (I —I)oo &)
M, =Lao + (I, - I)w,o, (10)

By assuming a near-symmetric rigid body, I, = I, subject to constant torques, M,,
M,, and M., the spin rate is found to vary linearly with time,

M, '
W, = Tt + w, (11)

k4

and the solution of equations (8) and (9) can be found in terms of Fresnel integrals
[1,2]. In [3, 4] these solutions were found to be relatively insensitive to variations in
I, and I, provided that the orientation changes in H were small. This is because the
last term of equation (10) remains small for stable motion, since the product ., Te-
mains small. Under these conditions, which are usually representative of practical
spacecraft and rocket motion, the solution applies to asymmetric bodies. In [5], Price
found the solution of [1] to be a useful first order approximation in his semi-analytic -
solution of Euler’s equations of motion. When /, = I, equation (11) becomes exact,
so that the solution of Bddewadt for symmetric rigid bodies can be applied {6, 7].
When M, = 0, approximate analytic solutions are easily derived for the asymmetric
case by assuming o, = wy.

Euler’s Angles

Twelve forms of Euler angle rotation representations are available to provide the
attitude of a rigid body. If a Type 1: 3-1-2 rotation is used [8] then the kinematic
equations are

$, = w, cos ¢, + w, sin @, (12)
¢, = ®, — (w, cos ¢, — w, sin P,) tan ¢, (13)
¢. = (», cos ¢, — o, sin ¢,) sec ¢, (14)

By assuming that two of the Eulerian angles ¢, and ¢, are small, an analytic solution
was obtained for equations (12)—(14) in [1] for the case of a near-symmetric rigid
body subject to constant body-fixed torques. The solutions for ¢, and ¢, each contain
approximately 75 terms and consist of Fresnel, sine and cosine integrals. The solution
for ¢, is ' :

¢z = (1/2) (Alz/lz)t2 + szt + ¢20 (15)
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A careful numerical study of these solutions [4] shows that they also apply to asym-
metric rigid bodies when the motion of the angular momentum vector in inertial
space is restricted to very small angles (a few degrees).

Other solutions for the attitude motion of a self-excited rigid body are either incor-
rect or not explicit. Bédewadt’s solution [6, 7] was proven incorrect for the general
case in [2]. Armstrong [9] provides very useful observations for limiting cases for
symmetric bodies, but does not give explicit solutions.

Formal Solutions for the Angular Momentum Vector

When analytic expressions are available for Euler’s equations of motion and the
Eulerian angles, then the angular momentum vector in inertial space can be obtained
from

Hy ch.ch, — s¢.sb,sP, —sb.ch, cd,s, + sp,sd.co, ||/,
Hy| = |sb.co, + cosbsh, chod,  sb.sb, — ch,sb,ch, || 1w,
Hy| | -co.s, s, ch.ch, Lo,
| (16)
where ¢ and s denote cosine and sine and Type 1: 3-1-2 Euler angles have been as-

sumed. In the analytic solutions which are being considered, the angles ¢, and ¢, are
small so that equation (16) becomes

H, cos ¢, —sind, ¢, cosd, + ¢, sing,|| Lo, ,

Hy|=|sing, cos¢d, ¢, sind, — ¢, cos ¢, lo, q¥))
H z -¢y ) ¢x 1 Izwz
The Thrusting Problem

In the thrusting problem, a spinning rocket or spacecraft uses an axial thruster to
provide a change of velocity. An example of this maneuver is found in the Galileo
spacecraft (see Fig. 3). Before performing an axial maneuver, the dual-spin space-
craft locks up the rotor and stator so that the vehicle behaves as a single spinner.
Then the 10 Newton -Z thrusters may be used. If the 400 Newton engine is to be used,
the vehicle is spun up from 3 rpm to 10 rpm with an S thruster in order to provide
greater stability.

During the axial maneuver, transverse torques (from error sources such as thruster
misalignment and offset, center-of-mass offset and thruster mismatch) lead to velocity
pointing errors [10]. Spin rate changes are also expected due to jet damping, primarily
in the 400 Newton engine, and misalignments in the 10 Newton thrusters. The spin
rate changes are small enough so that the spin rate can be considered constant in the
analysis of the velocity pointing errors.
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FIG. 3. Galileo Thruster Configuration.

The Behavior of the Angular Momentum Vector During Thrusting

By assuming a constant spin rate about the z axis (w, = (1), retaining the distinc-
tion between I, and /, and assuming small angles for ¢, and ¢,, the analytic integra-
tion of equations (8)—(10) and equations (12)—(14) is straightforward. Combining the
results into equation (17) again provides equations (5)—(7) for the behavior of the an-
gular momentum vector. It is interesting to note that the effects of asymmetry do not
appear in these approximate solutions for the angular momentum vector. It is well-
known that the solutions for the Euler velocities w, and w, are stable when

IL>1I, I, >1, (18)
or
I,<I, I, <I : (19)
Obviously equations (18) and (19) imply
I,#1, and I, #1, (20)

The conditions (18) or (19) are also required for stability of the ¢, and ¢, solutions.
It is convenient to define angles py and py to specify the orientation of the angular
momentum vector in inertial space:

tan py = Hy/H, (21)
tan py = Hy/H, (22)
Since py and py are assumed small, equations (5)—(7), (21) and (22) provide
px = (M/1,Q%) sin Qt + (M,/1.Q%) (cos Qt — 1) (23)
py = (M. /L.O%) (1 — cos Q1) + (M, /1.9 sin Qt (24)

Equations (23) and (24) are simply the equations of a circle with the center located at
(-M,/L.O% M, /1.QY). The angle between the center of the circle and the Z axis is py,
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po = (M + MH"/L.O? (25)

as illﬁstrated in Fig. 2a. (Of course in this more general case, the angle p, is no
longer constrained to the YZ plane of the figure.)
Clearly, from equations (23) and (24) the angular radius of the circle, p, is equal to p,

P = Po - (26)
The rotation angle, 6, which is illustrated in Fig. 2a is given by
’ 0=d¢. = 27

where the initial condition for the Eulerian angle, ¢, is assumed to be zero. The
equivalence of the Eulerian angle, ¢., and the rotation angle of the angular momen-
tum vector, 6, has important consequences in the control of the angular momentum
vector orientation.

The Velocity Equations

The change of velocity in inertial space during thrusting can be found through the
acceleration equation

ayx fi/m
ay| = A|f,/m (28)
az fi/m

where X, Y and Z represent inertial coordinates, A is the matrix in equation (16), f,, 5
and f, are body-fixed forces and m is the vehicle mass.

When ¢, and ¢, are small, the matrix A that appears in equation (28) is equal to
the matrix in equation (17). Assuming that the body-fixed forces and vehicle mass are
constant, the resulting linear equations can be directly integrated to obtain the compo-
nents of the velocity change in inertial space, namely AV, AVy and AV,. Retaining
only the secular terms, the results are

AVX = (f;/m) [¢_v0 + waxO(IzQ)—l - M_v(I:QZ)-I]t (29) |
AV, = (ﬂ/m)[—¢xo + lywyO(IzQ)—l + Mx([zﬂz)-]]t (30)
AV, = (£/m1 = (£/LM, A, - L)7'Q7% + (/M. — 1)7'Q2 (31

where the condition in equation (20) excludes the singularities.
Usually the transverse velocities AV, and AV, are transformed into velocity point-
ing errors as in [10], by defining the angles v, and Yy

tan v, = AV,/AV, (32)
tan y, = AV,/AV, (33)

Assuming yy and y, are small (a typical requirement in spacecraft design), that the
initial conditions are zero and that there are no side forces (f; and f)) then equa-
tions (29)—(33) provide

Yx = —M, /L (34)
Yy = M /IO (35)
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The total AV pointing error, ¥y is

Y= (v + )" = po (36)

Thus, the secular velocity pointing error is aligned with the average angular momentum
vector orientation. This velocity pointing error was noted in [9] for symmetric bodies.

Controlling the Angular Momentum Vector by a Two-Burn Scheme

In solid lines, Fig. 4 illustrates the behavior of the angular momentum vector in the
inertial XY plane when a constant body-fixed torque M, is present (corresponding to
Fig. 2a). (Note that assuming M, = 0 does not affect the generality of the discus-
sion.) For the axially-thrusting maneuver (and perhaps in other applications) the
dashed circle in Fig. 4 illustrates the desired final path of the angular momentum vec-

_tor. From the earlier discussions it is expected that this will result in a very small ve-
locity pointing error.

During the execution of the thrusting maneuver, the initial path of the angular
momentum vector will follow the solid line. If the maneuver is interrupted (by shut-
ting down the thruster) at the time that the dashed straight line is intersected, then the
angular momentum vector will stop its motion at that point (in inertial space). As
shown in Fig. 4, the intersection point is equidistant from the origin and the center of
the initial H path. The projection of the angular distance, p,, on the X axis is halfway
between the origin and the center point so that

-1
Po COS O = 3 Po 37D

Clearly the angular distance cancels. The fundamental equation for the first burn is

cos 6, = % (38)
so that
8, = 60° (39)
Since 68 = ¢, = M, the burn time of the first burn is simply
t, = w/3Q : (40)
INITIALH

PATH

FIG. 4. Initial and Final Paths of the Angular Momentum Vector During the Two-Burn Scheme (for
Constant Spin Rate).
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In order to achieve the final H path the vehicle must be allowed to rotate at the in-
tersection point by a coast angle, 6, given by

0. =m— 20, 41
In this simple case of constant spin rate the coast angle, 6, is always
6. = 60° (42)
so that the coast time is
t. = w/3Q (43)

At the end of the coast time, the thruster is reignited and the entire maneuver is com-
pleted. This completes the two-burn scheme for the thrusting problem (and all other
constant spin rate problems).

Numerical Results for the Thrusting Problem

Representative numbers from the Galileo spacecraft [10] can be used to demonstrate
the application of the two-burn scheme to the thrusting problem. A 0.02 m center-of-
mass offset (30) is a typical value for the 400 Newton engine. For convenience, the
corresponding torque is assumed to be along the x axis:

M, = (400 N)(0.02 m) = 8 Nm (44)

As mentioned above, knowledge of the direction and magnitude of the torque is not
required for the two-burn scheme to work. The only requirements are that the body-
fixed torque remains constant and provides a small value for p, (e. g., less than
0.5 radians for the near-symmetric case). In this example, assuming ) = 10 rpm =
1.047 r/s and I, = 4627 kg-m’ then

Po = 8 Nm(4627 kg-m®)~'(1.047 r/s)"* = 1.6 mrad 45)

In the demonstration which follows the values I, = 3012 kg—m’, I, = 2761 kg—m’
and m = 2000 kg will be used. 4

In Fig. Sa, the orientation of the angular momentum vector in inertial space is simu-
lated for a 60 second maneuver of the 400 Newton engine. The simulation result is
from a very accurate numerical integration of the exact nonlinear equations (8)-(10)
and (12)—(14) and the application of the transformation (16). Note the average offset
of 1.6 mrad in the Y direction. Figure 5b demonstrates the effect of the two-burn
scheme, again using the exact equations of motion in the simulation. The result is
that the angular momentum vector encircles the origin as planned.

In Fig. 6a, the velocity pointing error is simulated for the thrusting maneuver. The
velocity is found by a precise numerical integration of the exact acceleration equa-
tions (28). Note that the transient motion of the velocity vector pointing error is dif-
ferent from the behavior of the corresponding angular momentum vector in Fig. Sa
because the periodic terms are different, but the secular behavior of the velocity re-
sults in the same offset value of p, = 1.6 mrad in the Y (inertial) direction.

In Fig. 6b the two-burn scheme is simulated in the same manner. Note that the ve-
locity pointing error is virtually annihilated in a few revolutions.
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FIG. 5a. Simulation of H During Thrusting.
The Spinning-Up Problem

In spinning-up maneuvers of spacecraft and rockets, thruster couples ideally pro-
vide a torque precisely along the spin axis without imparting an external force which
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FIG. 5b.  Simulation of H During Two-Burn Scheme.
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would change the velocity of the vehicle. In practice, however, thruster mismatch can
cause an undesired transverse torque, perturbing the inertial orientation of the angular

momentum vector, and an undesired force, which perturbs the velocity. An extreme

2,00 -
1.00+

:
>
> N\

COAST POINT
1

-1.004 st BURN

-2.00 T T 4
-2.00 -1.00 0.00

1.00
V)/Vz mrad

L
2.00
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example is the Galileo spacecraft which has a single thruster (the S2A or S2B in
Fig. 3) for the spin-up maneuver. Since the spacecraft center-of-mass is not in the xy
plane of Fig. 3, there are significant torques about all three body-fixed axes during
spin change maneuvers. This example has been an inspiration to the authors to ana-
lyze the general problem of the self-excited rigid body [1-4].

The Behavior of the Angular Momentum Vector During Spinning-Up

A very accurate approximate analytic solution for the angular momentum vector is
available through equation (17) by using the analytic solutions for Euler’s angular ve-
locities and the Eulerian angles [1] where the body is initially spinning about the z
axis and conditions (18) or (19) apply. The main restrictions on the solution are that
two of the Eulerian angles (¢, and ¢,) must remain small, the parameter |@,|/w? must
remain small compared to unity and the body-fixed torques are constant. Under these
conditions the solution applies to symmetric and near-symmetric rigid bodies. If the
orientation change of the angular momentum vector in inertial space is restricted to
less than a few degrees, the solution applies to asymmetric rigid bodies [4].

The analytic solution for the orientation of the angular momentum vector in inertial
space is shown in Fig. 7. The parameters are representative of a Galileo spin-up ma-
neuver from 3 rpm to 10 rpm with

I, =3012kg—m?, I, = 2761kg-m’, I, =5106kg-m’  (46)
and

M,= —0.4757 Nm, M, = —0.5669 Nm, M, = 13 Nm 47
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T
e
)
g
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’4'00 T T T 1
-1.00 0.25 1.50 2.75 4.00
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FIG.7. Orientation of the Angular Momentum Vector During Spinning-Up.
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The discrepancy between the exact solution and the analytic solution is not discern-
ible in the figure. '

Even though the Eulerian angular velocities and angles exhibit complicated behav-
ior, the behavior of the angular momentum vector is remarkably simple. The distance
from the center of the spiral path in Fig. 7 to the origin is given by

po = M; + M)"*/I.w}, (48)

and the center of the spirail is located at (=M, /I.w2, M,/I.w?%) which are conditions
that are identical to those of the constant spin rate case whers w_, = Q. The distance
from the origin to any point on the spiral can be approximated by [3, 4]

p(t) = M} + M)"/Lwkt) (49)

where w.(2) is given by equation (11).

This behavior can now be understood by a careful interpretation of equation (1). A
first (and naive) approach is to assume that the constant body-fixed transverse torques
M, and M, remain in the inertial XY plane of Fig. 2b and that the constant body-fixed
spin torque remains aligned with the inertial Z axis. Assuming that the Euler angle ¢,
(equation (15)) gives the rotation of the transverse torques in the XY plane, then

Hy =My = M, cos ¢, — M, sin ¢, (50)
Hy =My =M, sin ¢, + M, cos ¢, (51)
H,=M, =M, 52)

These equations are analogous to equations (2)—(4). The approach is naive because
the analytic integration of equations (50) and (51) produces Fresnel integrals, which
are bounded, but the integration of equation (52) results in a secular term. The result
would indicate that the orientation of the angular momentum vector asymptotically -
approaches the inertial Z axis, which is in disagreement with equation (48) and Fig. 7.

Equations (50)—(52) must be adjusted to account for the average orientation of the
spin torque in inertial space, which makes an angle of p, with the Z axis. Incorporat-
ing this known behavior into equations (50)-(52) gives

HX = Mx cos d)z - My sin ¢: - MyMz/(Izwa) (53)
Hy =M, sin ¢, + M, cos &, + MM,/ (I,0%) (54)
1.12 = (COS pO)Mz = Mz ' (35)

Equation (55) remains unchanged because p, is small. Equations (53)~(55) can be
analytically integrated to obtain

AHy =M, C — M,§ — M,Ms/(Lol) (56)

AHy = M, S + M,C + M, Mz/(Ib) (57)

AH, = M.t (58)
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Asymptotic expansions may be used to evaluate the Fresnel type integrals [11] in
equations (56) and (57):

C= fo , cos ¢.dt = w]' sin ¢. — wy' sin ¢, (59)
S = fo ' sin b.dt = —w]' cos b, + w3 cos ¢, (60)
Assuming initial conditions | '
H,(0) = Lo, (61)
and
W = Wy = by = o = g =0 (62)
and noting that
Mt = L{w, — wy) (63)
equations (56)—(63) give i
Hy =M, ;" sin ¢, + M,w." cos ¢, — M,Lw./I.o} (64)
Hy = —-M,0]' cos ¢, + M,w]' sin &, + M,Lw /Ly, -  (65)
H, = Lo, (66)

The orientation of the angular momentum vector in inertial space is obtained from
equations (21), (22) and (64)-(66)

px = (M /L&) sin ¢, + (M,/1,07) cos b, — M,/I,?, (67)
py = —(M,/1.o) cos ¢, + (M,/1,02) sin ¢, + M,/L?, (68)

which are analogous to equations (23) and (24). Equations (67) and (68) are in agree-
ment with equation (49) as can be seen from

p(t) = [(Px + My/lzwfo)z + (pY - Mx/Izwa)z]Uz (69)

Equations (67) and (68) capture the essential behavior of the angular momentum vec-
tor during spinning-up. '

Annihilation of the Angular Momentum Vector Bias by a Two-Burn Scheme

Figure 8 depicts the angular momentum vector spiral, with its center on the Y iner-
tial axis. This corresponds to a single body-fixed transverse torque, M,, as illustrated
in Fig. 2b, but this does not limit the generality of the discussion. Note that if the
torques are shut off then the angular momentum vector will cease its motion. If
the shut-off occurs at the point halfway to the center of the spiral (indicated by the
dashed line in Fig. 8), then the angular momentum vector will stop there. If, after a
suitable time delay, the torques are turned on again, then the angular momentum vec-
tor may be forced to spiral around the origin for the second and final part of the burn.
This describes the “two-burn” scheme for the spin-up maneuver.
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The halfway point is reached when

_ Py €08 8, = po/2 (70)
as illustrated in the figure. The value for p, is, from equation (49),
po = (M} + M})"*/L o, (71)

where ¢, is the duration of the first burn. From equations (67) and (68) it is clear that the
rotation angle of the angular momentum vector, 6, is the same as the Euler angle ¢,,

6= ¢, ' (72)
In compliance with the previous assumptions in equation (62) note that
¢0 =0 (73)

It is convenient to eliminate the time variable between w,(t), in equation (11), and
¢.(t), in equation (15), so that equation (70) can be written as a function of @

w; = 20,0, + o - (74)
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where
@, = M./I, (75)
From equations (48) and (71)-(74), equation (70) becomes
M2+ M)I7N (200, + wl) ™' cos 8, = ME + M)V 'w3/2 (76)

Rearranging, '
cos 8, — @O, = 1/2 an

Equation (77) is the fundamental transcendental equation for the two-burn scheme. It
is similar in form to Kepler’s equation of time. A variety of numerical techniques can
be used to find the burn angle, 6,, which can then be used to find the burn time, ¢,,
from equation (15). Note that when @ = 0, equation (77) reduces to equation (38),
so that equation (77) provides the general solution for spin-up and constant spin
maneuvers.

After completion of the first burn, the vehicle must rotate through a coast angle,
0., in order to achieve the correct phase angle such that the completion of the spin-up
maneuver will cause the angular momentum vector to spiral about the origin. From
Fig. 8 it is clear that the coast angle is given by

6. =7 — 26, (78)

which is identical to equation (41) for the constant spin rate case. Equation (78) pro-
vides the fundamental equation for the coast angle in the two-burn scheme. The coast
time, ¢, is found by solving equation (15) with the quadratic equation.

After completion of the coasting phase, the second and final burn of the spin-up
maneuver will cause the angular momentum vector to spiral about the origin.

Numerical Results for the Spinning-Up Problem

The numerical results for a single burn spin-up maneuver are displayed in Fig. 7
for the parameters in equations (46) and (47).

The efficacy of the two-burn scheme for the spinning-up maneuver can now be
tested. Calculations for the first burn’ and coast provide

9, = 58.25° (79)
t, = 3.195 s (80)
9, = 63.50° (81)
t, =3479s (82)

The results are shown in Fig. 9. The figure was produced from a very precise
numerical integration of the exact equations (8)—(10) and (12)—(14) and the applica-
tion of the transformation (16). The figure clearly demonstrates the annihilation of
the angular momentum vector bias.

Conclusions

The two-burn scheme presented here has two important applications: (1) the reduc-
tion of velocity pointing errors in axially thrusting rigid body spacecraft spinning at
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FIG. 9. Annihilation of Angular Momentum Vector Bias During Spinning-Up.

a constant rate and (2) the annihilation of angular momentum vector drift during
spinning-up maneuvers. Simple analytic expressions provide the burn and coast times
as functions of angular acceleration and initial spin rate. Knowledge of the magnitude
and orientation of the disturbing transverse body-fixed torques is unnecessary. Major
assumptions are that the thrusters can be turned off and on, that the torques are con-
stant when the thrusters are on, that the vehicle is spinning about a stable principal
axis and that two of the Eulerian angles remain small. The technique is most effective
when the duration of the maneuver corresponds to several revolutions of the body.
The method applies to symmetric, near-symmetric and, under more restrictive condi-
tions, asymmetric rigid bodies.
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