
TEXTURE SYNTHESIS AND PHOTO-REALISTIC RE-RENDERING OF

ROOM SCENE IMAGES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kyle J. Ziga

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Fengqing Zhu, Chair

School of Electrical and Computer Engineering

Dr. Jan Allebach

School of Electrical and Computer Engineering

Dr. Charles Bouman

School of Electrical and Computer Engineering

Dr. Amy Reibman

School of Electrical and Computer Engineering

Approved by:

Dr. Buck Doe

Head of the School Graduate Program

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . ix

1 Introduction . 1

2 Textures . 4

2.1 What is a texture? . 4

2.2 Texture Synthesis . 5

2.2.1 Previous Work . 7

2.2.2 Our method . 9

2.3 Results . 17

2.4 Future Work . 19

3 Image Re-rendering . 22

3.1 Perception . 22

3.2 Scene Reconstruction . 22

3.2.1 Depth . 24

3.2.2 Lighting . 28

3.2.3 Reflectance . 37

4 Implementation . 40

4.1 Depth Data to Object File . 40

4.2 Texturing the Objects . 41

4.3 Lighting . 43

4.4 Material Properties . 45

4.5 Post-processing . 47

5 Results . 50

iv

Page

6 Future Work . 53

REFERENCES . 54

v

LIST OF TABLES

Table Page

2.1 Initial parameters by texture class . 16

vi

LIST OF FIGURES

Figure Page

1.1 Example output of the DzineSteps tool. On the left is the original image.
On the right is the modified image. 2

1.2 Example product image that a user may want to replace a surface with. . . 3

2.1 Example texture types including random (left), irregular (center) and re-
peating (right) . 5

2.2 Visual representation of texture being mapped to a mesh and then ren-
dered to an image [5]. 6

2.3 Example of a successful texture synthesis result. Left is the input texture,
right is the synthesized output. 7

2.4 Illustration of parameter effect on output using [9]. 9

2.5 Example texture classes. Left: Stochastic, Center: Irregular, Right: Regular.11

2.6 Left: Example 3x3 pixel neighborhood, Center: Comparison of neighbors
to center pixel, Right: Local binary pattern codeword. 13

2.7 Example of a local binary pattern encoded image. 14

2.8 Illustration of patch size progression through user feedback. Left: Each
box represents the patch size for each iteration of texture synthesis, Right:
Green box shows appropriate patch size on the order of the fundamental
repeating structure. 17

2.9 Experimental results: Examples of successful synthesis results. The smaller
image is the input sample and the larger image is the synthesized output.
Output synthesized at twice the input size. 20

2.10 Experimental results: Examples of failed synthesis attempts. The smaller
image is the input sample and the larger image is the synthesized output.
Output synthesized at twice the input size. The red boxes highlight errors
in the synthesized output. 21

2.11 Illustration of the poor results common for wood textures. 21

3.1 High level system diagram. 24

3.2 Flow chart of depth estimation process. 26

vii

Figure Page

3.3 Example of estimated depth map (right) from original image (left). 29

3.4 Example of an environment map captured with a 360 degree panoramic
camera, a similar image could generated using a mirrored ball. 30

3.5 Example of an environment map captured with a 360 degree panoramic
camera, a similar image could generated using a mirrored ball. 30

3.6 Flow chart for in-view light source estimation. 31

3.7 The 9 3x3 Laws masks used as part of the Make3D features. Vector
combinations labeled above each image. 33

3.8 Filter masks for oriented edge filters spaced at 30 degrees apart. 34

3.9 Example output of the in-view light classifier. Left is the original image
while right is the output with detected sources marked in red. 35

3.10 Example of objects rendered into panoramic image environments, material
used is brushed aluminum. The top image is the rendered object, the
bottom image is the environment map used during rendering. 36

3.11 Intrinsic image breakdown example. Top image is the original, bottom
left is the shading component, bottom right is the reflectance component. . 38

4.1 Example of an image split into foreground and background. The fore-
ground and background are then loaded as 3D models and textured with
the original image. Top is the original image, bottom left is the background
model, bottom right is the foreground model. 41

4.2 Example of a 3D object with and without texturing. On the left is a cube
with a standard material, all settings default. On the right is the same
cube with a standard material but a texture map was provided. 42

4.3 Texture used during the texture mapping for the cube in Figure 4.2. 42

4.4 Illustration of the different types of lights available in ThreeJS. 43

4.5 Examples of a rendered scene with varying illumination intensity from 4
watts to 60 watts. 44

4.6 Comparison of homography and our result. Left image is our result, right
image is homography. 45

4.7 Illustration of diffuse vs. specular reflection. Arrows represent incident
light rays. 46

4.8 Example renderings of different ThreeJS material types. (a) is the basic
material, (b) is Lambert material, (c) is Phong material and (d) is the
standard material. 48

viii

Figure Page

5.1 Final output for a kitchen scene, backsplash is the replaced surface. 50

5.2 Final output for a kitchen scene, island counter is the replaced surface. . . 51

5.3 Final output for kitchen scene, wall is the replaced surface. 51

5.4 Final output for outdoor scene, brick pillars are the replaced surfaces. . . . 52

5.5 Final output for indoor living room scene, carpet is the replaced surface. . 52

ix

ABSTRACT

Ziga, Kyle J. M.S, Purdue University, December 2018. Texture Synthesis and Photo-
realistic Re-rendering of Room Scene Images. Major Professor: Fengqing Zhu.

In this thesis, we investigate methods for texture synthesis and texture re-rendering

of indoor room scene images. The goal is to create a photorealistic redesign of inte-

rior spaces by replacing surface finishes with a new product based on a single room

scene image. Specifically, we focus on automating this process to reduce manual input

while enabling high-quality and easy-to-use experience. The most common method

of rendering textures into a scene is called texture mapping. Texture mapping in-

volves mapping pixels in a texture sample to vertices in an object model. Typically, a

large texture sample is required to perform texture mapping properly. Given a small

texture sample, texture synthesis creates a large sized texture that appears to have

been made by the same underlying process. In the first part of this thesis, we present

a method of texture synthesis that automatically determines a set of parameters to

produce satisfactory results based on the texture types. The next challenge is to cre-

ate a photorealistic re-rendering of the synthesized texture in the room scene image.

3D scene information such as geometry, lighting and reflectance is crucial to making

the re-rendered image realistic. These properties contribute to the image formation

process and must be estimated to create a scene-consistent modification. Knowing

these parameters allows effects like highlights, shadows and inter-object reflections

to be maintained during the re-rendering process. We detail methods for estimat-

ing these parameters from a single indoor image. Finally, we will show a web-based

implementation of these methods using the WebGL library ThreeJS.

1

1. INTRODUCTION

Realistically manipulating images and video has seen many applications with the rise

of virtual and augmented reality in recent years. These applications span fields such

as medicine, providing medical students a safe and controlled environment for prac-

ticing surgical techniques, military, heads-up displays provide real-time information

to air and ground troops [1], the gaming industry, and construction or interior design,

visualizing changes before committing them.

From a single image many people are able to grasp scene level properties such as

illumination, relative positions of objects and material properties. An ordinary viewer

can almost always tell when lighting is inconsistent, such as missing or out of place

highlights and shadows, or when the perspective of an object or surface is not quite

right. Even with the technological improvements made in the previous decades, it

is still difficult for computers to robustly estimate these same properties which come

relatively easily to human viewers. Changes to an image must be consistent with

these scene properties to be realistic.

Many complex interactions take place in the image formation process. Light trav-

els through a scene and is reflected, refracted, absorbed and diffracted by objects.

The interactions are directed by the geometry of scene objects as well as the material

the objects are made of. In photo-realistic computer graphics rendering these inter-

actions are attempted to be quantized and simulated. For example, individual light

rays are “traced” from the image plane back through the scene and their interactions

with objects are determined by the properties of the synthetic surfaces. The crucial

step of any project involving realistic re-rendering of images is explaining the interac-

tions that took place during the image formation. This process of recovering intrinsic

properties of a 3D scene from a 2D image is called inverse rendering.

2

In this thesis we will discuss applications of inverse rendering in the interior design

space. We have worked with a company, DzineSteps, who provide a state-of-the-

art virtual visualization platform for surface and color selection in interior design.

They provide a software to help clients create a virtual gallery showcasing products

such as flooring, tile and counter tops on appropriate surfaces. This can increase

the emotional engagement of the buyer while eliminating guesswork and visually

answering the question, “How will it look in my room?” An example output of the

DzineSteps tool can be seen in Figure 1.1.

Fig. 1.1. Example output of the DzineSteps tool. On the left is the
original image. On the right is the modified image.

The tool allows a user to select a surface of interest using a click-based segmen-

tation [2]. The user can then upload or select a new product to apply to the surface

of interest. An example of this new product image can be seen in Figure 1.2. From

this information our tool will automatically generate foreground and background 3D

models of the scene from an estimated depth map. In parallel with depth estimation

scene illumination will be estimated including both sources visible in the image and

global illumination which contributes to the scene from behind the camera’s field of

view. Surface reflectance is estimated as well and applied to the 3D object mesh.

Combined, these components are used to reconstruct the 3D scene from the image.

3

The surface of interest is then re-textured with the selected product, scene lighting is

applied and an output image is rendered.

Fig. 1.2. Example product image that a user may want to replace a surface with.

To allow for rendering complex scene properties using off-the-shelf rendering soft-

ware we represent our scene using 3D objects. For 3D objects texture mapping can

be used for defining surface color, specular reflection, surface normals, transparency,

diffuse reflection, shadows, or surface displacement [3]. The use of textures to provide

surface color details is the most common. This is done by warping the texture image

to adhere to the geometry of the surface, mapping texture pixels to object vertices.

For this to be done properly a large enough texture sample needs to be provided.

Most texture samples are small images, therefore texture synthesis must first be used

to generate a large enough texture sample for texture mapping. This is described in

section 2.2.

This thesis will first describe the work that has been done towards developing an

easy-to-use texture synthesis algorithm. Then we will explain methods for estimating

scene properties from a single image to reconstruct a 3D scene. Finally, a web based

implementation will be described using the WebGL library ThreeJS.

4

2. TEXTURES

In this section we describe the importance of textures in computer rendered images.

We then introduce a method for automatically creating large texture samples from

small samples. These large texture samples are used during the rendering process for

texture mapping, or applying texture information to 3D objects.

2.1 What is a texture?

Texture can describe a variety of natural phenomena with repetition; we are in-

terested in those textures which represent visual appearance. One of the main goals

of our project, and computer graphics in general, is to reproduce the realism of the

physical world. Textures are ubiquitous in real images making them important for

conveying a realism in computer rendered images by providing the detailed informa-

tion of the appearance of a surface [4]. Examples of different types of textures can be

seen in Figure 2.1. Some textures have a strong repeating pattern while others allow

for more variation or imperfection. Still others seem to be completely random. We

will see how these differences in texture types will factor into our algorithm.

The details of a surface can be created using a technique known as texture map-

ping. When computer generated scenes are rendered to an image the locations on the

image where the object vertices should be is determined and the points are projected.

When an object is textured, portions of the texture image are found which corre-

spond to the projected points of the object [5]. An illustration of this can be seen in

Figure 2.2. For the texture to maintain proper scale after the mapping a large enough

texture sample must be used. The user uploaded texture samples will commonly be

small. These will be similar to the sample images found at home improvement store

websites for items such as flooring, tile or counter tops. These small samples will need

5

Fig. 2.1. Example texture types including random (left), irregular
(center) and repeating (right)

to be grown to a large enough size so as to maintain the scale of the pattern during

texture mapping. For this we will need to use a texture synthesis algorithm. Texture

synthesis is the process of creating a large texture from a small input texture. This

is described fully in Section 2.2.

2.2 Texture Synthesis

Texture synthesis is the procedure of “growing” a large texture image given a

small sample texture. Texture synthesis has a variety of applications in areas such as

computer vision, computer graphics and image processing. These applications include

occlusion fill in by image inpainting, texture mapping, image compression and more.

Also, with the growth of augmented and virtual reality applications, efficient texture

synthesis algorithms have become more important. An example texture synthesis

result can be seen in Figure 2.3. The synthesized texture should not be a repetition

of the sample pattern. Instead it should look as though it was created by the same

underlying process. In this way only small texture samples are needed to generate

large sized texture data.

6

Fig. 2.2. Visual representation of texture being mapped to a mesh
and then rendered to an image [5].

Current texture synthesis methods require a user to understand and carefully set

parameters to produce satisfactory results. The DzineSteps tool wants to allow an

untrained user to make image modifications, therefore requiring they set parameters

is undesirable. We leverage differences in texture types to create a method which

can automatically synthesize a wide range of textures. To try and account for errors

we introduce a user feedback method of parameter correction. This rids the need

7

for users to select actual parameter values while still utilizing the user as a means of

validation for the synthesized result.

Fig. 2.3. Example of a successful texture synthesis result. Left is the
input texture, right is the synthesized output.

2.2.1 Previous Work

Texture synthesis algorithms can be separated into two main categories: pixel-

based methods and patch-based methods. Both methods copy pixels directly from

the input texture sample to the output synthesized sample based on some defined

condition. Efros and Leung [6] were the first to use a pixel-based technique. Their

approach begins with a single seed pixel and grows the synthesized texture from

that starting location. To synthesize a pixel their algorithm finds all neighborhoods

from the sample texture which are similar, by some criteria, to the neighborhood

8

in the synthesized texture with the pixel to be synthesized at the center. Once all

candidate neighborhoods from the input texture are collected, one is chosen at random

to prevent repetition in the output. The center pixel of the chosen neighborhood is

then taken as the new synthesized pixel value in the output and the algorithm moves

on to the next pixel location in a raster ordering. This process can be extremely

slow, limiting the practical application of such methods. Wei and Levoy [7] address

this issue of speed by extending the previous method by using tree-structured vector

quantization to speed the process of searching for candidate neighborhoods. Their

method reports output quality equal or better to previous techniques while running

two orders of magnitude faster.

The second category, patch-based methods, include the most recent techniques

developed. These methods find and copy an entire patch from the input image. The

patches are placed into the output image and then the transition from one patch

to another must be taken into account so as to hide the seams between patches.

The way the patches are made to transition smoothly differs between approaches.

In [8] the boundary artifacts are removed by blending the transition areas. They

use feathering, or blurring, across the patch boundaries in order to create smooth

transitions from one patch to the next. Efros and Freeman in [9] allow neighboring

patches to slightly overlap, then compute a similarity metric for the overlap regions

of two patches. Using this metric they construct a list of all patches which meet

the criteria, then randomly select one patch to avoid repetition in the synthesized

texture. They then perform a boundary cut which minimizes the error in the overlap

regions of two patches, finding the best seam. Selected parameters for this method

highly affect the output, as illustrated in Figure 2.4. The two previous methods both

use regular and constant sized patches, generally square. In [10] the boundary cut is

extended further. They use irregular patches without a constant patch size in order

to find the optimal seam between patches. A graph cut approach is used to determine

the optimal patch seam for any given region of the output texture.

9

Fig. 2.4. Illustration of parameter effect on output using [9].

2.2.2 Our method

Some methods work better for certain types of textures while some textures are

extremely difficult to synthesize regardless of the method used. However, these results

come from a user working with the algorithms and understanding how parameters

affect the output. Such a process is tedious, burdensome to untrained users, and

difficult to adapt to real-life applications. With these considerations we chose to base

our work on the image quilting method described in [9]. In this case the parameters

include: size of the patch, overlap area for neighboring patches and error tolerance

for the overlap regions. For someone familiar with the details of the texture synthesis

algorithm being used parameter tuning is not a big issue, but for untrained users this

can be a frustrating trial and error process. We propose a solution to this problem by

first classifying the input texture into a set of predetermined texture types. Once the

texture type is known, an initial estimate of parameters for the image quilting method

can be set without any user input. This allows for texture synthesis to be carried out

10

automatically in applications where a user does not have a technical understanding

of the algorithm. We only require the user to provide feedback on whether or not the

synthesized result is satisfactory. If necessary parameters are updated and another

iteration of the texture synthesis algorithm may take place.

Texture Classification

We found that the texture synthesis parameters which produce the best results

strongly depended on certain characteristics of the input texture. For example, if the

input texture has a strong repeating pattern, the patch size must be on the order

of the fundamental repeated element, visualized in the right image of Figure 2.8. If

this is not done correctly, the structure of the pattern would not be maintained as

seen in Figure 2.4. It was also noticed that in highly structured textures the error

tolerance in the overlapping regions of patches needed to be very strict. Failure to do

this would also result in the structure of the pattern not being kept. On the other end

of the spectrum we found that if the input texture was very random and noise-like,

the parameters needed to be more relaxed. The output for these types of textures

depended on the error tolerance for the overlap regions being much lower. If this was

not done the output would look repetitive and a clear difference from the input image

would be noticeable. These observations led us to create a preprocessing step in the

image quilting algorithm [9] in which we first identify the type of texture the input

is. Once we know which type of texture the input is we can predict a good starting

point for the image quilting parameters. Then, with user feedback, we can adjust the

parameters accordingly until the synthesized output is satisfactory.

Texture Types

Textures can generally be classified into two types: stochastic and regular. How-

ever, most real-world textures fall somewhere between these two classes forming a

spectrum of texture types [11]. In our preprocessing step we classify an input texture

11

into one of three texture types: stochastic, irregular and regular. An example of each

texture type is shown in Figure 2.5. These three classes were selected based on sim-

ilar parameters needed during a trial and error process to produce the best texture

synthesis results using image quilting. The application of our work is in the field of

interior design, as such we can provide examples of each type of texture relating to

interior design. Stochastic textures are random, noise-like textures, commonly found

in carpets. Irregular textures fall between stochastic and regular texture types. Tex-

tures that fall under this category do not have a clear repeating structure, but also

are not completely noise-like. Examples of this type of texture are marble, granite,

or natural stones. Regular type textures have very strong repeating structures, like

the square patterns shown in the right image of Figure 2.5. A single element of this

repeating pattern, or the fundamental repeating pattern, can be identified and ex-

tracted. An example of the fundamental repeating pattern can be seen highlighted

in green in the right image of Figure 2.8. Examples of this texture class are brick or

tiling.

Fig. 2.5. Example texture classes. Left: Stochastic, Center: Irregular,
Right: Regular.

12

Local Binary Patterns

To perform the texture classification we made use of local binary patterns [12].

A texture feature vector could be extracted from the input image by using the local

binary pattern operator on neighborhoods within the input image, then constructing

a histogram for the transformed image. This method was selected for computational

simplicity. Generating a local binary pattern image is done by encoding each pixel

based on the pixel’s relation to neighboring pixels. For a simple explanation of local

binary pattern encoding we will examine a 3x3 neighborhood from an image as shown

in Figure 2.6. Each of the eight neighbors is compared to the center pixel. Every

neighboring pixel is assigned to one bit in an 8-bit binary number. If the neighboring

pixel is greater than the center pixel, that pixel position is assigned a value of one.

If the neighboring pixel is less than the center pixel, a value of zero is assigned to

that pixel position. Once all comparisons have been made the center pixel is assigned

the integer value of the 8-bit codeword by concatenating the newly assigned binary

values of the neighboring pixels. The order of the neighboring pixel values used when

generating the codeword is arbitrary but must be kept consistent for all pixels. The

neighborhood for performing the encoding can be modified in two ways. First, a

circular neighborhood can be used where only a radius is defined. Since the points of

this neighborhood will not lie on the rectangular grid of the image, pixel values for

neighboring locations will be interpolated. Second, the number of neighbors does not

need to be set to eight. A different amount of neighbors will change the number of

possible encoded values in the output image.

Once this process is completed we have an image in which each pixel value is the

local binary pattern encoding. An example of a local binary pattern encoded image

can be seen in Figure 2.7. We now need to construct the texture feature vector from

this image. The feature vector is constructed by concatenating histograms for non-

overlapping windows within the local binary pattern image. For our 3x3 neighborhood

example we selected a window size of 15x15 pixels following [12]. For each window

13

Fig. 2.6. Left: Example 3x3 pixel neighborhood, Center: Comparison
of neighbors to center pixel, Right: Local binary pattern codeword.

we could construct a histogram of length 256. The histogram for each window would

be concatenated to form the global feature vector for the texture image. This feature

vector could then be used by any classification method.

Classifying

We use a straight-forward approach to classify textures as a proof of concept. In

order to classify input texture images of unknown texture type, sample textures be-

longing to each class must first be collected. We used four samples from the stochastic

class, ten samples from the irregular class and eight samples from the regular class.

The local binary pattern feature vector was then computed for each training image.

When the class of an unknown texture is desired, the same steps are followed to com-

pute the feature vector of the unknown texture. Then the feature vector is compared

with the training data to determine which class the new texture belongs to. In this

paper we compute the chi-square distance between the feature vectors since chi-square

distance can be used to measure distance between histograms. We then use a nearest

neighbor approach and determine the class that the new texture belongs to as the

one with the minimum average chi-square distance.

14

Fig. 2.7. Example of a local binary pattern encoded image.

User Feedback

The intent of this paper is provide a method which eliminates the need for the

user to perform tedious parameter tuning while still producing high quality texture

synthesis results. However, even the latest texture synthesis algorithms do not succeed

in synthesizing every input texture, this issue is addressed further in Section 6. For

this reason we still need to use some user information to steer our texture synthesis

method towards a more appropriate set of parameters. In our method the user simply

needs to respond to the question of a satisfactory output with a “yes” or “no” after

the synthesis has taken place. If answered “yes”, the program will terminate, if “no”,

15

the parameters from the previous run will be adjusted and synthesis will start over

until the results satisfy the user.

Our method follows these steps to synthesize a texture:

1. Compute the local binary pattern image of the input texture.

2. Use the local binary pattern image to construct the texture feature vector for

the input texture.

3. Classify the input texture as one of the three texture classes.

4. Set initial parameters for texture synthesis based on the texture class.

5. Run texture synthesis algorithm with defined parameters.

6. When synthesis is complete ask user if the result is satisfactory.

(a) If yes, quit.

(b) If no, update parameters and go to step 5.

Parameters

Based on the class of texture the input image has been identified, along with the

user feedback, we were able to develop a strategy to set the parameters for the image

quilting algorithm which produce the best results. Since there is variability in the best

parameters even within a texture class, the user feedback will allow the parameters to

be updated. Table 2.1 shows the initial set of parameters used once the texture class

is identified. The patch size parameter is defined as a percentage of the input image

size, the overlap is defined as a percentage of the patch size and the error tolerance

is a raw difference in a selected error metric between patch overlap regions.

The user response to the output of the texture synthesis tells our method what

to do next. If the user says that the output is not satisfactory the parameters need

to be adjusted to try and correct the error. The overlap area still remains to be

16

Table 2.1.
Initial parameters by texture class

Class Patch Size Overlap Error Tol.

Stochastic 0.5 0.05 0.1

Irregular 0.4 0.1 0.01

Regular 0.9 0.1 0.001

calculated as a percentage of the patch size. Error tolerance also does not need to

be adjusted once the texture class is found. The only parameter that needs to be

adjusted is the patch size. The adjustment is made as a percentage of the previous

iteration’s patch size. The new patch size is ninety percent of the previous patch size

for each class. It was found that this parameter plays the most important role in

the synthesis results. For regular textures the patch size needs to be on the order of

the fundamental repeating structure or the pattern will not be kept. An error in a

repeated regular pattern is easily perceived by humans. Generally, the patch size must

be large enough to capture the structures within the input texture, but small enough

that the output image does not look too similar to the input texture. The output

must look like a different image generated by the same process. To achieve this our

method starts with an over estimation of the patch size and slowly decreases the size

until the output is satisfactory. Figure 2.8 demonstrates this procedure. Each box

represents the patch size for one round of texture synthesis. When the patch size is set

to the size of the green box it is on the order of the fundamental repeating structure,

as demonstrated by the right image, and the synthesized texture is accepted. After

each round the patch size is reduced to ninety percent of the previous size regardless

of which class the input texture belongs to.

17

Fig. 2.8. Illustration of patch size progression through user feedback.
Left: Each box represents the patch size for each iteration of texture
synthesis, Right: Green box shows appropriate patch size on the order
of the fundamental repeating structure.

2.3 Results

To test our method we used real world textures of varying texture types. The

textures were selected to represent a range of those that were commonly found in

the interior design industry such as flooring and counter tops. No parameters for the

image quilting method were needed as input from the user. The only user interaction

was the feedback described in previous sections.

Our classification results are satisfactory, though only tested on a small sample

size. We used twenty-two training images and received eighty percent accuracy when

testing on images containing similar characteristics to the training set. As the sam-

ple size increases, intra-class variation may cause an issue using a nearest neighbor

approach as discussed in this paper. In that case another classification method may

be investigated.

18

The results of our method are shown in Figure 2.9. For stochastic type textures,

(Figure 2.9 (a), (b), (c), (d), (e) and (f)), our method works very well. This is

because a wide range of parameters would yield pleasing results. Any perceptual

differences in the synthesized output for different parameters are difficult to detect.

Structural textures with a strong repeating pattern are also successfully synthesized

using our method. Unlike stochastic textures, structural textures are very sensitive

to the parameters. This causes our methods to require approximately 3-5 iterations

of user feedback in order to correctly synthesize most structural textures. Results of

structural textures are shown in the third image in Figure 2.9 (j), (k), and (l).

The texture class that is challenging for the proposed method is the irregular

texture. There are two reasons why these texture types are difficult to properly

synthesize. The first is that they do not have a fundamental repeating pattern but

they do contain some structure which can be easily seen when synthesized incorrectly.

Taking pixels or patches from the sample texture image limits the available data used

to synthesize, creating the possibility of leaving out some structural characteristics

which may be obvious to a human viewer. This can be seen in Figure 2.10 (a). The

stones clearly have some structure, but not a well defined structure. In the synthesized

image it is obvious that mistakes have been made when pebbles of different color and

texture are attempted to be matched in an overlapping region. The second reason is

that most real world irregular textures have multiple layers of textures within them.

For example Figure 2.10 (b) is an irregular texture of stones, but within each stone

there exists a stochastic type texture. Our method will try to synthesize the irregular

structure as best it can, but in certain cases such as the one in the figure mistakes are

obvious. This is not true in all cases. Figure 2.9 (g), (h), and (i) show cases where

irregular textures are able to be correctly synthesized by our method. We believe

that in order to overcome the challenge of irregular texture synthesis, methods other

than patch based algorithms must be developed. The use of patches limits the total

information available to that which exists in the input image. Model based methods

have the possibility to produce better results for irregular textures. One would need

19

to extract an accurate model for the generation of the texture given in the input

image, then synthesize a new image according to the model for the output.

2.4 Future Work

Improvements can be made towards a more fully automatic method for texture

synthesis. Our method uses a basic way of classifying textures into one of three texture

types and then synthesizes directly from there. More sophisticated techniques could

be used to improve upon the classification problem. This problem can also be regarded

as a regression problem instead of a classification problem. In other words an attempt

could be made to use features from the input texture sample to directly estimate the

most likely parameter values to be used during synthesis rather than first classifying

a texture type and then setting parameters. For both of these improvements recent

methods using deep learning come to mind.

The issue of irregular texture types resulting in unsatisfactory synthesis results is

also something which needs to be addressed. The most pressing texture type relating

to interior design where this comes up is with wood patterns. Patch based methods

fail drastically for these textures, as seen in Figure 2.11. This is because there is a

clear global structure to the pattern and often a direction, however examples of how to

continue this pattern are often missing from the input sample. Synthesis algorithms

will do their best to match parts of the patterns based on local structure, but they

have no idea how to maintain a global structure. For this reason another synthesis

method would have to be used entirely.

20

Fig. 2.9. Experimental results: Examples of successful synthesis re-
sults. The smaller image is the input sample and the larger image is
the synthesized output. Output synthesized at twice the input size.

21

Fig. 2.10. Experimental results: Examples of failed synthesis at-
tempts. The smaller image is the input sample and the larger image
is the synthesized output. Output synthesized at twice the input size.
The red boxes highlight errors in the synthesized output.

Fig. 2.11. Illustration of the poor results common for wood textures.

22

3. IMAGE RE-RENDERING

Now we must explain how to take the newly synthesized texture and insert it onto

the desired surface in an image. The goal is to maintain realism so there are multiple

factors which will contribute to a satisfactory result. Since our target application will

allow non-technical users to manipulate images we only want to use low dynamic-

range (LDR) images captured from typical cameras such as from a smart phone.

These images have a limited exposure range resulting in a loss of detail in the highlight

and shadow regions.

3.1 Perception

Exact scene parameter estimations are not needed to produce visually pleasing

rendering results. Many image synthesis methods leverage the limitations of the

human visual system in order to reduce computation while retaining image fidelity.

These methods incorporate metrics to determine when an approximate solution for

parameters such as illumination, geometry and reflectance will be visually indistin-

guishable from a reference solution [13]. It has also been shown that estimates for

point light sources can still create visually similar renderings [14]. The coarse esti-

mates which are described in the next sections will be sufficient for creating realistic

renderings.

3.2 Scene Reconstruction

To make physically grounded edits to an image we must first infer the physical

scene corresponding to a single low dynamic-range image. The physical scene consists

of three main components which contribute to the image formation process: geometry,

23

illumination and surface reflectance. Though the desired results can be made using

tools such as Photoshop, it takes someone with artistry and expertise. To make this

work accessible to the average user these properties should be obtained automatically

with minimal user input. We assume the user have no understanding of the imaging

process. We closely follow the work in [15] where they aim to insert a new 3D object

into a scene. The difference between inserting an object and replacing a surface seems

minimal, however the consequences are bigger than expected. This is explained in

more detail in Section 4.

Creating realistic re-renderings of images with one or more surfaces replaced with

new materials requires basic information about the 3D scene. This information in-

cludes: spatial layout or relative depth of objects in the scene, material properties

such as reflectance and scene lighting. Why are these scene properties integral in cre-

ating realistic modifications? One perceptual cue for the human perception of depth

is occlusion [16]. One object overlapping another implies relative positions. To create

a sense of realism the re-rendered result must be consistent, with respect to occlusion,

with the original image. Therefore relative depth of objects must be extracted. An-

other important factor in the perception of photo-realistic rendering is inter-reflection

between objects. Reflections between objects must agree with perceived spatial layout

of the scene. Incorrect, inconsistent or missing reflections provide immediate clues

that the image was artificially generated. To properly maintain reflections in a scene

reflectance properties must be found both for existing scene objects and new materi-

als to be placed in the scene. Lastly, the scene lighting must be accounted for. The

shadows seen in an image provide depth cues. These cues provide information about

the volume of space the objects are in and relative positions of the object [17]. Again,

incorrect, inconsistent or missing shadows or other lighting effects will cause obvious

errors in the attempted realistic re-rendering. We automatically produce coarse esti-

mates of this scene level information to reconstruc a 3D scene from a 2D image. A

high level system diagram can be seen in Figure 3.1.

24

Fig. 3.1. High level system diagram.

3.2.1 Depth

When we look at an image our prior information about the world allows us to

infer depth. In sticking with our user-friendly approach to image editing, it is unde-

sirable to require stereoscopic images for depth estimation. The accuracy of stereo

vision is limited by the baseline distance between the two cameras, making using user

generated stereoscopic images for depth estimation undesirable. We also do not want

to require a user to do annotation which may require them to be trained. We are tar-

geting an untrained user. With this in mind we follow the data-driven approach [18]

with the changes detailed in [15] for automatic depth estimation.

Many single image reconstruction techniques have been proposed. In [19] they

created 3D scene reconstructions from single 2D images by assuming each image could

be broken down into coarse categories: “ground”, “sky” and “vertical”. A statistical

approach was used to label pixels with one of these categories. These labels could then

25

be used to morph the image into a pop-up model of the scene. In [20] they develop

a Bayesian framework which is trained to recognize floor-wall boundaries throughout

an image allowing for 3D reconstruction from a single image. A Markov Random

Field, trained via supervised learning, is used to infer 3D location and orientation

of image patches in [21]. The MRF models both depth cues as well as relationships

between different parts of the image while only assuming that the environment in the

image is made up of multiple small planes. A data-driven approach is used in [18] by

matching scene level features and warping depth images from a groundtruth dataset

to align features. Optimization is then done to constrain the output depth to some

assumptions and prior conditions.

Following [15] our current geometry is in the form of a per-pixel depth map. This

map is obtained by combining a data-driven model, one with no explicit parameters

but instead uses a database of images, and geometric information present in many

images. The database used is the NYU Depth Dataset V2 [22].

First, given a database of RGBD images candidate images are found from the

database which are “similar” to the input image. This is done by using GIST [23]

features for high-level context based scene level recognition. The appeal of using

GIST is that there is no processing of individual objects. An image is broken down

into a set of low dimensional perceptual dimensions including: naturalness, openness,

roughness, expansion and ruggedness. Using these dimensions the top K(=10) can-

didates are found from the depth dataset using a nearest neighbor approach. The

candidate depth maps are then used in an optimization process to achieve the final

depth map.

A pixel-to-pixel correspondence is then found between the input image and each

of the candidate images using SIFT flow [24]. SIFT flow matches per-pixel SIFT

features to estimate warping functions, ψi, i ∈ {1, ..., K}, which map pixel locations

from a candidate’s domain to pixel locations in the input image’s domain. These

warping functions are then used to also warp the depth map for each candidate. An

optimization process takes place where the warped candidate depth maps contribute

26

Fig. 3.2. Flow chart of depth estimation process.

to one of the terms in the objective function, the data term. Figure 3.2 shows a dia-

gram for the depth estimation process. The optimization procedure aims to minimize

the following function:

∑
i∈pixels

Et(Di) + λmEm(N(D)) + λoEo(N(D)) + λ3sE3s(N(D)) (3.1)

The terms in the objective function are as follows: Et(Di) is the data term, using

the database of RGBD images, Em(N(D)) is a Manhattan prior term, this is used

to ensure patches of a scene are always oriented along one of the three dominant

directions and so encourages parallel and perpendicular surface normals from the

estimated depth, Eo(N(D)) is a surface orientation constraint that forces surface

normals to coincide with a surface orientation estimate computed using [25], and

E3s(N(D)) is a 3D smoothness term which encourages nearby surface normals to

point in the same direction unless there is a strong edge in the original image.

27

Data term

The data term is used to require the estimated depth to be similar to the warped

candidate depths as in [18]. The distance used to measure similarity between the

current estimated depth at pixel i (Di) and warped candidate depth j, ψj(C
(j)
i) : j ∈

{1, ..., K}, is defined by φ(x) =
√
x2 + ε. The data term is then defined as:

K∑
j=1

ω
(j)
i [φ(Di−ψj(C(j)

i)) + γ[φ(∇xDi−ψj(∇xC
(j)
i)) +φ(∇yDi−ψj(∇yC

(j)
i))]] (3.2)

Where ω
(j)
i is a confidence measure of the accuracy of the jth candidate’s warped

depth at pixel i. This term encourages similarity not only in depth, but also in depth

gradients in both the x and y directions.

Manhattan Prior

Under a Manhattan world prior patches of a scene should be oriented along one of

the three dominant directions. The directions are defined by R = (Rx, Ry, Rz)
T which

is the rotation matrix which will rotate identity to the set of vanishing points. This

term adds a penalty for surface normals (N(D)) not lying parallel or perpendicular

to one of these directions.

pp(N, V) =
1

2
− ||NTV | − 1

2
| (3.3)

Em(N(D)) =
∑

i∈pixels

pp(Ni, Rx) + pp(Ni, Ry) + pp(Ni, Rz) (3.4)

Where the pp function is small if input vectors are parallel or perpendicular and

large otherwise.

28

Surface Orientation

Using the estimate of surface orientations found by using [25] this term enforces

surface normals to be consistent with this estimate where the confidence of the esti-

mate is high. Letting Ω be the set of all pixels where the confidence is high and Omap
i

be the predicted surface orientation at pixel i, the surface orientation term is then:

∑
i∈Ω

1− |NT
i O

m
i ap| (3.5)

This term will be small when the vectors are aligned and large otherwise.

3D Smoothness

Finally, the smoothness term enforces normal vectors to be pointing in the same

direction unless there is a strong edge in the original image. This minimizes discon-

tinuities from the warping functions applied to the candidate depth maps.

∑
i∈pixels

sxi ||∇xNi||+ syi ||∇yNi|| (3.6)

Where sx = (1+e||∇xI||−0.05)/0.01))−1 and sy = (1+e||∇yI||−0.05)/0.01))−1 are threshold

functions for the input image I’s derivatives.

This setup is an unconstrained, non-linear optimization. The method of iteratively

re-weighted least squares is used to minimize the objective function. An example

input image along with it’s estimated depth map can be seen in Figure 3.3.

3.2.2 Lighting

Lighting plays one of the most important roles in creating photo-realistic render-

ings. Inconsistent shadows or highlights are fairly easy for humans to perceive. Lack

of shadows and highlights can give a rendering a cartoon-like appearance. Estimating

29

Fig. 3.3. Example of estimated depth map (right) from original image (left).

scene illumination is generally difficult and under-constrained given that illumination

in real environments is often complicated.

Various illumination representations exist. Individual locations of light sources

can be represented by point lights. Global scene illumination can be represented in

the form of an environment map or image based lights (IBL) [26]. An IBL is typically

captured by taking omnidirectional images at the physical scene. Some methods for

taking omnidirectional images include: using a mirrored ball, fisheye lens images,

panoramic cameras and stitching images together. An example of an IBL taken with

a mirrored ball can be seen in Figure 3.4, while an example taken with a panoramic

camera can be seen in Figure 3.5.

Point light sources have been detected by requiring a user to identify the silhou-

ette of an object in the image and then using the contour and gradient information

to infer light directions and relative intensities [14]. [27] show how reflections in eyes

can be used to create an environment map. Environment maps have also been esti-

mated using automatically detected shadows [28], but require depth information as

input. [29] showed that wrapping an image to create an environment map can also be

sufficient in certain applications. Again, following [15], we predict illumination both

in view and out of view of the camera using a data-driven method.

30

Fig. 3.4. Example of an environment map captured with a 360 degree
panoramic camera, a similar image could generated using a mirrored
ball.

Fig. 3.5. Example of an environment map captured with a 360 degree
panoramic camera, a similar image could generated using a mirrored
ball.

31

To characterize scene illumination fully light sources must be split into two cat-

egories: in-view, those actually seen in the image, and out-of view, the illumination

environment which contributes to the scene from behind the camera’s field-of-view.

Different approaches are used to identify each type of light source for the input im-

age. In-view sources are found by using a support vector machine (SVM) performing

a binary classification. Out-of-view illumination is estimated using a data driven

model with a similar idea used in the depth estimation [15]. Annotated panoramic

images from the SUN360 dataset [30] are used as training data for both in-view and

out-of-view source estimation.

Fig. 3.6. Flow chart for in-view light source estimation.

In-View Source Estimation

To detect in-view light sources the input image is first oversegmented into super-

pixels using SLIC [31]. Then the following features are computed for each superpixel:

height of the superpixel in the image, computed by averaging the height of all the

pixels in each superpixel, along with features used in Make3D [32]. The Make3D

features are used to determine the 3D structure of an image as modeled by a num-

32

ber of small planes. These features aim to capture monocular depth cues as well

as meaningful image boundaries such as occlusions or folds. The features are the

output of 17 filters computed using a 3x3 mask on each superpixel. The 17 filters

include the 9 Laws masks applied to the Y channel of the image in YCbCr space,

the first Laws mask is also applied to the Cb and Cr channels, and 6 oriented edges.

The Laws masks are generated by multiplying combinations of the following vectors:

L3 = (1, 2, 1), E3 = (−1, 0, 1), and S3 = (−1, 2,−1). The visual representation of

these masks can be seen in Figure 3.7. The oriented edge detectors are spaced out at

30 degrees apart, shown in Figure 3.8. The 15 masks are applied to the Y channel of

the image, while the L3L3 Laws mask is also applied to the Cr and Cb channels. This

makes 17 filter responses for each superpixel. For each of the filter responses both the

energy and the kurtosis is calculated,
∑

(x,y)∈Si
|I(x, y)∗F (x, y)|k where k = 2, 4 gives

the energy and kurtosis respectively. This results in 34 features for each superpixel.

The four neighboring superpixel features are concatenated to the current superpixel

feature making 5x34 = 170 features for each superpixel at a particular scale. This

process is then carried out at 100% and 50% scale, making the final feature count

340. A diagram of the in-view classifier can be seen in Figure 3.6.

Using the annotated training data a binary classifier can be trained to predict

whether or not a superpixel in the input image contains a light source. An example

output of the in-view light source classifier can be seen in Figure 3.9.

Every source superpixel in the input image must now be matched to a 3D location

in the scene. Using our previous depth estimation we can find the source’s 3D position

by:

X = D(x, y)K−1[x, y, 1]T (3.7)

Where K is the camera projection matrix and D is the depth found previously.

33

Fig. 3.7. The 9 3x3 Laws masks used as part of the Make3D features.
Vector combinations labeled above each image.

Out-of-View Light Source Estimation

Out-of-view light source estimation is the most difficult part as the correct estimate

is unclear. Following [15] we assume that if two images have a similar appearance,

then the illumination behind the camera should also be similar. With this assumption

we again use a data-driven approach with the SUN360 panorama dataset [30]. Each

IBL from the dataset is sampled into N(=10) rectilinear images at varying points and

fields-of-view on the sphere. These projections are used as the ground truth data,

since we know the corresponding illumination is the parent panoramic image. The

sampled images are matched to the input image using a similarity feature.

34

Fig. 3.8. Filter masks for oriented edge filters spaced at 30 degrees apart.

We want to rank pairs of images so the final feature used describes how two

images match in feature space. There are a total of six features computed for each

image: orientation maps [25], spatial pyramids [33], HSV histograms (three), and the

output of the in-view light classifier. For the orientation map and the light classifier a

normalized dot product is used to determine the similarity in feature space for the final

feature. For the HSV histograms and the spatial pyramid a histogram intersection

score is used to compare the two image features. This leaves us with our final 6D

similarity feature vector.

We want to be able to discriminate between different IBLs. To do this we need to

define a distance metric to tell us how similar one IBL is to another. This distance

35

Fig. 3.9. Example output of the in-view light classifier. Left is the
original image while right is the output with detected sources marked
in red.

metric will be used as the loss for our rank training optimization. Our objective is to

use the IBL to light a scene during the re-rendering so a pixel-wise comparison does

not make sense. Instead we will define our metric based on how a set of standard

objects look when they are illuminated by these IBLs. We will render three standard

objects with varying materials into each of the environments defined by the panoramic

image. The distance between the IBLs will then be the mean L2 error over the pixels

belonging to the objects in the renderings for all object and material combinations.

Equation 3.8 is the distance metric where Ω is the set of all objects rendered into the

panoramic image environments Pi and Pj, and Ii and Ij are the two rendered images

coming from IBL i and j respectively. An example rendering of one of these objects

in two different panoramic environments can be seen in Figure 3.10.

d(Pi, Pj) = meano∈Ω||Ii,o − Ij,o||2 (3.8)

The goal is to find a ranking function ω such that ωTxij > ωTxik whenever the

illumination in panoramic image j is better suited for input image i than the illu-

mination in panoramic image k. Here xij and xik are the features between the input

36

Fig. 3.10. Example of objects rendered into panoramic image en-
vironments, material used is brushed aluminum. The top image is
the rendered object, the bottom image is the environment map used
during rendering.

image and sampled rectilinear images from the respective panoramic images from the

dataset. This function is found using a standard 1-slack, linear SVM-ranking opti-

mization [34]. The objective function and constraints are detailed in Equation 3.9.

δij,k = max(d(Pi, Pk)− d(Pi, Pj), 0) is a hinge loss.

argminω,ε||ω||2 + Cε, s.t.ωTxij < ωTxik + δij,k − ε, ε > 0 (3.9)

To predict the top ranked illumination for a new input image i we first compute

the similarity feature vector pairwise for all sampled images in our dataset, xij,∀j.

Since we have found our ranking function as detailed above we just need to sort the

output of that function for all the computed features, ωTxij, in decreasing order. Then

37

we can select the top k IBLs to use when rendering. In our work we only select the

number one ranked IBL.

3.2.3 Reflectance

The observed color at any point on an object is influenced by many factors. Barrow

and Tenenbaum proposed breaking an image into separate intrinsic scene property

images [35]. These include: range, orientation, reflectance and illumination. Many

algorithms focus on a separation of images into three components: illumination, re-

flectance and specular [36]. The illumination component comes from shading effects

such as object occlusion and lighting. The reflectance component, also referred to as

albedo, represents how the material of an object will reflect incident light independent

of viewpoint and illumination. The specular component corresponds to highlights

which come specifically from viewpoint, illumination or geometry. Example intrinsic

images can be seen in Figure 3.11. We can then express the incident light intensity

at an point in an image by the following:

I(x) = S(x)R(x) + C(x), (3.10)

Where I(x) is incident light at pixel location x, S(x) is illumination, R(x) is

reflectance and C(x) is the specular component.

Retinex theory was proposed in [37] showing that albedos could be separated

from illumination when illumination was assumed to vary slowly. Small gradients are

assumed to correspond to illumination and large gradients are assumed to correspond

to reflectance. Different heuristics have been devised based on real world assumptions

for classifying edges as illumination or reflectance.

The intrinsic image is estimated based on the following:

1. Compute the horizontal and vertical gradients, ix and ix, of the log (grayscale)

input image.

38

Fig. 3.11. Intrinsic image breakdown example. Top image is the
original, bottom left is the shading component, bottom right is the
reflectance component.

2. Interpret these gradients by estimating the gradients r̂x and r̂y of the log re-

flectance image using the heuristic:

r̂x =

ix, if |ix| > T

0, otherwise

(3.11)

3. Compute the log reflectance image r̂ which matches these gradients as closely

as possible:

r̂ = argminr
∑
x,y

|rx(x, y)− r̂x(x, y)|p + |ry(x, y)− r̂y(x, y)|p (3.12)

Extensions of this algorithm to color images use two thresholds for estimating the

reflectance image gradient. The illumination changes lie in the span of the vector

(1, 1, 1)T , called the brightness subspace. The chromaticity subspace is the null space

39

of that vector. The thresholds used in the color Retinex algorithm are for changes in

brightness and color.

These scene level properties will allow us to reconstruct the 3D environment using

any off-the-shelf graphics renderer. Within the reconstruction we will then be able

to make changes and re-render a modified image. The next section will provide

implementation details about how this is done using the WebGL library ThreeJS.

40

4. IMPLEMENTATION

This section details the implementation of the re-rendering of an image using the

Javascript WebGL library ThreeJS. Depth data needs to be formatted in a way which

can be loaded by ThreeJS, lighting needs to be applied, and then material properties

and textures need to be added to the scene. After these steps are taken the scene

can be rendered to an image. We will see how replacing a surface is slightly different

than inserting an object as in [15].

4.1 Depth Data to Object File

The first step is to convert the estimated depth data into a format that can be

readily loaded by rendering software. One of the most common ways of doing this is to

write the data to a wavefront object (.obj) file. The object file is a data format which

represents 3D geometry. An object in a 3D graphics setting is a set of vertices. The

object file includes information such as vertex position, texture coordinate positions

(used for texture mapping), vertex normals and the faces that make each polygon

defined as a list of vertices. A description of how an object file can be written can be

found in [38].

We take our scene depth estimate and create two object files by splitting the

original image into a foreground and a background. The foreground is the surface

which we are interested in replacing, and the background is everything else in the

scene. This segmentation can be done using a click based method allowing the user

to easily select the surface of interest in the scene [2]. An image along with it’s

foreground and background models is shown in Figure 4.1. The object models are

textured with the original image.

41

Fig. 4.1. Example of an image split into foreground and background.
The foreground and background are then loaded as 3D models and
textured with the original image. Top is the original image, bottom
left is the background model, bottom right is the foreground model.

4.2 Texturing the Objects

Now that the depth data has been used to create and load 3D objects into the

scene the objects must be textured. Texturing objects is a fast and efficient way to

add detail to objects like the ones shown in Figure 4.1. In our case we are interested

in adding color detail, however texture mapping can also add details in the form

of: specular highlights, reflections, diffuse reflections, surface normals, refraction and

transparency.

Texture mapping is essentially applying a patterned paper to a plain white box.

The paper is the texture image, in our case some surface material, and the box is the

42

object. A 2D to 3D mapping is defined so that each vertex of the object corresponds

to a pixel value in the texture image. Figure 4.2 shows an example of the difference

between an object with a default material and one with a texture mapped material.

The texture used on the cube object can be seen in Figure 4.3.

Fig. 4.2. Example of a 3D object with and without texturing. On the
left is a cube with a standard material, all settings default. On the
right is the same cube with a standard material but a texture map
was provided.

Fig. 4.3. Texture used during the texture mapping for the cube in Figure 4.2.

43

4.3 Lighting

Once the objects are loaded into the scene and textured we must add light sources

to the scene. There are many different light types available in ThreeJS. One such

light is the point light. A point light takes up one 3D location and emits light in

all directions. A point light is commonly used to replicate the light emitted from a

bare bulb. Another light type is the directional light. Directional lights emit light

in a specific direction as though the light source is infinitely far and the rays are

parallel to each other. A common use for direction lighting is to simulate daylight.

The last commonly used light is ambient light. Ambient light is a global light which

illuminates all objects of a scene equally. Since ambient light does not have a direction

it is unable to cast shadows. A basic object lit by three different ThreeJS light types

is shown in Figure 4.4.

Fig. 4.4. Illustration of the different types of lights available in ThreeJS.

By combining our in-view light estimation and depth estimates we can automat-

ically instantiate any scene lighting visible in the image. Ideally we would like to

have irregularly shaped lights which would correspond to the superpixels detected as

light sources. However this option is not available with the ThreeJS library. Instead

we create a point light for each pixel detected to belong to a light source. Using

this method can lead to too many point light sources being in the scene causing the

rendering to slow down and can create saturation. Instead of creating a point light

for every single pixel we evenly distribute a predetermined amount of point lights

44

over all detected light source pixels. We can then vary the point light illumination

strength to best match the original scene. An example of a rendering with varying

point light intensity is shown in Figure 4.5. Every scene shown was lit with ten point

lights located uniformly on the window. The intensity of the point lights were then

varied from 4 watts up to 60 watts.

Fig. 4.5. Examples of a rendered scene with varying illumination
intensity from 4 watts to 60 watts.

Figure 4.6 illustrates the lighting effects in comparison to a simpler method such

as a homography transform. It can be seen that in the homography image on the right

the orientation of the surface is correct, however the floor is uniformly lit without any

45

lighting changes coming from the window. Notice that in our result on the left a

gradual lighting change can be seen when moving away from the window.

Fig. 4.6. Comparison of homography and our result. Left image is
our result, right image is homography.

4.4 Material Properties

A material defines the artistic qualities of the substance that an object is made of.

Materials can be used for basic effects such as object color, reflectance or shininess.

Materials can also be used for complicated effects such as transparency, diffraction

and subsurface scattering, where light enters the surface of an object but scatters

and leaves at a different point. Many renderers contain preset material types often

including: brass, skin, gold, glass or linen. It is important to note the difference

between textures and materials. Textures are often used to describe more information

about the material. For example, an object material may be brass, using a texture

may make the object has a polished brass look. Textures are like additional layers

added on top of a base material.

Material properties contribute to many of the effects seen in the final render. The

rendered image is a projection of the scene onto an imaginary surface or viewing

plane, analogous to film in a camera. To determine what is rendered at each point

46

of the viewing plane we need to know the interaction the light ray reaching the point

has had with objects in the scene. This is done by tracing that simulated light ray

backwards from the viewing plane through the scene until it encounters a renderable

object. At this point two types of interactions can take place: diffusion and specular

reflection. Diffuse reflection happens when light encounters a rough surface and the

light is reflected in all directions. Specular reflection takes place when light encounters

a smooth surface and is reflected at a definite angle. An illustration of specular vs.

diffuse reflection can be seen in Figure 4.7. The color that the object is rendered as will

be determined by a combination of the diffuse and specular properties of the material

along with the incident light intensity to modify the base object color. Reflections

for reflective surfaces can also be rendered in this way. The incident light will be

modified by the base object color and surrounding environment color depending on

the reflectivity of the material. In a similar fashion transparency can be rendered

with a mix of object color and background color depending on the transparency of

the object.

Fig. 4.7. Illustration of diffuse vs. specular reflection. Arrows repre-
sent incident light rays.

47

There are a variety of materials available for use in ThreeJS which all have different

properties. The first is called a basic material. This is the most basic material allowing

you to send a color value as well as an opacity value. Objects with this material do not

have shading; they do not respond to scene lighting. The next material of interest

is the Lambert material. A Lambertian surface is one which is an ideal ”matte”

or diffusely reflecting surface. The brightness of one such surface is the same to a

viewer no matter what angle it is viewed from. As the name implies, the Lambert

material is one which can respond to lights, but only by diffuse reflection resulting

in a dull shading. Another material available is the Phong material. The Phong

reflection model describes the way a surface reflects light as a combination of the

diffuse reflection of rough surfaces with the specular reflection of shiny surfaces. The

Phong material is another material which responds to scene lighting but adds specular

reflection, reflecting light with more intensity. Finally we have the standard material.

In ThreeJS the standard material combines the Lambert and Phong materials into

a single material. The standard material can create surfaces which look either dull

or metallic. The standard material is what we use in our implementation. Examples

of a single object rendered with each material type can be seen in Figure 4.8. The

scene lighting in these renderings consisted of ambient light and a single point light

attached to the camera.

4.5 Post-processing

Our estimates of scene properties are rough but sufficient to create more details

than other methods. Since we are replacing an existing surface rather than adding

a new object to the scene we want to preserve every part of the image that is not

the surface of interest. If we were inserting an object we would need to worry about

which parts of the original image the new object will occlude. In our case we do not

need to worry about this scenario. The ground truth lighting effects already present

in the original image will always be better than our scene estimates.

48

Fig. 4.8. Example renderings of different ThreeJS material types. (a)
is the basic material, (b) is Lambert material, (c) is Phong material
and (d) is the standard material.

To keep the existing effects while inserting the new surface we render the full

image and then do some post-processing using the foreground-background mask. We

need to render the full image to incorporate reflections from the background in the

future. Once the rendering is done we recombine the two images into the final output

by replacing the foreground pixels in the original image with the pixels from the

49

rendered image. This leaves the background unchanged while replacing the surface

of interest.

50

5. RESULTS

Here we provide results of our method. All figures contain the original image, the

new surface texture and the re-rendered output image.

Fig. 5.1. Final output for a kitchen scene, backsplash is the replaced surface.

51

Fig. 5.2. Final output for a kitchen scene, island counter is the replaced surface.

Fig. 5.3. Final output for kitchen scene, wall is the replaced surface.

52

Fig. 5.4. Final output for outdoor scene, brick pillars are the replaced surfaces.

Fig. 5.5. Final output for indoor living room scene, carpet is the replaced surface.

53

6. FUTURE WORK

We have laid the foundations for a path towards creating photo-realistic re-renderings

of indoor room scene images. There are many places where improvements can be made

leading to more realistic renderings.

One of the most important improvements that can be made to complex scenes is

estimating surface material properties. Reflections play a major role in photo-realistic

renderings. In order to allow the new surface texture to reflect the surrounding scene

we must be able to estimate the properties of the new material (metallic, ceramic,

matte, etc).

A common lighting effect in indoor images is a light shaft entering a window.

Our method does not currently account for this type of lighting. The actual source,

typically the sun, is often not present in the image. This could possibly be done by

being able to identify windows as light sources and then taking the appropriate steps

to recreate the effect on the new surface. This may include creating an infinitely far

light source in the scene and masking the light rays in the same shape as the identified

window.

REFERENCES

54

REFERENCES

[1] T. Perdue, Applications of Augmented Reality, 2018 (accessed
June 22, 2018). [Online]. Available: https://www.lifewire.com/
applications-of-augmented-reality-2495561

[2] C.-J. Tai, T. Liu, J. Bagchi, F. M. Zhu, and J. P. Allebach, “Interactive seg-
mentation for indoor scenes,” Electronic Imaging, vol. 2017, no. 10, pp. 51–59,
2017.

[3] P. S. Heckbert, “Survey of texture mapping,” IEEE computer graphics and ap-
plications, vol. 6, no. 11, pp. 56–67, 1986.

[4] L.-Y. Wei, “Texture synthesis by fixed neighborhood searching,” 2002.

[5] M. Segal, C. Korobkin, R. Van Widenfelt, J. Foran, and P. Haeberli, “Fast
shadows and lighting effects using texture mapping,” in ACM Siggraph Computer
Graphics, vol. 26, no. 2. ACM, 1992, pp. 249–252.

[6] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,”
in Computer Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on, vol. 2. IEEE, 1999, pp. 1033–1038.

[7] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector
quantization,” in Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 479–488.

[8] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time texture synthe-
sis by patch-based sampling,” ACM Transactions on Graphics (ToG), vol. 20,
no. 3, pp. 127–150, 2001.

[9] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and trans-
fer,” in Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. ACM, 2001, pp. 341–346.

[10] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures:
image and video synthesis using graph cuts,” in ACM Transactions on Graphics
(ToG), vol. 22, no. 3. ACM, 2003, pp. 277–286.

[11] W.-C. Lin, “A comparison study of four texture synthesis algorithms on regular
and near-regular textures,” 2004.

[12] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–987,
2002.

55

[13] G. Ramanarayanan, J. Ferwerda, B. Walter, and K. Bala, “Visual equivalence:
towards a new standard for image fidelity,” in ACM Transactions on Graphics
(TOG), vol. 26, no. 3. ACM, 2007, p. 76.

[14] J. Lopez-Moreno, S. Hadap, E. Reinhard, and D. Gutierrez, “Compositing im-
ages through light source detection,” Computers & Graphics, vol. 34, no. 6, pp.
698–707, 2010.

[15] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, M. Sittig, and
D. Forsyth, “Automatic scene inference for 3d object compositing,” ACM Trans-
actions on Graphics (TOG), vol. 33, no. 3, p. 32, 2014.

[16] J. Wolfe, K. Kluender, D. Levi, L. Bartoshuk, R. Herz, R. Klatzky, S. Lederman,
and D. Merfeld, Sensation and Perception, 2nd ed. Sinauer, 2009.

[17] L. Lipton, Foundations of the Stereoscopic Cinema - A Study in Depth. Van
Nostrand Reinhold, 1982.

[18] K. Karsch, C. Liu, and S. B. Kang, “Depth transfer: Depth extraction from
videos using nonparametric sampling,” in Dense Image Correspondences for
Computer Vision. Springer, 2016, pp. 173–205.

[19] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photo pop-up,” in ACM
transactions on graphics (TOG), vol. 24, no. 3. ACM, 2005, pp. 577–584.

[20] E. Delage, H. Lee, and A. Y. Ng, “A dynamic bayesian network model for au-
tonomous 3d reconstruction from a single indoor image,” in Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 2.
IEEE, 2006, pp. 2418–2428.

[21] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure from
a single still image,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 31, no. 5, pp. 824–840, 2009.

[22] P. K. Nathan Silberman, Derek Hoiem and R. Fergus, “Indoor segmentation and
support inference from rgbd images,” in ECCV, 2012.

[23] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope,” International journal of computer vision, vol. 42,
no. 3, pp. 145–175, 2001.

[24] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across scenes
and its applications,” in Dense Image Correspondences for Computer Vision.
Springer, 2016, pp. 15–49.

[25] D. C. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single image
structure recovery,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE, 2009, pp. 2136–2143.

[26] P. Debevec, “Image-based lighting,” in ACM SIGGRAPH 2006 Courses. ACM,
2006, p. 4.

[27] K. Nishino and S. K. Nayar, “Eyes for relighting,” in ACM Transactions on
Graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 704–711.

56

[28] A. Panagopoulos, C. Wang, D. Samaras, and N. Paragios, “Illumination esti-
mation and cast shadow detection through a higher-order graphical model,” in
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on.
IEEE, 2011, pp. 673–680.

[29] E. A. Khan, E. Reinhard, R. W. Fleming, and H. H. Bülthoff, “Image-based
material editing,” in ACM Transactions on Graphics (TOG), vol. 25, no. 3.
ACM, 2006, pp. 654–663.

[30] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, “Recognizing scene view-
point using panoramic place representation,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2695–2702.

[31] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic
superpixels compared to state-of-the-art superpixel methods,” IEEE transactions
on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

[32] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure from
a single still image,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 31, no. 5, pp. 824–840, 2009.

[33] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyra-
mid matching for recognizing natural scene categories,” in Computer vision and
pattern recognition, 2006 IEEE computer society conference on, vol. 2. IEEE,
2006, pp. 2169–2178.

[34] T. Joachims, “Training linear svms in linear time,” in Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing. ACM, 2006, pp. 217–226.

[35] H. Barrow and J. Tenenbaum, “Recovering intrinsic scene characteristics,” Com-
put. Vis. Syst., A Hanson & E. Riseman (Eds.), pp. 3–26, 1978.

[36] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground truth
dataset and baseline evaluations for intrinsic image algorithms,” in Computer
Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, pp. 2335–
2342.

[37] E. H. Land and J. J. McCann, “Lightness and retinex theory,” Josa, vol. 61,
no. 1, pp. 1–11, 1971.

[38] M. B. Zinck, OBJ File Format, (accessed May 15, 2018). [Online]. Available:
http://www.cs.cmu.edu/∼mbz/personal/graphics/obj.html

