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Abstract

A model is presented to analyze material microstructures subjected to quasi-static and dynamic loading. A repre-

sentative volume element (RVE) composed of a set of grains is analyzed with special consideration to the size distri-

bution, morphology, chemical phases, and presence and location of initial defects. Stochastic effects are considered in

relation to grain boundary strength and toughness. Thermo-mechanical coupling is included in the model so that the

evolution of stress induced microcracking, from the material fabrication stage, can be captured. Intergranular cracking

is modeled by means of interface cohesive laws motivated by the physics of breaking of atomic bonds or grain boundary

sliding by atomic diffusion. Several cohesive laws are presented and their advantages in numerical simulations are

discussed. In particular, cohesive laws simulating grain boundary cracking and sliding, or shearing, are proposed. The

equations governing the problem, as well as their computer implementation, are presented with special emphasis on

selection of cohesive law parameters and time step used in the integration procedure. This feature is very important to

avoid spurious effects, such as the addition of artificial flexibility in the computational cell. We illustrate this feature

through simulations of alumina microstructures reported in part II of this work. A technique for quantifying micro-

crack density, which can be used in the formulation of continuum micromechanical models, is addressed in this

analysis. The density is assessed spatially and temporally to account for damage anisotropy and evolution. Although

this feature has not been fully exploited yet, with the continuous development of cheaper and more powerful parallel

computers, the model is expected to be particularly relevant to those interested in developing new heterogeneous

materials and their constitutive modeling. Stochastic effects and other material design variables, although difficult and

expensive to obtain experimentally, will be easily assessed numerically by Monte Carlo grain level simulations. In

particular, extension to three-dimensional simulations of RVEs will become feasible.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Accurate modeling of inelasticity and failure of

brittle materials is key to the design of microelec-
tronic devices, machining of ceramics and ceramic

composites, design of microelectromechanical
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systems and armor systems. Many theories have

been developed at various size scales from homo-

genized solids to grain level and atomistic model-

ing. In this article we present the details and

features of the grain level model developed by

Espinosa and co-workers in their study of dynamic
failure of brittle materials.

A variety of continuum damage models have

been developed over the last decade (Bazant and

Oh, 1985; Addessio and Johnson, 1999; Curran

et al., 1990; Espinosa, 1995; Johnson and Holm-

quist, 1992). These models are based on homoge-

nizing the cracked solid and finding its response by

degrading the elasticity of the material. The fun-
damental assumption in these models is that in-

elastic strains are caused by microcracks, whose

evolution during loading degrades the strength of

the material. This degradation is defined in terms

of reduced moduli whose evolution, under com-

pressive, tensile, and mixed loading, is formulated

using the generalized Griffith criteria. In addition,

some of these models account for the initiation of
cracks, coalescence, friction between fragments in

the comminuted zone, etc. With the exception of

the multiple-plane model, these phenomenological

models cannot describe damage induced anisot-

ropy and their parameters are difficult to identify

experimentally. Furthermore, these continuum

models require assumptions on the initial size and

distribution of microcracks and they cannot fully
describe the growth of dominant cracks leading to

macroscopic failure, which are not suitable to

homogenization.

To overcome these limitations, models based on

a discrete approach were developed, (Camacho

and Ortiz, 1996; Espinosa et al., 1998a; Miller

et al., 1999; Xu and Needleman, 1995). In these

models, nucleation, propagation and coalescence
of cracks during the deformation process is an

outcome of the simulation. Discrete models are

based on a phenomenological framework where

the fracture characteristics of the material are

embedded in a cohesive surface traction–displace-

ment relation. Miller et al. (1999) considered

models based on energy balance and compared

their predictions of fragment size to the results of
numerical simulations. They found differences be-

cause their energy-based models dealt with the

onset of the fragmentation event, but they did not

include the time dependence of the process.

Therefore, they proposed a model that included

the time history of the fragmentation process and

parameters, such as the speed of crack propaga-

tion and flaw strength distribution.
Within the framework of cohesive interface ele-

ments the two most noteworthy cohesive failure

models available in the literature are the intrinsic

exponential potential-based law used by Xu and

Needleman (1995), and the extrinsic linear law

developed by Camacho and Ortiz (1996). The

distinction between these two approaches is asso-

ciated with the way the damage initiation process
is modeled. In the extrinsic case, the stress-based

failure criterion is external to the cohesive element.

When the tractions acting along the interface be-

tween two volumetric elements have reached a

critical value, the interface is allowed to open in

accordance with a prescribed traction–separation

relation by introducing additional nodes, along the

failed interface, coupled by a cohesive law. In the
intrinsic approach, the failure criterion is incor-

porated within the constitutive model of the co-

hesive elements. Failure is integrated into the

cohesive law by increasing the cohesive tractions

from zero to a failure point at which the tractions

reach a maximum before gradually decreasing

back to zero values. Implementation of the in-

trinsic method in a finite element analysis requires
that the cohesive elements be present between the

volumetric elements from the beginning of the

analysis, unlike the extrinsic approach, where a

cohesive element is introduced in the mesh only

after the corresponding interface is predicted to

start failing. This adds some artificial flexibility to

the solid, which could alter wave speeds and in-

duce spreading of the wave. We will get back to
this feature in relation to the bilinear cohesive law

used in our model.

Other developments have also contributed to

advances in the simulation of both quasi-static and

dynamic fracture events. Theses include mesh-

less methods (Belytschko et al., 1996, 2000; Bely-

tschko and Tabbara, 1996), extended finite element

methods, (Belytschko et al., 2001), atomistic
modeling of fracture (Abraham et al., 1994, 1998;

Gao, 1996; Gumbsch et al., 1997), and the avail-
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ability of massively parallel computational envi-

ronments necessary for complex dynamic failure

problems. In the case of atomistic simulations, it

should be noted that the development of algo-

rithms for bridging length scales is needed and

remains under intense investigation (Kohlhoff
et al., 1991; Miller et al., 1998).

During the last few years, the mechanical be-

havior of polycrystalline ceramics has been studied

quite extensively on a microstructural bases. This

inevitably requires spanning multiple length scales.

Instead of proceeding phenomenologically, the

principles and tools of mechanics are brought to

bear on phenomena occurring at the microscale.
The observer then steps back and the microscopic

features blur into macroscopic fields governed by a

different set of ‘‘effective’’ laws. The determination

of these effective properties from first principles is

one of the principal objectives of micromechanics.

A related endeavor is the use of the knowledge

base thus acquired for the design of microstruc-

tures resulting in improved material properties.
The main characteristic of material micro-

structure models is the capability to include, in an

explicit form, the heterogeneities of the material,

such as grain shape, size and orientation, second

phases, voids, flaws, etc. Some models include

‘‘ad hoc’’ finite elements to represent heterogene-

ities. For instance, Ghosh and Yunshan (1995) and

Ghosh et al. (1997) developed a material based
Voronoi cell finite element model (VCFEM) to

study metal–matrix composites. Onck and Van der

Giessen (1999) introduced the ‘‘grain element’’

where the grain boundaries account for viscous

grain boundary sliding, and nucleation and growth

of voids. Discrete propagation of the main crack

occurred by linking up of neighboring facet mi-

crocracks.
Among the material microstructure models

based on the standard finite element method, in-

cluding cohesive interfaces, one can mention the

work by Zhou and Zhai (1999) and Zhai and Zhou

(2000), who analyzed the dynamic crack propa-

gation in ceramic composites using the cohesive

finite element model proposed by Needleman

(1988) and Xu and Needleman (1995), and the
work by Helms et al. (1999), where the cohesive

interfaces were embedded along grain boundaries.

Zavattieri and Espinosa (2001) simultaneously

performed similar analysis applied to the modeling

of microcracking of ceramics. Stochastic effects

were included in these analyses and comparisons

with experiments were performed.

Other methods based on a statistical approach,
such as the model by Ostoja-Starzewki (1998) and

Ostoja-Starzewki and Wang (1999) achieved bridg-

ing between micromechanical and continuum

models where the microstructural material ran-

domness is considered below the level of a single

finite element. Likewise, Mullen et al. (1997) de-

veloped a finite element-based Monte Carlo that

can be used to predict scatter in the nominal elastic
constants and fracture of thin films. Wu and Niu

(1995a,b) presented a micromechanical model of

the fracture of polycrystalline ice. Their model is

based on a statistical description of the ice mi-

crostructure, which contains crystals of random

sizes and orientations, and a random distribution

of grain boundary crack precursors.

Other models which include microcracking at
the grain level can be found in the literature. Grah

et al. (1996) conducted computer simulations of

polycrystalline materials using a spring-network

model for arbitrary in-plane crystal anisotropy. A

detailed study of the interrelated physical mecha-

nisms that result in failure modes in crystalline

materials with high angle grain boundaries has

been conducted by Zikry and Kao (1996). Kim
et al. (1996) studied crack propagation in alumina

ceramics. In their work, the competition between

intergranular and transgranular propagation was

utilized to determine the crack path.

Despite all these advances in the area of mi-

cromechanics, bridging between micro- and mac-

roscales still remains one of the most challenging

goals. Although in some instances comparison
with experimental findings and microscopy studies

have been done, the majority of the contributors

omit comparison and correlation with experimen-

tal data. The accuracy of micromechanical models

in capturing experimental data was assessed by

Zavattieri and Espinosa (2002) and Zavattieri and

Espinosa (2001). In order to provide a powerful

tool in understanding the mechanisms that lead to
macroscopic failure and to refine theories of dam-

age utilized in continuum, or continuum/discrete
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models, a grain level micromechanical model is

presented in this paper to assess intergranular

microcrack initiation and evolution. A repre-

sentative volume element (RVE) of an actual

microstructure, subjected to multi-axial dynamic

loading, is considered for the different analyses. An
elastic-anisotropic model for the grains, incorpo-

rating grain anisotropy by randomly generating

principal material directions, is included. Cohesive

interface elements are embedded along grain

boundaries to simulate microcrack initiation and

evolution. Their interaction and coalescence are a

natural outcome of the calculated material re-

sponse.
A variation of this micromechanical model for

quasi-static calculations is also discussed in this

paper for the simulation of cooling, and resulting

thermal residual stresses, during the material fab-

rication process. Residual stresses due to mismatch

between thermal expansion coefficients of adjacent

grains and phases can result in spontaneous micro-

cracking (Tvergaard and Hutchinson, 1988). An
implicit incremental algorithm for modeling ther-

mal effects is included together with the formula-

tion of non-linear cohesive interfaces.

Our micromechanical model provides explicit

account for arbitrary microstructural morpholo-

gies and microscopic fracture patterns making

easier to identify and design microstructural con-

figurations that enhance fracture toughness, and
therefore lead to improve fabrication of new single

and multi-layer ceramic materials. Through the

consideration of actual microstructures, the effects

of various fracture mechanisms is delineated. The

unique advantages of the micromechanical model

proposed in this work include: (1) explicit account

of real, arbitrary material microstructures, (2) ex-

plicit modeling of fracture in a non-constrained
manner, therefore arbitrary crack paths or micro-

crack patterns are admitted, (3) direct analysis

of the stochastic nature of fracture in heteroge-

neous microstructures, (4) analysis of the effect of

residual stresses, (5) resolution of fracture explic-

itly over multiple length scales and free of ad hoc

fracture criterion, therefore crack initiation,

growth, and coalescence is a natural outcome of
material response, applied loading, and boundary

constrains, (6) the representative computational

cells where the calculations take place are chosen

such that direct comparison with experimental

data can be made.

2. Grain level micromechanical model

In this section, the micromechanical finite ele-

ment modeling of ceramic microstructures under

dynamic loading is presented to assess intergran-

ular microcrack initiation and evolution. A RVE

of a ceramic microstructure, subjected to multi-

axial dynamic loading, is considered for the anal-

ysis. The model is based on a plane strain analysis
of a polycrystalline material described with a

multi-body finite element mesh. Each grain is in-

dividually represented by a mesh with six-noded

triangular finite elements, generated using Dela-

unay triangulations, and four-noded interface

elements inserted at the grain boundary. In order

to accomplish this, the following procedure has

been utilized: (i) generation of polycrystalline
microstructures, (ii) transformation of the micro-

structure into a finite element mesh and (iii) time

and space integration of governing differential equa-

tions.

2.1. Generation of the polycrystalline microstructure

The first step to provide an appropriate input to
this micromechanical model is to obtain the geo-

metry of the material microstructure. The grain

geometry can be obtained from digitalization of an

SEM micrograph or by means of geometrical al-

gorithms. In this section the two methods are de-

scribed.

2.1.1. Digitalization of micrographs

A real ceramic microstructure is digitized to

represent the grain morphology as shown in Fig. 1.

After digitalization, the grain boundaries are rep-

resented by polygons and a mesh is generated

inside each polygon using Delaunay triangula-

tion. Interface elements, along the grain facets, are

added. The nodes belonging to the interface ele-

ments are the nodes of the triangular elements on
the grain boundaries.
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2.1.2. Voronoi tessellations

It is well established that the grain structure in

polycrystalline materials can be simulated by a

Voronoi tessellation. Consider a pair of points, or

nuclei, p and q located in the plane. The plane can
be bisected into halves as follows; the mid-point of

the line pq connecting p and q, and the slope of the
line perpendicular to pq together define the bisec-
tor line that divides the plane in two halves, each

of which contains the points that are closer to one

of the dots. For the two-dimensional case, a plane

is divided into M grain-like tiles (or polygons)

corresponding toM nuclei that may be thought as

nuclei of grains. A grain-like tile Ti is defined as

follows: Ti ¼ fx : dðx;PiÞ < dðx;PjÞ for all i 6¼
jg, where Pi represents a nucleus and dðx;PiÞ
denotes the distance between Pi and x. Fig. 2(a)

shows an example for three tiles Ti, Tj and Tk.

The set of complete tiles (polygons) is called the

Voronoi diagram. Note that the nuclei that are

closer to the borders of the area may not have

sufficient numbers of neighbors to form a complete

polygon. Such incomplete polygons and the

Voronoi diagram define the open Voronoi tessel-

lation of the entire plane (see Fig. 2). In order to

get the closed Voronoi tessellation special care on

the microstructure boundary has to be taken (see

Fig. 2(c)). Each tile is named a Voronoi cell and

represents an individual grain that is meshed using

Delaunay triangulation (see Fig. 2(d)).
Several investigators have used this technique to

represent polycrystalline materials. Ghosh and

Yunshan (1995) and Ghosh et al. (1997) utilized

Voronoi cells to obtain stereologic information for

the different morphologies. In this approach each

cell is an element in the VCFEM. Liu et al. (1998)

proposed a method to investigate the damage

evolution under uniaxial tension and reversed
shear loading conditions, by means of a combined

continuum damage and mechanism-based cavita-

tion model, using a Voronoi tessellation to repre-

sent the polycrystal microstructure. Bolander and

Saito (1998) used Voronoi tessellation to discretize

homogeneous, isotropic materials prone to fracture

such as cement and concrete. They modeled brittle

fracture by means of a rigid-body-spring network.
In order to study the effect of grain morphol-

ogy, Voronoi tessellations are utilized to generate

different randomly shaped microstructures. A

cloud of nuclei Pi is randomly generated with a

uniform distribution along a specified region of the

space (i.e., microstructure domain). Neighbor nu-

clei closer than a given tolerance are inhibited in

order to limit the minimum grain size. After that, a

Fig. 1. RVE definition and mesh generation from digitalization of an actual microstructure.
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Delaunay mesh generator is utilized to obtain the

Voronoi tessellation associated with the nuclei Pi.

Grain size and shape are given by the number and
distance between nuclei.

2.2. Discretized form of governing differential

equation

The finite element analysis of the initial

boundary value problem is performed using a total

Lagrangian continuum approach with a large de-
formation elastic-anisotropic model. A displace-

ment-based finite element formulation is obtained

from the weak form of the momentum balance or

dynamic principle of virtual work. The weak form

at time t in total Lagrangian co-ordinates, (i.e.,

referred to the reference configuration), is given byZ
B0

½r0T
0 þ q0ðb0 
 aÞ� � gdB0 ¼ 0 ð1Þ

Z
B0

T0 : r0gdB0 

Z
B0

q0ðb0 
 aÞ � gdB0



Z
S0r

t � gdS0 ¼ 0 ð2Þ

where T0 is the first Piola–Kirchoff stress tensor at

time t; b0, a, and t are the body force vector, ac-

celeration vector, and boundary traction vector on

volume B0 and boundary S0r, respectively. Virtual
displacement field g is assumed to be admissible,
and q0 represents the material density per unit

volume in the reference configuration. The symbol

r0 denotes the material gradient with respect to

the reference configuration, and �:� is used to de-
note the inner product between second order ten-

sors, e.g., A : B 
 AijBji, where the summation

convention on repeated indices is implied.
Alternately, the weak form of the momentum

balance, in terms of spatial quantities, is given by

Fig. 2. (a) Schematics showing three tiles formed by three nuclei, (b) open Voronoi tessellation, (c) closed Voronoi tessellation, (d)

finite element mesh.
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Z
B0

s : rsgdB0 

Z
B0

q0ðb0 
 aÞ � gdB0



Z
S0r

t � gdS0 ¼ 0 ð3Þ

in which superscript s stands for the symmetric

part of the tensor, s ¼ FT0 is the Kirchoff stress, F

is the deformation gradient at time t, and r is the

spatial deformation tensor. As Eq. (3) shows, the
equation of motion in its weak form states that

the work done by the stresses s over strains rsg
equals the work done by applied body forces,

inertia forces, and surface tractions.

In the absence of body forces, substitution of

the discretized variables into Eq. (3) leads to the

following system of ordinary differential equa-

tions. The above equation can be written at time t
for explicit integration as,

Ma ¼ fext 
 f int ð4Þ
whereM is the lumped mass matrix, a is the global

acceleration vector and fext and f int are the external

and internal force vectors. In order to obtain a

uniform mass distribution in the mesh, the element
mass was lumped proportionally to the angles

formed by the corner nodes and mid-nodes, as

detailed by Espinosa et al. (1998b).

2.2.1. Anisotropic elastic model

An elastic-anisotropic model is used to describe

the grains single crystal behavior. The second

Piola–Kirchoff stress tensor relative to the unde-

formed configuration is described by

Sij ¼ CijklHkl ð5Þ
where H ¼ ð1=2ÞlnC is a logarithmic strain mea-

sure or Henky strain, C ¼ FFT is the elastic right

Cauchy–Green deformation tensor, and Cijkl is the

elastic anisotropic material stiffness tensor in the

global co-ordinates ðx; y; zÞ.
In the case of anisotropic crystals, the elastic

constitutive matrix bCCIJKL is defined in the local

co-ordinate system of the grain by its principal

material directions ð1; 2; 3Þ, such that Cijkl ¼
Tc
iIT

c
jJT

c
kKT

c
lL
bCCIJKL, where Tc is the transformation

matrix.

Each grain is assumed to be elastic orthotropic

and the orientation of the principal material di-

rections differs from grain to grain. In order to

keep the plane strain condition in the x–y plane,
one of the principal material directions has to co-

incide with the z-axis. Therefore, three cases are
considered randomly for each grain, Case 1: 1 
 z,
Case 2: 2 
 z or Case 3: 3 
 z. The angle between
the global axes x, y, and the two local axes lying in
the plane x–y is also generated randomly. The

grain local axes and the corresponding analysis

global axes are shown in Fig. 3. In general, this

approach could be used for any orthotropic ma-

terials where the normal to the three symmetry

planes coincides with the local axes of co-ordi-

nates, i.e., tetragonal systems: indium, tin, zircon;
transversely isotropic systems: cadmium, ice, zinc;

cubic systems: aluminum, copper, nickel, etc.

3. Cohesive model: contact/interface algorithm

A multi-body contact–interface algorithm to

describe the kinematics at the grain boundaries is
used to simulate crack initiation and propagation.

An explicit time integration scheme is adapted to

integrate the system of spatially discretized ordi-

nary differential equations. Fig. 4 describes the

contact model, which is integrated with interface

elements to simulate microcracking at the grain

boundaries and subsequent large sliding, opening

and closing of the interface. The tensile and shear
tractions in the zero thickness interface elements,

embedded along grain boundaries, are calculated

from the interface cohesive law.

The interface cohesive law describes the evolu-

tion of these tractions in terms of both normal and

tangential displacement jumps. Within the frame-

work of cohesive interface elements, the two most

noteworthy cohesive failure models available in
the literature are the potential-based law used by

Tvergaard (1990) and Xu and Needleman (1995),

and the linear law developed by Camacho and

Ortiz (1996) and Ortiz and Pandolfi (1999).

Our model assumes that the interface carries

forces that oppose separation and shear between

two surfaces until debonding. The magnitude of

these forces is a function of the relative separation
and shear displacements between the two surfaces.

The compressive tractions at the grain boundaries
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are calculated through the impenetrability condi-

tion employed in the contact model. The interface

between two bodies is intact until the interface
traction reaches the maximum value. Once the

maximum traction is reached, the interface starts

deteriorating and the traction reduces to zero lin-

early up to the maximum displacement jump.

Once the effective displacement jump reaches or

exceeds a value of 1, the interface element is as-

sumed to have failed and microcracking is said to

have initiated at that grain boundary. Subsequent
failure of neighboring interface elements leads to

microcrack propagation and coalescence. In our

graphic representation, failed interface elements

are represented with thicker lines (see Fig. 4).

The description for the formulation of the in-

terface element presented here is based on the zero

thickness four-noded linear interface element, but

it can be easily extended for six-noded quadrilat-

eral interface elements (Dwivedi and Espinosa,

2003). Fig. 5 shows an schematics of the four-
noded linear interface element and the six-noded

quadrilateral interface element.

The four-noded elements are inserted between

volumetric elements such that nodes 1 and 2 be-

long to one fragment and nodes 3 and 4 to the

other. The displacement jumps are defined at the

mid-plane of the element. Hence, the shape factors

of the element are also given on its mid-plane as if
it was a two-noded linear element, i.e., N1 ¼ ð1

gÞ=2 and N2 ¼ ð1þ gÞ=2. In essence, this makes

the element similar to a four-noded quadrilateral

differential element. Given the inclination of the

element with the global X -axis, the normal and
tangential displacements in the plane of the ele-

ment can be obtained from the global displace-

Fig. 3. Distribution of principal material directions within each grain. Different intensities of gray indicate which principal direction

coincides with the global z-axis. The local system of co-ordinates in the x–y plane is represented by two vectors.
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ments at each node. Then the normal and tan-
gential displacement jumps at the interface can

then be obtained by the difference between the

normal and tangential nodal displacements as de-

scribed by Dwivedi and Espinosa (2003) and

Emore (1996).

The normal tensile and shear traction at the

interface are determined from the interface cohe-

sive law. The nodal forces in the plane of the ele-

ment are computed from the known interface

traction as;

F 0 ¼
Z
S0
NT
s TdS

0 ð6Þ

where F 0 is the force vector ðFt; FnÞ, T is the com-

puted interface traction vector ðTt; TnÞ and Ns is the
shape function vector, all quantities are defined in

the local co-ordinates of the element. The inte-
gration of the above equation is carried out using a

two points quadrature rule. The computed forces

are then transformed to the global co-ordinates as,

F ¼ TgF 0, where Tg is the transformation matrix.
The forces so obtained at the mid-plane of the

element are applied to nodes 1 and 2 and equal

and opposite forces are applied to nodes 3 and 4.

These normal and tangential tractions contribute
to the internal nodal forces so that the f inteia be-

comes;

f inteia ¼
X
e

Z
Be
0

BT sdB0 þ f inteia

¼
X
e

Z
Be
0

BT sdB0 þ
X
inte

Z
Sintee

TgN
T
s TdS ð7Þ

Fig. 4. Schematics of microcracking at grain boundaries using an irreversible interface cohesive law. Also shown is the evolution of the

traction vector magnitude in loading and unloading.

6-noded
triangular
element

4-noded
interface
element

1

2

3

4

6-noded
triangular
element

6-noded
interface
element

1

2

5

6
3

4

Fig. 5. Schematics of a four-noded linear interface element and

a six-noded quadratic interface element.
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where f inteia is the force contributed by interface

element to node i, which is calculated by inte-

grating the interface tractions over the mid-surface

of the element. The three cohesive laws used in the

analyses are given as follows:

3.1. Law I

In formulating the cohesive law, a non-dimen-

sional effective displacement jump is defined by

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un
dn

� �2
þ ut

dt

� �2s
ð8Þ

where, un and ut are the actual normal and tan-
gential displacement jumps at the interface esti-

mated by the finite element analysis, and dn and dt
are critical values at which interface failure takes

place.
In this first law, based on Tvergaard (1990), the

equivalent s, normal traction Tn and tangential

traction Tt evolve quadratically with the effective
displacement jump as:

sðkÞ ¼ 27
48
Tmaxð1
 2k þ k2Þ ð9Þ

Tn ¼
un
dn

sðkÞ

Tt ¼ a
ut
dt

ð10Þ

where Tmax is the maximum normal traction that

the interface can bear before failure and a is the
parameter coupling normal and shear tractions.
The reversible and irreversible unloading is

implemented by taking kcr, which is the same as
the value of k at which the traction are maximum,
i.e., kcr ¼ 1=3. Accordingly, the normal and tan-
gential traction are given as:

For loading and unloading in the range

06 k6 kcr

Tn ¼
un
dn

sðkÞ

Tt ¼ a
ut
dt

sðkÞ
ð11Þ

For loading in the range kcr6 k6 1, or, ku6 k6 1,
where ku is the value of k from where the last
unloading had taken place,

Tn ¼
un
dn

sðkÞ

Tt ¼ a
ut
dt

sðkÞ
ð12Þ

And lastly, for unloading and reloading in the

range 06 k6 ku

Tn ¼
un
dn

sðkuÞ
k
ku

Tt ¼ a
ut
dt

sðkuÞ
k
ku

ð13Þ

Fig. 6 shows normal and tangential components

of the cohesive traction as a function of normal

and tangential displacements. Fig. 7(a) shows

the variation of normal traction as a function of

the normal displacement and how it is affected

by the contribution of a tangential displacement.

A similar plot is shown for the tangential trac-

tion versus the tangential displacement in Fig.
7(b). The area under the normal traction–normal

displacement jump curve, in the absence of a

tangential displacement jump, gives the critical

strain energy release rate GIc. Similarly, the area

under the tangential traction–tangential displace-

ment jump curve, in the absence of a normal

displacement jump, gives the critical strain en-

ergy release rate GIIc. The law yields GIc and GIIc

as,

GIc ¼ 27
48
Tmaxdn; GIIc ¼ 27

48
aTmaxdt ð14Þ

A physical meaning for parameter a then follows
as:

a ¼ GIIc

GIc

dn
dt

� �
ð15Þ

Fig. 8 shows loading and unloading paths after

irreversible failure.
When kP kcr the critical strain energy release

rate decreases to Gc
Ic, then Gdis is the dissipated

energy due to the irreversibility,

GdisðkuÞ ¼ GIc 
 Gc
Ic ¼ 27

48
Tmaxdnð2k2u 
 k4uÞ ð16Þ

and the percentage of dissipated energy is:

Gdis

GIc

¼ 2k2u 
 k4u ð17Þ
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3.2. Law II

Since in the Tvergaard s–d law, the initial in-

terface stiffness is fixed, an alternative cohesive law

is formulated in which a critical displacement jump

kcr, at which T ¼ Tmax defines a reversible regime.
In formulating this second cohesive law, a non-

dimensional effective displacement jump is defined
as

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un
dn

� �2
þ n2

ut
dt

� �2s
ð18Þ

where, un and ut are the current normal and tan-
gential displacement jumps at the interface esti-
mated by the finite element analysis, and dn and dt
are critical values at which interface failure takes

place. This definition of the displacement jump

was first proposed by Ortiz and Pandolfi (1999).

Fig. 6. Cohesive law I: (a) Variation of normal cohesive traction Tn=Tmax. (b) Variation of shear cohesive traction Tt=Tmax.

Fig. 7. Cohesive law I: (a) Variation of the tensile cohesive traction Tn=Tmax as a function of un=dn for different values of ut=dt.
(b) Variation of shear cohesive traction Tt=Tmax as a function of ut=dt for different values of un=dn.
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Assuming a potential of the form

Uðun; utÞ ¼ dn

Z k

0

rðk0Þdk0 ð19Þ

and letting rðkÞ be of the form

rðkÞ ¼ ð1
 kÞ
ð1
 kcrÞ

Tmax ð20Þ

then U takes the form:

Uðun; utÞ ¼ ð2
 k2Þ dn
2

Tmax
1
 kcr

ð21Þ

The normal and tangential components of the

traction acting on the interface in the fracture

process zone are given by

Tn ¼
oU
oun

¼ oU
ok

ok
oun

¼ rðkÞ
k

un
dn

ð22Þ

Tt ¼
oU
out

¼ oU
ok

ok
out

¼ n2
dn
dt

� �
rðkÞ
k

ut
dt

ð23Þ

In this way the traction–separation law takes

the form:

Tn ¼
1
 k�

k�
un
dn

� �
Tmax

ð1
 kcrÞ
ð24Þ

Tt ¼
1
 k�

k�
ut
dt

� �
aTmax

ð1
 kcrÞ
ð25Þ

where a ¼ n2ðdn=dtÞ and k� is monotonically in-

creasing and given by:

k� ¼ maxðkmax; kÞ ð26Þ
where kmax ¼ kcr initially and kmax ¼ k if k > kmax.
Fig. 9 shows the variation of the tensile cohesive

traction Tn=Tmax, with respect to the non-dimen-

sional normal and tangential displacement dis-
continuities un=dn and ut=dt. Fig. 10 shows the

variation of Tn as a function of un=dn for different
values of ut=dt and Tt as a function of ut=dt for
different values of un=dn.
Beyond kcr, the traction reduces to zero when

k ¼ 1:0 and any unloading takes place irreversibly.
The advantage of this formulation is that the ir-

reversible behavior is already incorporated in the
law. Since k is defined by kmax, the law ensures that
k� remains constant for any unloading below kmax.
Fig. 11 shows the loading and unloading after ir-

reversible failure.

From the values of fracture toughness KIC, or
equivalently GIC, assuming plane strain, and the

maximum interface stress, the critical interface

displacement jump is computed by equating the
area under the Tn–un diagram to GIC, namely,

GIc ¼ 1
2
dnTmax ð27Þ

Similarly, the area under the curve tangential

traction–tangential displacement jump, Tt–ut, in

Fig. 8. Irreversible loading and unloading beyond kcr for the cohesive law I.
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the absence of normal traction, gives the critical
strain energy release rate GIIc, viz.,

GIIc ¼
1

2
dtaTmax ¼ n2

1

2

dn
dt

� �
dtTmax ¼ n2GIc ð28Þ

therefore,

GIIc

GIc

¼ n2

which provides a physical meaning for n.
After kmax P kcr, the critical strain energy re-

lease rate decreases to Gc
Ic, then the dissipated en-

ergy due to the irreversibility, Gdis, is given by

GdisðkmaxÞ ¼ GIc 
 Gc
Ic

¼ 1

2
dnTmax

kmax 
 kcr
1
 kcr

� �
ð29Þ

Fig. 9. Cohesive law II: (a) Variation of normal cohesive traction Tn=Tmax. (b) Variation of shear cohesive traction Tt=Tmax.

Fig. 10. Cohesive law II: (a) Variation of the tensile cohesive traction Tn=Tmax as a function of un=dn for different values of ut=dt.
(b) Variation of shear cohesive traction Tt=Tmax as a function of ut=dt for different values of un=dn.
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And the percentage of dissipated energy is:

Gdis

GIc

¼ kmax 
 kcr
1
 kcr

ð30Þ

3.3. Law III

There are instances in which the interface trac-
tion exhibits a plateau. This cohesive law is for-

mulated to capture such interface behavior. In

formulating this cohesive law, a non-dimensional

effective displacement jump is defined by

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un
dn

� �2
þ n2

ut
dt

� �2s
ð31Þ

where un and ut are the current normal and tan-
gential displacement jumps at the interface esti-

mated by the finite element analysis, and dn and dt
are critical values at which interface failure takes

place.

The traction–separation law is defined by

Tn ¼ n
ðun=dnÞ

k� Tmax

þ ð1
 nÞ ð1
 k�Þ
ð1
 kf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f 
 n2ðut=dtÞ2

q
kf

Tmax

Tt ¼ n
ðut=dtÞ

k� aTmax

þ ð1
 nÞ ð1
 k�Þ
ð1
 kf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f 
 ðun=dnÞ2

q
nkf

aTmax

ð32Þ

In this law the end of the traction plateau is de-

fined by a particular value of the effective dis-

placement jump defined as kf . k is monotonically
increasing and it has the form:

k� ¼ maxðkmax; kÞ
where kmax ¼ kcr initially and kmax ¼ k if k > kmax.
Therefore,

kf ¼ maxðkf ; kmaxÞ
and

n ¼ 1 k < kf
0 kP kf

	
For irreversible unloading when k > kcr

if Dun < 0 then Tmax ¼
kcmax

ðun=dnÞc
T c
n

if Dut < 0 then Tmax ¼
kcmax

aðut=dtÞc
T c
t

ð33Þ

Fig. 11. Irreversible unloading beyond kmax for cohesive law II.
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Fig. 12 shows the variation of the tensile cohesive
traction Tn=Tmax, with respect to the non-dimen-

sional normal and tangential displacement dis-

continuities un=dn and ut=dt. Fig. 13 shows the

variation of Tn as a function of un=dn for different
values of ut=dt and Tt as a function of ut=dt for
different values of un=dn. Fig. 14 shows the loading
and unloading after irreversible failure.

The area under the normal traction–normal
displacement jump curve, in the absence of tan-

gential traction, gives the critical strain energy re-
lease rate GIc. Similarly, the area under the

tangential traction–tangential displacement jump

curve, in the absence of normal traction, gives the

critical strain energy release rate GIIc. The law

yields GIc and GIIc as,

GIc ¼ 1
2
dnTmaxð1þ kf 
 kcrÞ

GIIc ¼ 1
2
adtTmaxð1þ kf 
 kcrÞ

ð34Þ

Fig. 12. Cohesive law III: (a) Variation of the tensile cohesive traction Tn=Tmax. (b) Variation of shear cohesive traction Tt=Tmax.

Fig. 13. Cohesive law III: (a) Variation of the normal cohesive traction Tn=Tmax as a function of un=dn for different values of ut=dt.
(b) Variation of the shear cohesive traction Tt=Tmax as a function of ut=dt for different values of un=dn.
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For kcr6 kmax < kf the critical strain energy release
rate decreases to Gc

Ic, then the dissipated energy

due to the irreversibility, Gdis, is:

GdisðkmaxÞ ¼ GIc 
 Gc
Ic ¼ 1

2
dnTmaxðkmax 
 kcrÞ ð35Þ

and the percentage of dissipated energy is:

Gdis

GIc

¼ kmax 
 kcr
1þ kf 
 kcr

ð36Þ

Likewise, for kf 6 kmax6 1 the critical strain energy
release rate decreases to Gc

Ic, then the dissipated

energy due to the irreversibility, Gdis, is:

GdisðkmaxÞ ¼ GIc 
 Gc
Ic

¼ 1

2
dn Tmax

�

 T c

n

kcmax
ðun=dnÞc

�
ð37Þ

and the percentage of dissipated energy becomes:

Gdis

GIc

¼ 1
 T c
n

Tmax

kcmax
ðun=dnÞc

ð38Þ

Other laws can be used, for instance the cohesive

law proposed by Xu and Needleman (1994, 1995),

Camacho and Ortiz (1996), Ortiz and Pandolfi

(1999), Geubelle and Baylor (1998), etc. However,

care must be exercised in selecting the initial stiff-

ness of the cohesive law. In fact, for zero thickness

cohesive laws, the addition of elements between
regular elements adds an artificial flexibility that

can result in modification of wave speeds in the

material or penetrability of elements in compres-

sion. Cohesive laws such as the one proposed by

Needleman may result in overlapping between

fragments because the tractions are a function of

the normal and tangential relative displacement,

which makes the compression part softer, as the

normal traction has contributions from the tan-

gential displacement.

3.4. Some computational aspects of the cohesive

model

3.4.1. Initial slope

As previously mentioned, the initial slope of the

cohesive law must be selected with care. The slope

of the function, in the range 0 < k < kcr, is selected
such that the wave speed in the material is not

affected by the interface elements.
In 1D, the traction–separation relation T–u for

law II (Section 3.2) is given by

T ¼ u
d


 � Tmax
kcr

if u6 kcr

T ¼ ð1
 uÞ
d

Tmax
ð1
 kcrÞ

if kcr < u6 1

8>><>>: ð39Þ

where Tmax is the maximum strength of the cohe-

sive surface, d is the maximum separation and kcr
is the critical displacement jump such that the in-

terface fails when uP kcrd. Fig. 15(a) shows the
curve T –u represented in the non-dimensional axes
T =Tmax and u=d. In principle, Tmax and d are given
by the mechanical properties of the material. For

Fig. 14. Irreversible unloading beyond kmax for cohesive law III.
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instance, the critical energy release rate of the in-

terface, which is related to the fracture toughness

of the material, is given by

Gc ¼
Z d

0

T ðuÞdu ð40Þ

If Tmax and Gc are determined by specially designed

experiments, d can be obtained directly from Eq.

(40).

The value of kcr is selected such that the wave
speeds in the material with interfaces are the same

as the ones without interfaces during reversible
loading. According to the traction–separation re-

lation (T–u) of the cohesive laws II and III, the
initial slope is given by

s ¼ Tmax
kcrd

ð41Þ

This slope works as a penalty parameter. In fact as

s grows, the wave speed in the material asymp-

totically approaches the speed of the material
without interfaces. Hence, this parameter has to be

large enough to be effective but not so large as to

provoke numerical instabilities. An alternative

approach is used by Camacho and Ortiz (1996)

and Ortiz and Pandolfi (1999), which in turn cor-

responds to s ¼ 1 (ideal case). However, in their

approach the discretization is constantly changing

as new cohesive elements are added to the mesh.

Here we propose a fixed discretization by choosing

the slope s such that wave speeds are unchanged.

To illustrate the effect of slope s, consider a

RVE of the material to be analyzed is represented

by two finite element meshes of the same dimen-
sion and element size. A cohesive surface with in-

terface elements along a straight line in the middle

of the RVE is included in one mesh, as it is shown

in Fig. 16. The periodic and viscous boundary

conditions described in Section 4 are applied at the

top of the RVE to simulate normal, shear or mixed

stress waves of a given amplitude rW. The waves
travel through the material in the direction per-
pendicular to the cohesive surface. The amplitude

of the stress wave should be chosen such that no

irreversible unloading takes place. Since only the

slope is being tested, the analyst can select a very

high value for Tmax, such that rW < Tmax, and a

very high value for d (or GIc) such that a wide

range of slopes can be considered varying kcr. Fig.
15(b) shows the traction–separation curve for dif-
ferent values of Tmax and only one value of d. For a
fixed slope, d has to be large enough such that

kcr6 1 when Tmax is increased.
The simulations are performed for different

conditions and slopes. In order to evaluate the

performance of the cohesive law and examine

(a)

Fig. 15. (a) Traction–separation relation T–u for cohesive law II represented in the non-dimensional axes T=Tmax and u=d.
(b) Traction–separation law for three different Tmax and same slope; the function is represented on axes T and u.
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whether or not there is a numerical instability, the
evolution of the tractions at the interface element

is evaluated and compared with the stress at the

quadrature points of the neighboring elements

extrapolated to the cohesive interface, i.e., Tt is
compared with rxy and Tn is compared with ryy .
Fig. 17(a) shows the evolution of the normal

traction Tn evaluated at the cohesive interface el-
ements, compared with the extrapolated ryy for the
cases with and without interface elements when a

normal stress wave travels through the material in

the direction perpendicular to the cohesive surface.

The element size used in these simulations is h ¼ 1

lm and the slope s ¼ Tmax=ðkcrdÞ is given in GPa/
lm. The simulations evidently show that for cer-

tain values of the initial slopes, the traction at the

interfaces, as well as the extrapolated element
stress, is well below the traction for the case

without interfaces. The higher the slope, the better

the traction approaches the ideal solution until

instability is achieved for the highest slope. In the

case of a slope of 25 000 GPa/lm the instability in

Tn is stronger than the extrapolated ryy , which
demonstrates the fact that it is important to test

both, Tn and extrapolated ryy . Fig. 17(b) shows a
close up of the evolution of the extrapolated stress
at the cohesive interface for all these cases. The

convergence is clear in the zoomed region but in-

stabilities can appear at different stages of the wave

propagation.

An alternative way, to select kcr is to compare
the initial slope or stiffness of the interface with the

stiffness of the material. In this way the following

constraint can be imposed:

s � E=h; sP 10E=h ð42Þ
where E is the Young modulus of the material

and h is the dimension of the volumetric element
in the direction perpendicular to the interface.

For the case analyzed in Fig. 16, where the
young modulus of alumina is about E ¼ 400

GPa and the element size h ¼ 1 lm, the slope s

must be much higher than 400 GPa/lm, about
10 times E=h, such that the deformation of the

material is not affected by the presence of the

cohesive interface. In other words, the interfaces

become invisible.

3.4.2. Cohesive law under compression

Compressive tractions in the interface can also

be taken into account directly from the cohesive

law. If large displacements and interaction of

fragments is expected, a multi-body contact needs

to be used, (Espinosa et al., 1998b).

After calculation of (un=dn) and (ut=dt) if

un=dn6 0 then the normal component of the trac-
tion vector is computed from

Tn ¼
un
dn

� �
T 0max
kcr

ð43Þ

The tangential component of the traction vector Tt
is not affected by this rule except that k ¼ ðut=dtÞ.
For simulations where there are small dis-

placements, this compressive part of the cohesive

law can also be used even after the interface ele-

ments have broken. The reason is that the nodes

on one grain facet still match the nodes of the

other grain. Special care must be taken when there

Fig. 16. Finite element mesh used in wave propagation tests.

Tension, shear and mixed loading are simulated by viscous

boundary conditions. The cohesive surface is located along a

straight line oriented perpendicular to the wave path in the

middle of the RVE. The mesh without interface elements is not

shown.
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is a transition between small and large displace-
ments, where this law is no longer valid and it must

be switched to the multi-body contact algorithm.

3.4.3. Time step calculation

In contrast with the standard explicit schemes,

where the time step is solely limited by element

(a)

Fig. 17. (a) Extrapolated Cauchy stress and Tn vs time for six different slopes (slopes are given in GPa/lm). (b) Close up showing the
extrapolated ryy for different slopes.
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stability in order to ensure that waves do not

propagate through the mesh faster than the ma-

terial wave speed, this algorithm considers an ad-

ditional limitation in the time step as a result of the

cohesive law.

As it can be seen in Fig. 4, the cohesive in-
terface law II consists only of two parts 06

k < kcr and kcr6 k6 1. The time step has to be

such that the evolution of k can follow the co-

hesive law curve in several time steps. This is

accomplished by taking

Dtcohesive ¼
DtcontinuumF
maxi fi

ð44Þ

where fi is defined by each interface element i as:

fi ¼

Dk
kcr

if 06 k < kcr

Dk
1
 kcr

if kcr6 k < 1

8>><>>: ð45Þ

In the above equation Dk ¼ k̂knþ1 
 kn where k̂knþ1 is
the displacement jump predictor for interface i. F
is the inverse of the number of steps required for k
to go from 0 to kcr.
In this way, the overall time step is taken as

Dt ¼ minðDtcohesive;DtcontinuumÞ ð46Þ
where Dtcontinuum is the stable time step calculated

from the maximum six-noded element frequency in

the mesh xmax (Espinosa et al., 1998b).

One of the limitations of the contact/interface

algorithm is that it is very susceptible to instabili-

ties if the time step changes suddenly. As men-

tioned before, the time step is controlled by the

variation in time of the interface element dis-

placement jump, _kk, which can change suddenly

from one step to another by more than one order

of magnitude depending on the contact conditions
of the interface element. This may lead to numer-

ical instabilities unless precautions are taken. In

order to avoid these instabilities, each element (six-

noded and interface elements) is advanced in time

with the Dt computed by Eq. (46), while the con-
tact algorithm is advanced in time with Dtcontinuum.
Considering that the multi-body contact algorithm

is one of the most time consuming parts of the
micromechanical model, it can be said that this

subcycling algorithm not only solves stability

problems, but also can provide some speed up in

the calculation.

3.4.4. Rate and temperature effects

Rate and temperature effects in the interface

description can be easily incorporated in terms of
the k. For law I we have,

Tmax ¼ T 0max 1

 
þ f ln

_kk
_kk0

" #!
1

�

 ½H 
 H0�
½Hm 
 H0�

�c

with T 0max ¼
48Gc

27dn
ð47Þ

In the above expression, Tmax is the maximum

interface traction at the current displacement
jump rate _kk and current temperature H, T 0max is
the maximum interface traction at reference dis-

placement jump rate _kk0 and reference temperature
H0, and Hm is a characteristic material tempera-

ture. The parameters f and c can be identified

through specially designed experiments. Since

there are three parameters and only one energy

equation, a proper characterization requires a
variety of experiments interrogating rate and

temperature effects. Likewise, the functional de-

pendence of the interface traction on displace-

ment jumps and temperature needs intensive

experimental characterization. The role of rate

effects in the failure of alumina was assessed by

Zavattieri and Espinosa (2001). Rate effects were

also investigated in metals by Lee and Prakash
(1999).

(b)

Fig. 17 (continued)
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4. Initial and boundary conditions in plate impact

experiments

The grain level model being presented will be

used to model plate impact wave propagation ex-
periments. In this context, initial and boundary

conditions need to be defined. In these subsections

we address this feature of the simulations.

Due to specimen dimensions in plate impact

experiments, such as the material grain size and

the number of triangular elements per grain, cer-

tain considerations and assumptions can be made

in order to avoid computationally expensive cal-
culations. For the dynamic analysis of ceramic

microstructure subjected to multi-axial dynamic

loading a RVE is considered. Let us consider the

example of Fig. 18, in which materials A and B can

represent either part of the specimen that remains

undamaged and elastic or other materials (i.e.,

flyer and target plate). Compression and shear

waves are either produced at the interface between
material A and specimen or transmitted from

material A. These waves are in turn transmitted

from the specimen to material B. Assuming that

materials A and B remain elastic throughout the

deformation process, the computational effort can

be minimized by replacing materials A and B with

viscous boundary conditions based on one-

dimensional elastic wave theory. The material A–

specimen interface is located at y ¼ H , while the
specimen–material B interface is located at y ¼ 0.

Considering point 1 at material A and point 2 at
the interface between material A and specimen,

conservation of momentum and continuity of ve-

locities and tractions ðt� ðqcÞv ¼ constantÞ, lead
to the following equation for tractions tx and ty at
y ¼ H , point 2 in Fig. 18,

txðx;H ; tÞ ¼ ðqcsÞA½vxðx;H ; tÞ 
 v1x � þ t1x ð48Þ

tyðx;H ; tÞ ¼ ðqclÞA½vyðx;H ; tÞ 
 v1y � þ t1y ð49Þ

For y ¼ 0, point 3 in Fig. 18,

txðx; 0; tÞ ¼ ðqcsÞBvxðx; 0; tÞ ð50Þ

tyðx; 0; tÞ ¼ ðqclÞBvyðx; 0; tÞ ð51Þ
where ð ÞA and ð ÞB denote material A and B

quantities, cl and cs are longitudinal and shear
wave speeds, q is the specific material density, vx
and vy are in-plane and normal velocities. The in-
plane and normal velocities of material A at point

1 and time zero v1x and v
1
y , as well as the traction t

1
x

Fig. 18. Schematic of boundary and initial conditions.
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and t1y are known values based on one-dimensional
wave theory. In addition, the condition of uniform

u, v and a at the material A–specimen and speci-

men–material B interfaces is imposed by averaging

the quantities at the top and bottom nodes of the
specimen.

For the case where the wave passing through

the specimen reflects on a free surface and returns

to the specimen, the velocities and forces are

summed at the interface between specimen and

elastic materials so that they are later used to-

gether with Eqs. (48)–(51) to simulate the reflec-

tion of the wave.
Assuming that the computational cell is re-

peated in the x-direction, the following periodic
boundary conditions are applied

uð0; y; tÞ ¼ uðL; y; tÞ vð0; y; tÞ ¼ vðL; y; tÞ
að0; y; tÞ ¼ aðL; y; tÞ ð52Þ

where L is the period, and u, v and a are the dis-

placement, velocity and acceleration vector fields.

Grains with nodes at x ¼ 0 must have the same

principal material directions as the grain with

nodes at x ¼ L in order to ensure periodicity.

Special care at the mesh generation stage must be

taken in order to assure the same number of ele-

ments and nodal points on both sides of the RVE.

5. Explicit integration scheme

An explicit central-difference integration algo-

rithm is being used to integrate the system of

spatially discretized ordinary differential equations

in time. The algorithm, accounting for acceleration
corrections due to contact, is summarized in Table

1. As in any initial boundary value problem, initial

displacements and velocities, u0 and v0, are re-

quired. Initial accelerations a0 are calculated from

initial applied forces fext0 and initial internal forces

f int0 .

At each time step n, the nodal accelerations
must first be corrected for any time-dependent
changes in the traction boundary conditions.

Then, a displacement predictor at time nþ 1 is

computed using the corrected acceleration and the

displacements and velocities at time step n. Mod-

ified accelerations at time n, Dan, are computed
based on the corrected acceleration and changes in

accelerations resulting from surface contact de-

termined from the displacement predictor at nþ 1.

Updated displacements at nþ 1 are used in the

update of stresses and the computation of internal
forces. In contrast with the original algorithm

presented by the authors (Espinosa et al., 1998b),

the correction of the accelerations is multiplied by

a different time step (Dtcontact) described in Section
3. Lastly, accelerations and velocities at time nþ 1

are obtained completing the time integration

scheme. Corrected accelerations at step (3) need to

be computed. These correction terms arise from
changes in the applied boundary traction due to

changes in the applied external forces, (Espinosa

et al., 1992). If such corrections are not incorpo-

rated in the numerical implementation, spurious

oscillations are introduced with magnitudes pro-

portional to the traction change.

Correction of the accelerations due to changes

in the traction in the interface element has been
also included in the algorithm. This correction

consists in adding an extra term in the acceleration

of the nodes that belong to interface elements.

Da ¼ ðbTTnþ1 
 TnÞ=M where bTTnþ1 is the traction at
the interface element calculated using the dis-

placement predictor.

6. Modeling of stochastic effects

The interfaces between different material phases

are important in determining many bulk proper-
ties. One of the simplest interface types is the

boundary between two crystals of the same mate-

rial. If two crystals of exactly the same orientation

are brought together, they fit perfectly. However,

if the crystals are slightly tilted, there is a disreg-

istry at the interface, which is equivalent to inser-

tion of a row of dislocations. The number of

dislocations per unit length and the energy of the
boundary increase as the angle of tilt increases. If

instead of being tilted, the two grains are rotated

or twisted, the result is a grid of screw locations

that are more complex to represent diagrammati-

cally but are basically similar to the tilt boundary.

A combined tilt and rotation corresponds to a
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Table 1

Explicit integration algorithm

1. Initial conditions:

t ¼ 0, tcontact ¼ 0, n ¼ 0, u0 ¼ u0, v0 ¼ v0, t0 ¼ t0
a0 ¼ ðfext0 
 f int0 Þ=M where

f int0 ¼
R
B0
BT s0 dB0 all elements

fext0 ¼ 
areaðqcÞf v0 viscous boundary

fext0 ¼
R
S0 N

T
s T dS

0 cohesive interface

8<:
2. Compute Dt ¼ minðDtcohesive;DtcontinuumÞ

Dtcontinuum < 2=xmax for triangular elements

Dtcohesive for interface elements

	
and t ¼ t þ Dt
3. Correct accelerations due to changes in boundary forces:

an ¼ an þ tnþ1
tn
M

; fext ¼
R
S0 N

T
S tdS

0

where t is obtained from viscous boundary conditions

4. Compute displacement predictor:

ûunþ1 ¼ un þ Mtvn þ 1
2
Mt2an all elements

ûunþ1 ¼ un þ Mtvn þ 1
2
Mt2 an 


areaðqcÞf ðvn 
 vn
1Þ
M

� �
viscous boundary

8><>:
5. If tP tcontact þ Dtcontinuum ) compute Man (correction of the accelerations due to contact)

The forces on the slave nodes are computed with the time step Dtcontact ¼ t 
 tcontact:
tcontact ¼ t
Otherwise Dan ¼ 0

The contact is not computed for interface elements whose compressive part is governed by Eq. (43)

6. Compute f̂fextnþ1 ¼
R
S0 N

T
s
bTTnþ1 dS 0 for interface elements, where bTTnþ1 ¼ f ðûunþ1Þ from cohesive law.

Update the acceleration for interface elements:

Da ¼ Daþ ðf̂fextnþ1 
 fextn Þ=M

7. Update displacements:

unþ1 ¼ un þ Mtvn þ 1
2
Mt2an þ 1

2
Mt2contactMan all elements

unþ1 ¼ un þ Mtvn þ 1
2
Mt2 an 


areaðqcÞf ðvn 
 vn
1Þ
M

� �
þ 1

2
Mt2contactMan viscous boundary

8><>:
8. Impose periodic boundary conditions on the displacements unþ1
9. Update S ¼ Sðunþ1Þ and compute internal force vector:

f intnþ1 ¼
R
B0
BT snþ1 dB0 all elements

fextnþ1 ¼ 
areaðqcÞf vn viscous boundary

fextnþ1 ¼
R
S0 N

T
s T dS

0 cohesive interface:

8><>:
10. Solve for accelerations:

anþ1 ¼ ðfextnþ1 
 f intnþ1Þ=M

11. Update velocity vector:

vnþ1 ¼ vn þ Mt
2
ðan þ anþ1Þ þ 1

2
MtcontactMan all elements

vnþ1 ¼ vn þ Mt
2

an þ anþ1 

areaðqcÞf ðvn 
 vn
1Þ

M

� �
þ 1

2
MtcontactMan viscous boundary

8><>:
12. Impose periodic boundary conditions on the velocities vnþ1

13. n ¼ nþ 1, if n < nmax go to step (2), else stop
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complex combination of edge and screw disloca-

tions. There is a well-known model that charac-

terizes the structural order at grain boundaries

through a parameter that measures the reciprocal

density of co-incident lattice sites (R), the so-called
co-incident-site lattice model (Bollmann, 1970).
Low values of R correspond to a high density

of co-incident lattice sites. Atomistic computa-

tions (Tasker and Duffy, 1983; Wolf, 1984), reveal

that special low energy interfaces are found for

R < 29. It was observed that there is a tendency

for boundaries with R < 29 to be resistant to

cracking and those with R > 29 to be suscepti-

ble to cracking. Boundaries with R > 29 are re-
ferred to as random boundaries. Fig. 19(a) shows a

high resolution transmission electron microscope

(HRTEM) picture of a high-angle alumina–alu-

mina interface (Espinosa, 1992).

Several investigators have studied the interfacial

properties of Al2O3 containing SiC nanoparticles

along grain boundaries by means of transmission

electron microscopy (TEM) (Jiao et al., 1997; Luo

and Stevens, 1997; Sternitzke, 1997). They found

that the magnitude of the interfacial fracture en-

ergy between SiC and alumina is over twice the

alumina grain boundary fracture energy. There-

fore grain boundaries are strengthened by the ad-
dition of SiC nanoparticles. The location of SiC

nanoparticles along grain boundaries is not uni-

form but rather quite inhomogeneous.

Another factor affecting grain boundary frac-

ture energy is the the presence of glassy phase and

glass pockets. Either from impurities present in the

powder, sintering aids, and/or contaminants

transported through the vapor phase from the hot
furnace or container walls to the material being

fired, a second phase is sometimes formed at the

grain boundaries of ceramics. This second phase

has an amorphous structure. High resolution

electron microscopy micrographs were obtained

by Espinosa (1992), at the interface of alumina and

a glass pocket (see Fig. 19(b)).

The random distribution of glass pockets,
glassy phases, SiC nanoparticles, defects and other

impurities leads to the consideration of a statistical

variation in the interfacial strength dependent on

the grain misorientation. Data on grain boundary

toughness as a function of co-incident lattice sites

are very limited and incomplete in the literature.

For this reason, the stochasticity of the micro-

fracture process with distributions which are in-
dependent of the principal material directions, is

considered in the analysis. With advances in ato-

mistic models, the grain boundary fracture

strength can be estimated as a function of grain

boundary tilt and twist from first principles.

6.1. Weibull distributions

If a large number of identical samples were to

be tested and the strength distribution of a brittle

and a ductile solid plotted, they would look quite

different. The strength distribution curve for duc-

tile solids is very narrow and close to a Gaussian or

normal distribution, while that for brittle solids is

very broad with a large tail on the hit-strength side

that can be explained by a statistical distribution
called the Weibull distribution, named after the

Fig. 19. (a) HRTEM image of a typical high angle grain

boundary. (b) TEM bright field image of a glass pocket in

alumina.
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Swedish engineer who first proposed it (Weibull

and Sweden, 1951).

In this analysis, the interfacial strength param-

eters will be described by a Weibull distribution.

Since only two interface parameters can be varied,

two distributions will be considered: varying KIC
and keeping Tmax constant, viceversa and varying
both at the same time.

The Weibull distribution for KIC and Tmax are:

f ðKICÞ ¼
mðKICÞm
1

K0 m

IC

exp

�

 KIC

K0
IC

� �m�
; KIC > 0

ð53Þ

f ðTmaxÞ ¼
mðTmaxÞm
1

T 0 m

max

exp

�

 Tmax

T 0max

� �m�
; Tmax > 0

ð54Þ

where K0
IC and T

0
max are material constants and m is

the Weibull modulus, which is a measure of the

variability of the strength of the material. Gener-

ally, m ¼ 3–10 for the case of brittle ceramic

samples. Fig. 20 shows several Weibull distribu-

tions for KIC using different values for K0
IC and m.

The distribution is randomly generated such

that a grain facet will have the same interface el-
ement parameters. In this way there will be only Nf
different interface elements (Nf ¼ number of

facets in the microstructure). Fig. 21 shows an

example where each grain facet contains different

values of Tmax and KIC. Fig. 21(a) shows the vari-
ation of Tmax with different intensities of gray. The
histogram for Tmax and KIC is shown in Fig. 21(b).

6.2. Glassy phase, glass pockets and initial defects

This micromechanical model lends itself to the

consideration of material defects. For example

depending on the purity and porosity of the ce-

ramic, intergranular glassy phase, glass pockets,

porosity, and other initial flaws can be explicitly

included in the RVE.

Grain boundary shearing due to the presence of
an intergranular nanometer glass layers can be

easily incorporated in the model by means of the

interface cohesive law III presented in Section 3.3.

Only a limited number of grain facets is modeled

by interface elements governed by this law. Inter-

faces between grains without glassy phase are

simulated with interface elements using law II

(Section 3.2).
Glass pockets at a triple junction, as shown in

Fig. 19(b), can also be included in the model. For

this, special care must be taken at the mesh gen-

eration stage to include the shape of the glass

pockets. The material properties of the glass are

assigned to the elements contained in the glass

pockets. Interface elements between glass pockets

Fig. 20. Plots of Weibull distributions for (a) m ¼ 1, 2, 3, 5 and 10; (b) KIC ¼ 1, 1.5, 2 and 2.5 MPa
ffiffiffiffi
m

p
.
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Fig. 21. Example of a Weibull distribution for interface parameters in a typical microstructure. (a) The different intensities of gray

indicate the value of Tmax, dark lines represent grain facet with higher values of Tmax. (b) Histogram for Tmax and KIC.

Fig. 22. Schematics of a ceramic microstructure with initial defects, pores and glass pockets.
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and grains are governed by law III as for the case

of nanometer film glassy layer. Fig. 22 shows an

example where the microstructure contains glass

pockets. A similar procedure can be done for the

case of pores, where the pores are represented by

regions without finite elements (see Fig. 22).
During the process of sintering, microcracks

can nucleate at triple grain junctions during cool-

ing. This results in a set of initial microcracks. An

initial distribution of flaws can be included in the

model deleting some of the interface elements next

to a triple point. The number of interface elements

determines the length of the initial defect (usually

�10% of the face length). Fig. 22 shows, with a
thicker line, an initial defect at a triple point. As it

will be shown in part II of this work, a micro-

structure with an initial distribution of flaws,

which can be a more realistic case to analyze, is

more susceptible to microfracture than an ‘‘ideal’’

microstructure without defects. It should be noted

that an accurate determination of microcracks and

residual stresses, resulting from material sintering,
can be obtained by modeling the cooling process

of the same RVE.

7. Modeling residual thermal stresses and thermal

induced microcracking

Throughout this study, the ceramic micro-

structure has been idealized as an ensemble of

randomly oriented, elastically and thermally an-

isotropic grains with brittle intergranular inter-

faces. In the process of cooling, the solid is
brought from its fabrication temperature down to

some final conditions, typically room temperature.

The stresses in the sample are assumed to be re-

laxed at the fabrication temperature due to creep.

During this cooling process, the body develops

microstructural residual stresses due to thermal

and elastic anisotropy of grains. The cooling is

assumed to be slow enough so that the tempera-
ture remains nearly uniform over the body at all

times. This leads to an incremental quasi-static

analysis where the temperature is decreased by a

prescribed amount until room temperature is

reached. Under the assumption of the analysis, the

response of each grain is characterized by its

elastic anisotropic material stiffness tensor Cijkl

and its thermal expansion co-efficients aij. The
components of these tensors on some global Car-

tesian reference frame ðx; y; zÞ depend on the ori-
entation of the grain, as described in Section 2.2.1.

The stress–strain relation including thermal strains
can may be expressed as:

Sij ¼ CijklðHkl 
 H 0
klÞ ð55Þ

where C is the elastic anisotropic material stiffness
tensor in the global co-ordinates ðx; y; zÞ and H 0 is

the strain tensor resulting from thermal contrac-

tion, such that

H 0
ij ¼ aijDT

DT denotes the cooling range and aij the tensor of
linear thermal expansion co-efficients defined in

the global co-ordinates. In the case of anisotropic
crystals, the elastic constitutive matrix bCCIJKL and

the thermal expansion co-efficients âaIJ are defined
in the local co-ordinate system of the grain by their

principal material directions ð1; 2; 3Þ, such that

Cijkl ¼ Tc
iIT

c
jJT

c
kKT

c
lL
bCCIJKL;

aij ¼ Tc
iIT

c
jJ âaIJ

ð56Þ

where Tc is the transformation matrix. As dis-

cussed in Section 2.2.1, each grain is assumed to be

elastic orthotropic and the orientation of the

principal material directions differs from grain to
grain. As previously mentioned, the process of

cooling is considered as an incremental quasi-static

analysis where the temperature is decreased by

steps. In each step the static analysis solves non-

linear equation ðKþ KIÞd ¼ RT where K is the

element stiffness matrix representing the aniso-

tropic elastic behavior of the single crystal grains,

KI is the interface element stiffness matrix, d is
the nodal displacement vector and RT is the ther-

mal load vector. More details on this quasi-static

model and its implementation can be found in

Zavattieri (2000).

8. Microcrack evolution and stereology

An important feature of the proposed model is

its capability of producing microcrack patterns
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and evolution of crack densities. The issue is how

to describe these results with a single weighted

parameter. In this section crack surface per unit

volume is defined and its function illustrated.

Consider a RVE under the dynamic conditions

described in Section 4. Fig. 23 shows the evolution
of crack pattern along the whole microstructure

for a typical calculation. As the wave front ad-

vances, crack nucleation and growth occurs up to

the moment when the wave reaches the bottom

face. As described earlier, once the effective dis-

placement jump exceeds a value of 1, the interface

elements are assumed to have failed and a micro-

crack is said to have initiated at that grain
boundary. As all grain boundaries are embedded

with interface elements, the lines shown in Fig. 23

indicate the boundary of the grains that have

failed during loading. Subsequent failure of

neighboring interface elements leads to microcrack

propagation and coalescence. Although crack

patterns provide understanding of the process of

microfracture inside the ceramic, the use of stere-
ology provides more insight into the different

damage mechanisms.

Quantitative stereology attempts to characterize

numerically geometrical aspects of the micro-

structure. Underwood (1970), presented a tech-

nique to extrapolate information from 2D crack

lines to 3D complex crack surfaces. The technique

provides and estimate of microcrack surface area

per unit volume, Sv. By equating the total crack
surface area per unit volume, Sv, to twice the av-
erage value of the number of intersections of a set

of test lines of unit length PL, an estimate of Sv can
be obtained. PL is the‘ number of intersections=
ðnumber of lines � length of each line=magnifi
cationÞ. For anisotropic microstructures, the

number of intersections of a set of test lines, with

the boundaries of microcracks, depends on the

angular orientation of the test lines in the plane.

Thus, in order to obtain a representative average

value of the intersection count, it is important to

perform the measurements on different angular

orientations in the cross-section in question. The
dependence of the number of intersections per unit

length with the angle of the test lines can be used

to characterize the degree of microcracking an-

isotropy.

After obtaining SvðtÞ, _SSvðtÞ can be calculated by
numerical differentiation. Fig. 24 (left) shows the

evolution of SvðtÞ and _SSvðtÞ from the time

the specimen is loaded, up to 500 ns. Moreover,
the angular crack density distribution Svðh; tÞ can
be calculated, and the rosette shown in Fig. 24

(right) can be constructed. Each point x, y in this
rosette is defined as

x ¼ Svðh � DhÞ cosðhÞ ð57Þ

y ¼ Svðh � DhÞ sinðhÞ ð58Þ

Fig. 23. Crack pattern evolution in a microstructure subjected to multi-axial loading.
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In other words, the distance from each point

to the origin is the crack density for all the

cracks with an angular orientation, h, such that

h 
 Dh6 h < h þ Dh. The degree of discretization
is defined as Dh ¼ 2p=N , where N is the number of

intervals. For example, Fig. 24 (right) is the rosette
constructed with a discretization N ¼ 10. The

reason why a very low discretization factor has

been chosen is the small number of potential

angles where the crack can occur in the simulated

microstructure. Even though these figures show

the variation of h from 0 to 2p, the angle is varied
from 0 to p, and the density Svðh þ pÞ is assumed
equal to the density SvðhÞ. The relationship be-
tween SvðtÞ and Svðh; tÞ is SvðtÞ ¼

R p
0
Svðh; tÞdh.

9. Concluding remarks

A model was presented to analyze material

microstructures subjected to quasi-static and dy-

namic loading. An RVE composed of a set of
grains was introduced with special consideration

to the size distribution, morphology, phases and

presence and location of initial defects. Stochastic

effects were considered in relation to grain

boundary strength and toughness. An important

feature of the model was highlighted, i.e., its ca-

pability to capture the evolution of stress induced

microcracking from the material fabrication stage.

This feature becomes particularly relevant in the

identification of material strength as well as spatial

distribution of initial defects.

Intergranular cracking was modeled by means

of interface cohesive laws influenced by the physics
of breaking of atomic bonds or grain boundary

sliding by atomic diffusion. Several cohesive laws

were presented and their advantages in numerical

simulations discussed. In particular cohesive laws

to simulate grain boundary cracking and sliding or

shearing were mathematically formulated. The

main advantage of the proposed method, in rela-

tion to crack initiation, propagation and coales-
cence as an outcome of the simulations, was also

examined.

The equations governing the initial boundary

value problem, as well as their numerical imple-

mentation, were presented with special emphasis

on selection of cohesive law parameters and time

step. The importance of avoiding spurious effects,

such as the addition of artificial flexibility in the
computational cell, was addressed. Simulations

reported in part II of this work illustrate this im-

portant aspect of the model.

The reader should realize that the grain level

model lends itself very well for the examination of

novel heterogeneous materials. Percentage and

distribution of phases, grain boundary strength

Fig. 24. Plots of SvðtÞ, _SSvðtÞ (left) and Svðh; tf Þ (rosette, right) for a microstructure subjected to multi-axial loading.
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and its variability, microstructure morphology at

the micro- and mesoscales can all be accounted for

in the proposed framework. A microscale example

would be the analysis of a material with variable

chemical composition, grain size and/or grain

morphology within the computational cell. A
mesoscale example would involve the analysis of a

multi-layered material in which each layer could

have a thickness of a few millimeters. Likewise, the

discussed model could be used in relation to the

investigation of RVEs of materials or the exten-

sion of a single crack in which crack tip material

microstructural details are modeled.

A technique for quantifying microcrack density,
that can be used in the formulation of continuum

micromechanical models, was also discussed. The

density was assessed spatially and temporally to

account for damage anisotropy and evolution.

Although this feature has not been fully ex-

ploited, with the continuous development of less

expensive and more powerful massively parallel

computers, the model is expected to be particu-
larly relevant to those interested in developing

new heterogeneous materials and their constitu-

tive modeling. In fact, effects of stochasticity and

other material design variables, difficult and ex-

pensive to obtain experimentally, will be easily

assessed numerically by Monte Carlo grain level

simulations. In particular, extension to three-di-

mensional simulations of RVEs will become fea-
sible. It should be noted that such analyses are

needed for a proper quantification of inelasticity

and damage field variables.
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