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ABSTRACT

A total lagrangian explicit formulation is presented to model the large deformation
response of fiber reinforced composite material to impact and penetration. The inelastic
response of each ply is described by an anisotropic rate dependent plasticity model. The
parameters of the anisotropic constitutive model are determined experimentally using
the off-axis and the Arcan shear tests. The interface between plies is treated separately
through a contact/interface algorithm which takes into account delamination, opening and
subsquent closing of the interface and large sliding between plies. The response parameters
of the interface elements are modelled in terms of the actual materials properties. Hence,
attempt has been made to model the pre- and post-failure response of fiber reinforced
composite targets based on exprimentally observed failure mechanisms. The formulation
is thought to simulate the penetration of GRP composite plates at impact velocities in
the range of 180-200 m/s, Espinosa et al. 1996.

INTRODUCTION

Fibre reinforced composite materials have gained prominence as advanced materials
owing to their high stiffness/density and strength/ density ratio. Specially, the glass fibre
reinforced plastic (GRP) has become the potential material for designing weight efficient
armor systems and combat vehicles. It becomes compulsary to evaluate their structural
integrity under dynamic conditions at high strain rates before making full utilization in
such applications.

The overall energy absorbing capability of fibre reinforced materials depend upon
their consituents which include fibers, matrix, fibre-matrix interface and interface between
plies. There have been a spate of studies over the last decade to gain insight into the failure
mechanisms induced by impact damage in fiber- reinforced composite materials. Different
failure modes including delamination, interlaminar matrix cracking, fiber/matrix debond-
ing, fiber breakage and fiber pull-out have been observed. At low velocity impact, matrix
fracture and interply delamination have been found to govern the damage of composites.
While, extensive fiber fracture and microbuckling have been observed at high velocity
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430 DYNAMIC AND TIME-DEPENDENT BEHAVIOR

impact. In the latter case, the magnitude and extent of damage is a function of the
penetrator shape and mass, striking velocity, plate thickness, and composite constituents’
properties.

For instance, higher fiber strength provide better impact resistance to composites
(Broutman and Rotem, 1975). According to Beaumont, 1979, the post-debond fiber
sliding is the primary energy absorbing mechanism in glass fiber-reinforced composites,
whereas fiber pull-out is responsible for much of the toughness in a carbon fiber composite.
On the other hand, the tensile strength of the matrix material has a significant effect on
impact behavior (Williams and Rhodes, 1982, Hunston, 1984, Elber, 1985). The matrix
properties govern the damage threshold and determine the extent of impact damage while
the fibre properties govern the resistance to penetration. The toughness of matrix is
fully transferred to the toughness of composite for brittle polymers, while only partial
transfer takes place for tougher polymers resins. Similarly, the interface between matrix
and ply and those between plies affect the impact resistance of composites. The transverse
fracture energy of a composite directly depends on the matrix-ply bond strength (Dorey,
1980, Ying, 1983). Measures to increase the interply bond strength have been suggested
to enhance the impact resistance of composites (Sun and Rechak, 1988, Pelstring and
Madan, 1989).

Additionally, numerical techniques have been used to study the impact resistance of
fiber- reinforced composites. Lee and Sun, 1993a and b, studied the damage mechanisms
of AS4/PEEK composites under quasi-static penetration experiments and established the
load-deflection relation. This was used in a dynamic analyses to determine the ballistic
limit of graphite/epoxy laminates. A comprehensive review of experimental as well as
numerical work can be found in Abrate 1991, 1994 and Cantwell and Norton, 1991.

The response of fiber reinforced composite materials is a complex function of many
factor, e.g., strength of matrix vis-a-vis fiber, fiber orientation, failure mechanism such as
delamination, fiber breakage, fiber pull out, and the material post-failure response. One
type of composite material may behave quite differently from another under the same
load. Furthermore, recent experimental findings have been found to be contradictory to
some of past experimental results, which in part may be due to the advancement of the
measurement techniques. While there have been very few attempts to simulate the pene-
tration of composite targets through modelling of non-linear phenomena, e.g., constitutive
behavior, failure, delamination, contact/friction, etc. These new findings prompted the
need for experimental as well as numerical investigations dealing with damage resistance
and damage tolerance of fiber composites.

The approach is to understand the response of composite materials to impact loading
through experiments and translate the findings to numerical simulations through proper
modelling of inelasticity and pre- and post-failure constitutive behavior for full scale design
and analyses. With this in view, Espinosa et al., 1996, devised a new technique for
recording projectile tail velocity histories using a normal velocity interferometer (NVI)
and target back surface velocity with multi-point interferometry. The technique has been
used to study the dynamic failure mechanisms of woven fiber-reinforced plastic laminates
(GRP) made of S-2 glass fibres embedded in a polyester resin matrix with approximately
60% fiber by volume. The penetration experiments have been carried out with the conical
shaped penetrator having rounded head in the velocity range of 180-200 m/s. Three
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Figure 1: Total Lagrangian Continuum Model

distinctive zones of failure have been observed which includes extensive delaminations and
fiber shearing, tensile fiber failure and large fiber deflection and lastly fiber microfracture
and buckling.

In parallel, Espinosa and co-workers developed a multiple-plane microcracking model
to describe the inelastic response of ceramics and a versatile contact algorithm with cohe-
sive interface to deal with the complex situations involving debonding, large sliding and
subsquent closing and opening of interfaces, Espinosa et al., 1996, 1997. The contact-
interface model has been applied to simulate the delamination/contact of GRP plates as
studied experimentally. A finite deformation anisotropic plasticity model was formulated
and experiments carried out to determine the anisotropic model parameters of GRP. The
mathematical formulation and experimental results are given in the following sections.

FORMULATION

It is evident from the above that the deformation of composite materials during im-
pact and penetration is predominantly large involving large rotations and failure through
various mechanisms. A total lagrangian continuum model as shown in Figure 1 has been
adopted in the present formulation. ,

The large deformation and rotations of material are accounted through the energy
conjugate second Piola Kirchoff’s stress and Green Lagrnage’s strain tensors in the initial
undeformed configuration By. The constitutive behavior of the material is determined
experimentally and included in the model. Additionally, a contact/ interface model is
developed to deal with the phenomena of delamination during the deformation. As shown
in Figure 2, the interface may be intact at time to. It may break and the plies separate at
time t,. As a result, one may have the situation of local delamination and/or a progressing
front of delamination. The delaminated plies may come in contact as shown at time ¢
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Figure 2: Interface/Contact Model with Finite Kinematics

and slide under compressive tractions involving frictional effects. The large deformation
contact/interface model takes into account all these phenomena to predict the response
of composite materials closer to reality.

FIELD EQUATIONS AND FINITE DEFORMATION ANISOTROPIC PLASTICITY
MODEL .

The rate form of virtual work equation in total lagrangian formulation, describing
the motion from time step n to n + 1, is given as,

»/Bo Ae,-jL;,—m&endBo + /Bo Si,-(n)cSn,-deo - /Bo po(bi - ai)éu,-dBo - /SW téuidSo =0 (1)

where, S;; is the second Piola Kirchoff’s stress components, €;; and 7;; are the linear and
non-linear components of the Green lagrange strain rate E;j, bo, a and t are the body force
vector, acceleration vector and boundary traction vector and superscript n indicates the
value at time step n. In the absence of the body force and boundary traction, the above
equation can be written at time step n for the explicit integration as,

MU = —Fiy, ‘ (2)
where M is the global mass matrix, U is the global ‘acceleration vector and Fi,; is the
internal force vector. The impactor as well as all the layers of composite target are
discretized spatially into six node quadratic triangular elements. The mass of triangle is
lumped at their nodes to get the global lumped mass matrix. Details on the numerical
integration of the above equations can be found in Espinosa et al., 1996, 1997.

Assuming linear variation from time step n to n + 1, the Green lagrange strain rate
at new time step n + 1 is given as,
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. 1
Eij = gl (FkiFik)nsr = (FeiFje)n] (3)

where Fj; is the deformation gradient and At is the incremental time step. All quantities
in the above equation are defined in the global co-ordinates. The second Piola Kirchoff’s
stress rate tensor is given by the constitutive law,

Sij = Lin By (4)
where L;ji is the elastic anisotropic material stiffness constitutive tensor in the global
co-ordinates and E; is the elastic component of the Green lagrange strain rate tensor.
In the case of anisotropic materials, the elastic constitutive matrix (L;) is defined in the
local co-ordinate system of the ply (Cook, R.D.,1974). It is tranformed to L = TTL;T to
obtain the constitutive matrix in the global co-ordinates following standard transformation
proceedures.

The elastic components of the strain rate tensor are obtained by an additive decom-
position of the total strain rate, namely,

Ef = E;; — EY, (5)

In the above equation, Ef; is the plastic strain rate which is given based on the associative
flow rule as,

!
E;;:ABS{; (6)

Here, f is the flow potential and A is the plastic rate proportionality factor. The inelastic
behavior of the composite is modeled based on the small deformation yield function,
quadratic in stresses, as proposed by Sun and Chen, 1989, i.e., Hill’s type potential.

2f(Si;) = anSh + a2S%, + assS%
+2a12511522 + 2a13511533 + 2023533522 ,
+2044S§3 -+ 2(1555?3 + 20'665122 (7)

Experimental evidences show that the fiber composites behave linearly up to failure if the
load is applied in the fiber direction. Hence, for orthogonal fibers oriented along direction
1 and 2, it is assumed that ET, = Ef, = 0. The above flow potential then reduces to,

1
f(Si;) = 5533 + 04453 + 455575 + aeeST (8)

For equal fiber volume fractions in the principal 1 and 2 directions, the additional con-
straint of a4y = ass is obtained which further reduces the yield function to,

1
f(Si5) = 55:33 + a44( S5 + Sis) + aesSi, 9)

Defining an effective stress as,
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5=\/3f (10)

and using equations (7) and (10) and the rate of plastic work given by,

WP = §,;E% = SE'. (11)
The proportionality factor of equation (6) is obtained as
= p
. 3E
=35 12)

where E' is the effective plastic strain rate. The effect of strain rate and temperature can
be modeled by defining the material strength in terms of an effective stress which includes
temperature and rate terms, namely,

=p  =p S m e & Fp
B =Bl g™ i 8> 9(BnT) (13)
o(B,T) = Byt — (=) (14

S, in the above equation is the flow stress and is defined by an experimentally found
power law, viz., ‘

5= (5 (19)

A summary of the constitutive equations is given in Table 1.

EXPERIMENTAL DETERMINATION OF THE ANISOTROPIC MODEL PARAME-
TERS

The anisotropic yield function given in equation (9) involves two coefficients which
need to be determined experimentally. Following Sun and Chen, 1989, the coefficient aee
is determined from off-axis tensile tests to obtain a master effective stress-effective plastic
strain curve.

As shown in Figure 3, let X axis be the uniaxial loading direction which makes
an angle @ with respect to the fiber direction Xj. The stress referring to the material
principle axes are

Sy = cos*6S,
Szz = S’I:’I’LZGSJ,
Sz = —sinfcoshS, (16)

where S, is the applied axial stress. For the case of 2-D plane stress parallel to the X;-
X, plane, the plastic potential function can be reduced to,

f(Si;) = ae6St, (17)



Table 1: Summary of constitutive equations
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Figure 3: Off-axis tensile test specimen
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Substituting the above equation into the effective stress equation, the effective stress can
be derived in term of the stress S, and the fiber direction 6, namely,

S = \/3a66003203in205x = h(6)S; (18)

where, h(0) = /3agscos?0sin?0 is a function of the fiber orientation 0. The relationship
between the incremental plastic strain and stress in term of the current state of stress
reduces to,

B = §-§J\ - gh(G)Sz)\. (19)

The inelastic strain components are derived by substituting the yield function into the
associated flow equation and are given by,

i, 0
E.gz = 0 . (20)
2Ef2 2(166512)\

Using coordinate transformations, equation for the strain in the X direction can be derived
as,

E? = cos®0EP, + sin0E5, — 2cos0sind X,

= 2a66c0395in05z).\ = %hz(O)Smj\ (21)

Comparing the above equation with the equation of the effective strain, the relationship
between the effective strain and the plastic strain component in X direction is obtained
as,

o EP
E == 22
7(0) (22)
Integrating both sides, the relation between the plastic strain in the X direction and
effective plastic strain can be obtained,

EZ
h(6) |
The above equations provide an useful relation to characterize the ratio between effective
stress and effective plastic strain.

E? = (23)

S S
— = h(0)= 24
Hence, determining the variation of S, v.s. E? experimentally , the variation of Sv.s. EP
can be obtained from the above relation.

The effective stress-effective plastic strain relation needs to be unique in monotonic

loading for a given material and strain rate. The parameter aes is chosen so that the
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Figure 4: Experimental stress-strain curves from off-axis tension tests

resulting effective stress- effective plastic strain is independent of the off-axis angle 6.
Experimental results have indicated that thermoplastic composites do not have a well-
defined yield point so that the master effective stress-effective plastic strain curve can be
fitted with a power law

EP = A(3)" (25)

where the power law coefficient A and n can be obtained by the curve fitting.

Experiments have been carried out at four different values of § as 0, 10, 20 and 30.
The S, v.s. E; curve obtained are shown in the Figure 4. Figure 5 shows the variation of
S v.s. EP. Values of A and n have been obtained by fitting two curves as shown in the
figure with their values.

The other coefficient, a4, is related to the behavior of the composite when subjected
to out-of-plane shearing. Its value can be identified from a pure shear loading obtained
with an Arcan loading fixture, Arcan et al., 1978. The potential function for a pure shear
test in the 1-3 direction can be simplified as,

£(Sij) = aaaSts (26)
since the rest of the stress components are equal to zero. By using the definition of effective
stress, the relation between the effective stress and applied stress can be found as,

5’ = v3a445mz = V3a445i3 (27)

Applying the associated flow rule, the strain component in the 1-3 direction can be
calculated in terms of the applied stress S,

Ely = 2044513 (28)
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Figure 5: Effective stress vs. effective plastic strain

with o
Eis
= 29
2044513 (29)
The effective plastic strain rate can be related to the strain component Sy by the following
expression,
= 2. Ei
E ==-5\=— 30
3 3&44 ( )

The relationship between the effective plastic strain and the experimentally measured

strain can be found to be,
P = Eis (31)

The stress and strain relation between the effective values and experimental values can
thus be built as

S 3a4S

- a44p 13 (32)
Er ETs

Based on the above equations, the coefficient a44 can be obtained by matching the power

law curve dentified through off-axis tests. Figure 6 shows the Arcan fixture used in our

experiments.

CONTACT / INTERFACE MODEL

The above model is integrated with a dynamic contact /interface model. A versatile
multi-body contact model for explicit dynamic analysis have been developed. The pene-
tration of nodes of one body, i.e., slave nodes into the surface of other body, i.e., master
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Figure 6: Arcan’s experiment for pure shear loading, Arcan et al., 1978.

surface is checked. If found penetrating, then the force required to impose the impene-
trability condition is applied to the slave nodes. The equal and opposite force is applied
to master surface and properly distributed to its nodes to maintain the conservation of
force. Tangential forces arising from Coulomb’s friction, in which a friction coefficient is
taken as the function of the relative sliding velocity, are also applied on the surface. A
detailed description of the contact model can be found in Espinosa et al., 1996, 1997.

The contact model is integrated with an interface elements to simulate the delam-
inations and subsquent large sliding, opening and closing of the interface. The model is
based on the interface model proposed by Tvergaard, 1990 for quasi-static calculations.
It assumes that the interface carried forces that oppose separation and shear between
two surfaces until debonding. The magnitude of these forces are function of the relative
separation and shear displacement between the two surfaces. The normal and tangential
tractions are given as,

T, = 22F(\), T.=a=F(\) (33)
5 5
27 .
F(X) = ZTmaw(l —2X.+A5), for 0K A <1 (34)

where, A; is a non-dimensional parameter given as,

=)+ (5 )

In the above equation, u, and u; are the normal and tangential displacement jumps at
the interface. 8, and J; are critical values at which delamination takes place. T}, and &,
and d; can be easily determined from energy arguments based on the mode I critical strain
energy release rate of the interface. It is evident that the value of A, varies from 0 to 1
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Table 2: Contact and Interface calculations based on interface traction

LOAD STATE T, T,
TENSION- A <1 | Interface | Interface
SHEAR A>1 | Contact Open
COMPRESSION- | A <1 | Contact | Interface
SHEAR A>1 | Contact | Friction

with A, = 1 defining interface failure (delamination). Four node quadrilateral elements
are embedded as the interface elements between plies. The normal and tangential forces
are computed depending upon the state of stress at the interface as shown in Figure 2
and Table 2.

As long as the value of ), remains less than unity, the interface normal traction is
computed from contact model in the case of compression-shear and from interface model
in the case of tension-shear. The shear traction is computed from the interface model.
For values of ). larger than unity, delamination case, only the contact model is used
to compute the interface tractions in both the states. The dependance of the interface
model on the materials properties and swithching from interface to contact and vise versa
make the approach realistic to simulate the delamination and subsqunet large sliding
at the interface between plies. Rate effects in the delamination process can be easily
incorporated in terms of the A, parameters as given by,

. Ao , o 48G,
Tma:c - Tmacc(l + 6111[/\ ]) Wlth Tmax - 275n

c,0

(36)
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