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A Parametric Study of the Behavior of the Angular Momentum
Vector During Spin Rate Changes of Rigid-Body Spacecraft

James M. Longuski® and Tooraj Kiat
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

During a spinup or spindown maneuver of a spinning spacecraft, it is usual to have not only a constant body-
fixed torque about the desired spin axis, but aiso small undesired constant torques about the transverse axes. The
undesired torques cause the orientation of the angular momentum vector to change in inertial space. Since an
accurate approximate.analytic solution is available for the angular momentum vector as 2 function of time, this
behavior can be studied for large variations of dynamic parameters such as the initial spin rate, the inertial
properties, and the torques. As an example, the spinup and spindown maneuvers of the Galileo spacecraft were
studied, and as a resuit very simple heuristic solutions were discovered which provide very good approximations
to the parametric behavior of the angular momentum vector orientation.

Nomenclature
f(x) =probability density function
H = angular momentum vector
I; =moment of inertia about the i-axis
& =spin-change duration
Ax =variations about x
€ =percent x-variable error
£ =nutation angle
P =radial distance from the center of spiral
Po =distance from origin to the center of spiral
o, =x-variable error variance
@; =Eulerian angles
w; =j-axis angular rotation rate
w;  =i-axisrotationrateatt=0
Introduction

THE study of the parametric behavior of the angular
momentum vector during spinup and spindown
maneuvers of rigid-body spacecraft is greatly facilitated by an
analytic solution, H (). While it is a simple matter to obtain
the solution numerically by integrating the equations of
motion on a computer, it is not so easy to find out how the
final conditions vary as each of the dynamic parameters
involved is perturbed. This is because a separate simulation is
required for each perturbation. Such simulation can be ex-
pensive and time consuming. In this study, a computational
algorithm was written based on the analytic solutions' for
Euler’s equations of mation, the Eulerian angles, and the
angular momentum vector, so that the final angular
momentum vector could be found quickly and efficiently
without numerical integration.

The primary interest is focused on the variation of
H(ty, wyo, 0y, 09, M, My, M, I, I, I,) as each of the 10
parameters indicated is varied separately from its nominal
value. Thus, plots are displayed which show the functional
behavior of H, in terms of Aw,, in terms of Awy,, etc.
Specific numerical parametes from the Galileo spacecraft
spinup and spindown maneuvers were used as an example.
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The perturbations corresponded mainly to the 30 (standard
deviations) values or larger. Using a deterministic per-
formance analysis approach, an estimate of the H vector
variations from its nominal final orientation is found. Since
some of the perturbations, such as M, and M,, produced a
linear variation of Hy, these were examined for much greater
ranges than the 3o values. This approach revealed simple
heuristic relations for the error model. Finally, the results of
Monte Carlo simulation are compared to the heuristic
estimates and conclusions are drawn for this particular and
similar examples.

Solution of Euler’s Equations of Motion
Euler’s equations of motion of a rigid body are

M.=Lo.+(I,~1,)w,w,
M,=16,+ (I, - I,)w,w,
M, =Lo, + (I, - L)w,, 0}

An accurate approximate analytic solution to Egs. (1) is’
obtained for near-symmetric rigid bodies subject to arbitrary
constant moments by assuming

W =M/, 4wy @

When I, =17, then Eq. (2) is exact as in the Bddewadt?
solution, but when I, =1, the approximation provides very
useful accurate solutions, particularly when w, and w, are
small, which is usually the case for spin-stabilized spacecraft.
The solutions for w, and w, are given in Ref. 1.

Approximate Solution for the Eulerian Angles

The kinematic equations of motion for a type 1: 3-1-2 Euler
angle rotation are’ :

b, = w,C08¢, + w,sing,
by =w, — (w,c08¢, —w,sing, ) tand,

¢, = (w,C08¢, — w,sing, ) sec, 3)

For the case of symmetric rigid bodies subject to constant
moments, Bédewadt? proposed a solution of Egs. (3) (and all
other versions of Euler angle rotations) which has been shown
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to be valid only for a very restricted set of conditions and
incorrect in general .4
~ A highly accurate approximate analytic solution for the
Eulerian angles for a near-symmetric rigid body has been
found coresponding to case 3 of Bddewadt. The main
restrictions on the solution are that two of the Eulerian angles
must remain small and the parameter lw, |/v(1@,]1) must
remain large.

Solution for the Angular Momentum Vector
With the analytic results for the angular velocities, w,, w,,
and @z, and the type 1:3-1-2 Euler angles, ¢,, ¢,, and ¢,, the
approximate analytic solution for the angular momentum
vector in inertial space can be constructed easily:

Hx ’ wax
Hy =A L, 4)
Hy Lo,

where A is the transformation matrix based on the Eulerian
angles.

An Example of Parametric Behavior
of the Angular Momentum Vector

In this section we will study the parametric behavior of the
angular momentum vector during spinup and spindown
maneuvers for a specific spacecraft—the Galileo. The purpose
here is to obtain practical results which may be used in
probabilistic error models. It will be demonstrated that simple
heuristic solutions can be used to express the orientation of
the final angular momentum vector and that perturbation of
these solutions provide the secular effects. In addition it is
shown that the periodic effects can be closely modeled by a
ring distribution. The final result is a probabilistic error
model which can be used to assess dispersions of the angular
momentum vector during spinup and spindown maneuvers.
The result is confirmed by the classical Monte Carlo analysis.

Galileo is a dual-spin, dual-purpose spacecraft. Scheduled
for a 1986 launch toward Jupiter, it will release a probe into
the Jovian atmosphere and then orbit the planet for about 20
months gathering and transmitting scientific data. The
spacecraft is usually in dual-spin mode, but during AV
maneuvers the mode is changed to single-spin by locking the
rotor and stator together. It is then spun up to 1 rad/s, froma
nominal of 0.306 rad/s, prior to an axial AV burn. This in-
creases the stability margin and the accuracy of the maneuver.
After the burn, the spacecraft is spun down to 0.306 rad/s.
The thruster configuration is illustrated in Fig. 1 where S2A
and —SIA are the primary spinup and spindown thrusters,
respectively, and S2B and —~ S1B are backups.

The nominal H pointing during the spinup maneuver is
shown in Fig. 2, which was generated from Eq. (4). Since the
angles involved are very small, the quantities Hy/H, and
Hy/H; are used to describe the orientation of the angular
momentum vector in inertial space. The analytic solutions
were tested by employing the Advanced Continuous
Simulation Language (ACSL) to perform .a very precise
numerical iritegration by the Runge-Kutta method. It was
found that the aralytic solution for the H pointing produced
errors no greater than an order of 10-° rad throughout the
maneuver duration.

It is very interesting to note that the radial dlstance of the
spiral path exhibited in Fig. 2 from its center can be ap-
proximated accurately, in this partxcular case, by the heuristic
relation

p(1) = (ME+M2) " /L2 G

where
W, zMzt/I_._ +wzo
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Fig.1 Spin thruster configuration.
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Fig. 2 Nominal orientation of the angular momentum vector in
inertial space during spinup maneuver. :
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Fig. 3 Variational orientation of H during spinup for M, £500%.
) x axis, b) y axis, ¢) x axis henﬁsﬁc, and d) y axis heuristic.

The center point of the spiral is also approximted by the
simple heuristic relations:

x=-M,/L,o%, y=M./I,0? 6)
These solutions were inspired from the case of M, =0, in
which they can be derived for small angles ¢ and ¢, In this
situation of constant spin rate, the angular momentum vector
precesses about the dlrectlon given by x and y, in a closed
curve,

Now the parametric behavior of the final angular
momentum vector orientation will be examined. For the
purpose of this study it was assumed that the correct final spin
rate is always achieved. This can be accomplished by using
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Fig. 4 Variational orientation of Hy during spinup for w,, +50%.
a) x axis, b) y axis. ¢) x axis heuristic, and d) y axis heuristic.
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Fig. 5 Variational orientation of H; during spinup for 7, +20%
a) x axis, b) y axis, c) x axis heuristic, and d) y axis heuristic.

appropriate sensors such as star trackers or sun sensors in a
feedback control system. An alternative approach was also
studied involving a controlled burn time which is open loop,
but these results are not presented here.

Let H, represent the nominal angular momentum at the end
of the spin rate change maneuver and let H,(Ax) represent
the vector when parameter « is perturbed by Ac. Using ACSL
Galileo spin-change dynamics were simulated. The simulation
was based on the analytic solutions derived from Egs. (1-4):
The method of deterministic performance analysis was
employed to calculate and plot the variational behavior of the
angular momentum vector H;(Aa) — H; as Aa is varied from
extreme negative to extreme positive values.- A few sample
cases for spinup and spindown modes are shown in Figs. 3-13.

These results indicate that parametric behavior can be
described as either periodic, secular, or a combination of
periodic and secular effects. Perturbation of the transverse
torques resulted in a secular perturbation of the final angular
momentum vector, while perturbation of I,, M,, and «,
produced combined periodic and secular variations with
periodic effects being the dominant. factor, except for w, in
the spinup mode. Perturbations of /, and J, resulted in very
small variations. Small changes in the initial values of the
transverse angular velocities produced a linear (or secular)
effect on the final angular momentum vector.
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Fig. 6 Variational orientation of Hy during spinup for 7, +20%.
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Fig. 7 Variational orientation of H during spinup for M, +50%.

Figures 3-5 have the heuristic solutions, as given by Eqgs.
(6), superimposed on the plots. For zero initial transverse
velocities the heuristic solution provides a good ap-
proximation of the secular and average periodic effects. The
effect of nonzero initial transverse angular velocities is to
produce an initial nutation angle £, which is defined as the
angle between the z-axis and the angular momentum vector.
The initial nutation angle is given by

tang = (Baly+Bwly) % /Luy u)

Normally the transverse velocities are nearly zero and there is
no nutation angle. Perturbations of w,, and w,, result in a
linear perturbation of H,. This is shown in Fig. 7 for’
variations in w,q. )

Since Eq. (5) provides a good estimate for the average
pointing error, it also may be used to estimate the variance
due to the secular terms. Let ¢, =dx/x signify the error in x,
then,

dop _dM  dI, 2do, ®

where P
M= (M2 +M2)"
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Fig. 8 Variational orientation of H/ during spinup for w,, = 0.0005
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Fig. 9 Nominal orientation of the angular momentum vector in
inertial space during spindown maneuver.

Hence, since the parameters are independent, the secular
uncertainty about the average may be estimated by the
following equation.

Op0= (03¢ +0f, +402,) # ©))

The simulation results for the periodic errors show that the
final momentum vector due to these parameter variations will
trace a circle about an average point which is given by Egs.
(6): This result suggests a narrow width ring distribution
model for the variations of the periodic effects. To simplify
the analysis a zero-width ‘ring distribution, Fig. 14, is
assumed, which implies that the probability density function
with respect to ris impulsive. ;

S(r)=8(r—R) (10)
‘Furthermore, a uniform distribution in 8 is assumed, 1.e.,

f0y=1/(27), 0<8<2x
an

=0, otherwise

These assumptions imply that the momentum vector points,
with equal probability, to any location on the perimeter of a
circle the center of which is given by Eqgs. (6) and the radius is
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Fig. 10 Variational orientation of Hy during spindown for
M, £500%.
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Fig. 11 Variational orientation of Hy during spindown for
W0 £50%.

R. In effect, this defines a cone about the average pointing
direction, given by Egs. (5) and (6), the trace of which in the x-
¥ plane is a circle that may be estimated as follows:

It may be shown that the probability density function in
terms of one of the Cartesian eqordinates, say x, will be given
by ’ i

Jx)=(R?-x?)~¥/x, —R<x<R

(12)
=0, otherwise

- where mean and variance for this distribution are given as 0

and R/2, respectively. The distribution plot is shown in Fig.
15. - '
In the application to the Galileo spacecraft we are interested
in the 3o dispersions of the angular momentum vector, which
corresponds. to 99.7% .level of confidence for a Gaussian
distribution. For the ring distribution it is easily shown that
the 99.7% level of confidence will occur at x=R. The
heuristic solution, Eq. (5), gives a good estimate of R for any
w,(t). The circle of interest is the trace of the momentum
vector H(¢) at t=t¢;. Hence Eq. (5) with w, = w,, gives 2 good
approximation to the 99.7% confidence circle of uncertainty.
By combining the above results we obtain a simple
probabilistic model for the pointing error, Fig. 16. The final
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angular momentum vector will point, with 99.7% probability,
within a circle of radius R, about the average pointing vector
0y, where

The numerical values of the parameters used in the
simulation and the result of the deterministic performance
analysis are summarized in Table 1. Using these parameter
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Fig. 12 Variational orientation of Hy during spindown for 7, +:20%.
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Fig. 13 Variational orientation of H, during spindown for
M, +50%.
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values the estimated ring radius is calculated as 0.146 mrad, in
close agreement with the results given in Table 1.

Finally, a Monte Carlo simulation was performed. For the
parameters producing periodic effects the Monte Carlo
simulation resulted in 1.69 mrad mean and 0.1079 mrad lo
values. These values compare favorably to 1.708 and 0.1032
mrad estimated mean and 1o values.
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Fig. 14  Zero width ring distribution.
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Fig. 15§ Zero width ring distribution in Cartesian coordinates.

Fig. 16 Pointing error model for the spin-change maneuver.

Tablel Deterministic performance analysis results

Nominal Resultant Periodic radius
Error source Source secular error, of uncertainty,
source value error, % mrad mrad
I 3012 kg-m? 2.1 0.00381 -
I, 2716 kg-m? 2.4 0.00479 -
I 4627 kg-m? L5 0.04 0.15
M, —0.4757 N-m 5.1 0.0585 -
M, —0.5669 N-m 5.1 0.0699 -
M, 13.0N-m 5.1 - 0.147
Wgp 0.306 rad/s 6.8% 0.225 -
Wy 1.047 rad/s 17 0.07 0.135
Total error 0.247 0.15

2Uniform distribution.
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Conclusions

The form of a highly accurate approximate analytic
solution is presented for the angular momentum vector for
near-symmetric rigid bodies subject to constant moments.
The solution is given as a function of the Eulerian angles and
the angular velocities, which were solved for in a previous
paper. The solution applies when two of the Eulerian angles
are small and a certain parameter is large. This analytic result
permits the parametric behavior of the angular momentum
vector to be studied during spin rate change maneuvers such
as occur in the Galileo mission to Jupiter. For this particuiar
case, simple heuristic formulas were discovered which aid
greatly in obtaining quick numerical resuits. While it wouild
not be wise to extend these heuristic results to the general case,
the basic approach can be used to study a variety of in-
teresting cases using the same analytic solution, without which
such studies would be prohibitively expensive and time
consuming due to the many computer simulations required.
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