MD-Vol. 75/AMD-Vol. 219, Advances in Failure Mechanisms in Brittle Materials
ASME 1996

COMPUTATIONAL MODELING OF GEOMETRIC AND MATERIAL
NONLINEARITIES WITH AN APPLICATION TO
IMPACT DAMAGE IN BRITTLE MATERIALS

Horacio D. Espinosa, Gordon Emore, Pablo Zavattieri

School of Aeronautics and Astronautics
Purdue University
West Lafayette, IN 47907-1282

ABSTRACT

A model is presented for the dynamic finite element analysis of large-strain, high
strain rate deformation behavior of materials. Both an isochoric plastic model for metals
and a multiplane microcracking model for ceramics are introduced, and a temperature-
dependent model is included. In addition, algorithms are presented for correcting fi-
nite element mesh distortion through mesh rezoning, optimization, and refinement. A
surface-defined multibody contact algorithm designed to handle large relative displace-
ments between bodies is included, with additions for friction and cohesive interfaces.
A test example is examined, simulating a modified Taylor rod impact test in which an
aluminum anvil strikes a ceramic specimen. Velocities are recorded at the free end of
the ceramic and compared to experimental results. It is observed that the simulation
produces the same overall features as the experimental data.

INTRODUCTION

There is a class of problems in which material and geometric nonlinearities play a
major role in understanding the physics of the problems. This group includes problems
in high speed machining, metal forming, and impact-induced damage in ductile and
brittle materials. What make these problems special is the fact that the deformations
involved are both severe and takes place very quickly, resulting in large strains and strain
rates, high temperatures and stresses, and unusual friction conditions. In machining, for
example, the surfaces of workpieces have been estimated to have plastic strains as high
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as 500 percent, as seen in Komanduri, 1993. Experimental observations of metal cutting
operations show that deformations occur in concentrated regions, in which material is
subject to shear deformation at very high strain rates (103 —10%), Oxley, 1989. A similar
scenario is observed in impact and ballistic penetration, Zukas, 1990.

Experimental investigations show that material properties, such as stress-strain
properties, are strongly affected by strain rate and temperature during plastic deforma-
tion, Duffy, 1979, Clifton and Klopp, 1985, Nicholas & Rajendran, 1990. For the same
strain, the corresponding stress increases with strain rate due to viscous effects. In ad-
dition, heat generated by plastic processes and friction increases the temperature of the
material, leading to thermal softening which can result in material instabilities. Tem-
peratures in excess to 600°C' have been observed in machining experiments performed
on 1020 steel, Shih & Yang, 1993. High temperatures resulting from plastic deformation
were also measured within shear bands in maragin steel and Ti alloys, Zhou et al., 1996.

In general, physical experiments do not always provide direct information on material
behavior and failure. Therefore, numerical simulations are useful in helping researchers
to obtain insight into the physics of deformation and fracture of advanced materials.
However, from a computational standpoint, the class of problems previously mentioned
present several difficulties. Large relative deformations are occurring very quickly in
well defined moving domains. Strain and temperature gradients can be extremely sharp
requiring a high degree of spatial and temporal resolution of the field variables.

Most FEM calculations for solid mechanics use a Lagrangian formulation, Belytschko
1983, Benson, 1992. This means that as the mesh becomes deformed, errors may ac-
cumulate from highly distorted elements. A greatly deformed element may become
unsuitable for further updates in the calculation, e.g., Yang et al., 1989, Batra and Ko,
1992, and Ortiz and Quigley, 1991. In addition, as elements are distorted, the time step
required for explicit integration algorithms (which are only conditionally stable) tends
to dwindle such that completing a dynamic calculation may become extremely expensive
computationally, Espinosa et al., 1995. The initial mesh may also become inappropriate
as time progresses, because high strain gradients may develop in areas of the mesh with
insufficient resolution to accurately model geometric and material nonlinearities.

There are several methods for dealing with these problems. Highly distorted meshes
may be fixed by moving and optimizing node locations, as in Zienkiewicz & Taylor,
1993b. Nodes may also be moved closer to regions of interest using adaptive meshing al-
gorithms. Several contributions have been made in this direction, e.g., Zhu et al., 1991,
and Batra & Hwang, 1993. Alternatively, a mesh may be replaced completely with a
brand new mesh in an operation called remeshing or rezoning. Additional nodes may be
added in regions of interest to produce more elements in an h-refinement, thereby creat-
ing more resolution where large temperature and displacement gradients are occurring,
Marusich and Ortiz, 1995. Another way of dealing with mesh distortion is by using

1
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arbitrary Lagrangian-Eulerian (ALE) methods, Donea, 1983, Liu et al., 1988, Benson,
1992, Dvorkin and Petocz, 1992. As featured in Stillman et al., 1993, the ALE method
is able to continuously rebuilds the boundaries in an Eulerian fashion, as part of the
regular smoothing operation, resulting in good accuracy and reducing CPU time with
respect to pure Lagrangian formulations.

The development of new and faster computers with parallel capabilities, as well as
the manufacturing of ultra fast speed cameras, detectors, and oscilloscopes, open new
frontiers for the investigation of the mechanics and material issues discussed above. As
an example of how experiments and numerical simulations are combined to examine
material inelasticity and failure, we here present a finite element model to simulate
dynamic contact, and geometric and material nonlinearities resulting from high speed
impact. The model includes a temperature and strain-rate dependent material model
for large deformation plasticity, microcracking for the case of brittle materials, and a
multi-body contact law with a variable-coefficient friction law and heat conduction. In
addition, the capability to rezone, refine, optimize, and update the finite element mesh is
included to allow the calculation to continue in a timely fashion through extremely severe
deformations. The features of the developed computational algorithms are illustrated
by examining the high velocity impact of a T-shaped aluminum rod against a ceramic
rod, Wise and Grady, 1994. Interferometrically measured velocities are used to assess
the quality of the proposed models.

THE STRESS AND DEFORMATION MODEL
Field Equations

In our formulation, the field equations describing the material response of a body use
a Lagrangian approach. Consider a solid with volume Bg in the reference configuration,
and a deformation process characterized by the mapping x(X,t¢). Then a material
point initially at X will be located at x = X + u after deformation, in which u is
the displacement vector, as shown in Figure 1. A displacement based finite element
formulation is obtained from the weak form of the momentum balance or dynamic
principle of virtual work. At time ¢ the weak form is given by

/B [V,T° + po(bo — a)] - 7dB, = 0 (1)

/ T°:V,ndB, — / po(b, — a) - ndB, — t-ndS, = 0 (2)
Bo B, Soc

where T? is the first Piola-Kirchhoff stress tensor at time t; b,, a, and t are the body
force vector, acceleration vector, and boundary traction vector on volume B, and bound-
ary S,,, respectively. Virtual displacement field 7 is assumed to be admissible, and p,
represents the material density in reference configuration. The symbol Vi denotes the
material gradient with respect to the reference configuration. and “:’ is used to denote
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Reference Configuration Current Configuration

Figure 1: The reference and current configurations.

the inner product between second order tensors, e.g., A : B = A;;Bji, where the sum-
mation convention on repeated indices is implied. Since the Kirchhoff stress is given by
7 = FT° wherein F is the deformation gradient V,x at time t, another form of the
weak form of the momentum balance, in terms of spatial quantities, is given by

/ T:V°ndB, — / po(b, — &) -ndB, — t-ndS, = 0. (3)
B, Bo Soo

in which superscript * stands for the symmetric part of the tensor and V is the spatial
deformation tensor. As equation 3 shows, the reduced weak form states that the work
done by the stresses 7 over volume B, equals the work done by applied body forces,
inertia forces, and surface tractions.

Large Deformation Plasticity Model

The plasticity constitutive law used here is based on an atomic lattice model for
metals to describe elastic and plastic material behavior. Consider a crystal lattice being
deformed from its initial undeformed configuration B, to its current configuration By
at time {. Locally, the deformation of the crystal is fully defined by the deformation
gradient field F. The total deformation F is the result of two main mechanisms of
deformation: dislocation motion within the active slip systems of the crystal and lattice
distortion. Following Lee, 1969, this points to a multiplicative decomposition

F = F°F’ (4)

122



FP

|

Figure 2: Deformation gradient decomposition.

of the deformation gradient F into a plastic part FP, defined as the cumulative effect
of dislocation motion, and an elastic part F¢, which describes the distortion of the
lattice. Following Teodosiu, 1970, Rice, 1971, Mandel, 1972, Hill & Rice, 1972, Havner,
1973, and Asaro & Rice, 1977, we shall assume that F? leaves the crystal not only
essentially undistorted, but also unrotated, as seen in Figure 2. Thus, the rotation
of the lattice is contained in F¢. This choice of kinematics uniquely determines the
decomposition 4. The plastic part F? of the deformation gradient defines a collection
of plastically deformed local configurations which are collectively referred to as the
intermediate configuration B;.

Insight into the structure of the constitutive relations can be derived from work
conjugacy considerations. By virtue of the decomposition 4, the deformation power per
unit undeformed volume takes the form

T . F=T":F4+3%:T° (5)

where T? is the first Piola-Kirchhoff stress tensor, and

T = T°F!T (6)
Y = FloprT (7)
L’ = Free-! (8)
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Here, T~ defines a first Piola-Kirchhoff stress tensor relative to the intermediate config-
uration By, and 3 is a stress measure conjugate to the plastic velocity gradients L” on
B, Mandel, 1972.

The work conjugacy relations expressed in (9) suggest plastic flow rules and elastic
stress-strain relations of the general form, Mohan, 1991,

I’ = I'E.Q (9)
T

T = (F;) (10)

Here, Q denotes some suitable set of internal variables defined on the intermediate
configuration, for which suitable equations of evolution, or hardening laws, are to be
supplied. It should be noted that 9 determines uniquely both the plastic deformation
and the rate of plastic rotation. Because, by the choice of kinematics, F? is invariant
with respect to rigid body motions superimposed on the current configuration, 9 is
automatically material frame indifferent. By contrast, objectivity imposes non-trivial
restrictions on the form of 10. It can be shown, Mohan, 1991, that the most general
form of 10 consistent with the principle of material frame indifference is

=yl

T = F°S(C", (11)
C° = VFeIFe (12)

where S = L(% In 68) = LE' is the symmetric second order Piola-Kirhhoff stress tensor

relative to the intermediate configuration By, and C° = VFe¢FeT is the elastic right
Cauchy-Green deformation tensor. In addition, E is the logarithmic strain measure
and L the material stiffness tensor. For an elastic isotropic solid L is given by

2
L=2ul+ (k- Zp)191, (13)

in which p is the shear modulus, k is the bulk modulus, I is the identity tensor, and 1
is the unity vector.

In summary, the elastic and plastic portions of the deformation are separated by the
multiplicative decomposition F = FF? as outlined above, subjected to the restrictions
det F¢ > 0 and det F? = 1. Moreover, from 8 it can be seen that the evolution equation
for F? follows the flow rule

FP = L'F7; (14)
L' = wP4D?, (15)

wherein L” is the plastic part of the velocity gradient L. The above assumes that
WP = skwL’ = 0 and that D? = symL" = D?(S,Q) = é¢’N. Here, N is the plastic
flow direction and €¢? is the effective plastic strain rate. The plastic flow direction is
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Incremental
Fop1 = FZ+1Fﬁ+_1
FP | = exp(Ae?Np 1) F]

Sn41=L(3InC 1)
Qi1 = Qn + AePHpt

Constitutive

' F = FeF?
FPFP-1 = ¢¢N(S, Q)
S— = L(31nC?)
Q=¢H(S,Q)

rrooe

Table 1: Numerical integration algorithm

given as a function of the deviatoric stress tensor Sgev, and the effective stress defined
by

— 3 Sdev
N 2 Ddey
2 7 (16)

3 —
o = Hisdev:sdev. (17)

The effective plastic strain rate, é”, is a function of the effective stress 7, temperature
T, and the internal variables Q, viz.,

& = f(7,Q.T). v (18)

For a viscoplastic representation of the J; -flow theory, we have

¢ = Bl T (19)
& = 0 T<s (20)
[EQT) = &l (21)
1) = 0,1+ 5 - ()] (22)

such that €? is the accumulated plastic strain, o, is the initial material strength, T,, is the
melting temperature of the material, and «, #,and v are the rate sensitivity, hardening,
and thermal softening exponents. The material strength s and € are internal variables
in Q. When translated into incremental formuli, the constitutive model transforms the
elastic part of the deformation gradient into new stresses S, as shown in Table 1. In
this model H represents the function defining the evolution of internal variables Q. The
exponential law for F? at time ¢, is derived from

Multiplane Microcracking Model

In this section the inelastic response of ceramics is modeled through a microcracking
multiple-plane model based on a dilute approximation (Taylor model). Our formulation
overlaps with some theories in which multiple-plane representations of inelasticity are
derived, e.g., Seaman & Dein, 1983, Bazant & Gambarova, 1984, and Ju & Lee, 1991.
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Figure 3: Schematic of microcracking multiple-plane model.

The basic assumption in the microcracking multiple-plane model is that microcrack-
ing and/or slip can occur on a discrete number of orientations (see Figure 3). Slip plane
properties (friction, initial size, density, etc.) and their evolution are independently com-
puted on each plane. The macroscopic response of the material is based on an additive
decomposition of the strain tensor into an elastic part and an inelastic contribution
arising from the presence of microcracks within the solid. In contrast to scalar repre-
sentations of damage, e.g., Rajendran, 1992, the formulation by Espinosa, 1989 is broad
enough to allow the examination of damage induced anisotropy and damage localization
in the interpretation of impact experiments.

For a representative volume B of an elastic solid containing penny-shaped microc-
racks with a density N(¥) the average inelastic strains are given by

9
=3 N(k)S(k)%(E(k)n(

k) o, (k)7(k)
=1

where the subindex k& is used to label the orientations, S(*) denotes the surface of a

. . . . . (k
microcrack on orientation &, n(%) the corresponding unit normal, and Y the average
displacement jump vector across ().

If the resolved normal traction acting on the microcracks on orientation k& is tensile,
the average displacement jump vector resulting from an applied stress field o is given
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by

2

bgk) = S—(lk)— ./S(k) bl(vk)dS = ——;%22 _VV)) a(k)(Qai]-ngk) — l/ojmg-k)nfk)ngk)), (24)

in which F and v are the Young’s modulus and Poisson’s ratio of the uncracked solid, and

a* is the radius of the penny-shaped microcracks on orientation k. By contrast, if the

normal traction is compressive, the microcracks are closed and the average displacement
jump is given by ‘

B 32(1 - v?)

k rk
[ 377E(2—I/)a fi (25)

where f* is the effective shear traction vector on orientation k given by
fF = (" + pop) (no)F, (26)

in 26, i is the friction coefficient of the microcrack faces, 7% and 0172 are the resolved shear
stress and the normal stress acting on microcracks with orientation k, respectively, and
nk is the unit vector in the direction of the resolved shear traction. Embodied in 25 is
the notion that f* provides the effective driving force for the sliding of the microcracks.
In order to compute the inelastic strain tensor at all times, it becomes necessary to
follow the evolution of the microcrack radius a® in the selected orientations. Following
Freund, 1990, an equation of evolution for @ in the case of mixed mode loading can be

derived, viz.,
¥ = mrep[l — (Kro/KF ;)" > 0, (27)

in which n* and m¥* are phenomenological material constants which may have different
values in tension and compression, cg is the Rayleigh wave speed, K¢ is the material
toughness, and Kff 7 is an effective stress intensity factor. For mixed mode conditions,
Ké“f s is derived by considering an average energy release rate associated with an increase
in radius of the microcracks, namely,

& 1 21— 2 -2 -2 -2
Gk = .2—7r/o 5 [K]’i"KH"'KIH/(l"V)] df (28)

from which the following expression for Kfff is obtained,

% _ | GFE
Ky = T (29)

The general structure of these constitutive equations corresponds to that of a solid
with a damage-induced anisotropic stress-strain relation with elastic degradation. In
particular, the effective behavior of the solid is predicted to be rate dependent due to
crack kinetics effects. From a computational standpoint, this ensures numerical relia-
bility and mesh independence, according to Needleman,1988, and Espinosa,1989. This
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is in contrast to quasi-static formulations of damage for which the governing equations
become ill-posed in the softening regime, as in Sandler & Wright, 1984.

If the material is subjected to a predominantly tensile stress state, microcracks
along orientations perpendicular to the direction of maximum tensile stresses will grow
according to Eq. (5). In this case, significant dilation is expected due to mode I crack
opening. If a predominantly compressive state of stress with shear is imposed, then
crack opening is inhibited but inelasticity is manifested by the growth of penny-shaped
cracks in modes II and III (shear modes).

Finite Element Discretization

Discretization of equation 3 defines a system of nonlinear ordinary differential equa-
tions which can be solved for the updated deformation Xn+1. A displacement based
finite element formulation is obtained by expressing field variables at any point in an el-
ement as a function of nodal quantities and the element shape functions in the reference
configuration:

NEN

Wa = Y Na(€)uf (30)
a=1
NEN

Via = D Na(€)of (31)
a=1
NEN

Ga = ) Na(§)a? (32)
a=1

wherein u;,, vy, and a;, are the displacement, velocity, and acceleration at the point
of interest. The sum is taken over the number of nodes in the element, NEN, while
N,y (&) are the shape functions relating nodal quantities u¢, v, and a? to the point
of interest. The vector £ contains the natural coordinates of the point of interest in
the isoparametric master element. In 2-D calculations, £ expands to (&,m), where the
components are functions of the area coordinates (€1,&2,&s) for a triangular element.
Substitution of the discretized variables into 3 leads to the following system of equations,

Migpa} = fEt— fint (33)
fgt = Z/ Ng,;Ti;dB, = Z/ BTTdBO (34)

e Bg e Bg
st _ JboiN<dB, + / 7N, dS, 35
' ; /Bg P ¢ ase (35)
Mgy = /B _poNgNZdB,, (36)

in which f}g‘t, [, and My, are the internal nodal forces, the external nodal forces,
and the lumped mass matrix, respectively. The integrations of the body forces, inertia
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forces, and stress contributions take place over an element volume B¢, while the applied
tractions are integrated over element surface 055. Dynamic equilibrium requires that
internal and external forces are balanced by the inertia forces. The shape function
derivatives N, and n,; are defined in the reference and current configurations. The
body forces and surface tractions are applied upon the volume B,, and surface 9S¢.
In the expression for f**, the Kirchoff stress can be expressed in terms of the second
Piola-Kirchhoff stress tensor S in the intermediate configuration, and the elastic part of
the deformation gradient, F¢, namely,

7 = FSFT, (37)

Direct Time Integration Algorithm

An explicit central-difference integration algorithm is being used to integrate in
time. This algorithm is presented in Table 2. As a central difference method, initial
displacements and velocities u® and v are required, while initial accelerations a’ may
be calculated from initial applied tractions f”“to, and initial internal forces fint’.

At each time step n, the nodal accelerations must first be corrected for any time-
dependent changes in the traction boundary conditions. Then the displacements at time
n+1 are computed using the corrected acceleration and the displacements and velocities
at time step n. The stresses are updated next using the material constitutive law,
followed by computation of internal forces as a function of the Kirchhoff stress tensor.
Finally, acceleration and velocity at time n + 1 are computed before incrementing the
time.

This explicit integration method is very useful for studies in which high rates of
loading are expected. The time steps used by these explicit calculations are limited
by stability, so care must be taken in finite deformation dynamic calculations to ensure
that waves do not propagate through the mesh faster than the material wave speeds. To
this end, the time step is calculated dynamically from the maximum element frequency
in the mesh wyqz, such that At < 2/wp,,, Flanagan & Belytschko, 1984, derived the
following estimate of wy,q, for an N-noded isoparametric element,

N+ 24 B;1B;
wfmszv( *'p”) e (38)

in which B;rB;s is the trace of [B][B]T, and the area A, is found as C7; XYy, where

B 6N[(?NJ_6N](9NJ>
cw=[ ]G0 - 5 ) e )

and Ny are the element shape functions. For the case of a 6-noded isoparametric trian-
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. Initial conditions:
n=20
=7

vl=¥

aO — M—l(fe:vto _ finto)'

0

. Correct accelerations due to changes in boundary conditions:
At = M—l(fe:ct"'l‘l _ fext”)
. Update displacements:
1
u' T =u” 4+ Atv? + —Q—Atzé”.

. Update the second Piola Kirchhoff stress tensor S at each element (see Table 1)

. Compute internal force vector:

£t = / B'rdB,; T =FSF’.
Ba

. Solve for accerations:

an+1 — M~1(fext”+1 _ fint”+1)

. Update velocity vector:

Vn+1 =" + %(é” _*_an-l—l)_

.n=n+1ifn < nne go to step (ii), else stop.

Table 2: Explicit integration algorithm
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gular element, C7y is computed to be the 6x6 matrix

O 3 7 10 -10 -10
3 0 -7 —-10 10 10
1l =7 7 o o -8 8
‘=%l 1010 0 0 -8 8 : (40)
0 -108 8 0 -16

10 -10 -8 -8 16 0

MECHANICAL CONTACT

Contact algorithms allow the study of interactions between bodies without the need
for applying explicit pressure distributions on the surface being studied. This algorithm
is based on the 2-D dynamic model presented in PRONTO, from Taylor & Flanagan,
1987, wherein the method considers contact to be a kinematic constraint. As such, the
algorithm must alter the accelerations of the surface nodes so that the surfaces do not
interpenetrate. In addition, a velocity-dependent friction model is included. This form
of contact was used because it operates on surfaces, not contact elements, as is usual.
This surface-based contact algorithm allows contact between bodies that undergo large
relative displacements as they move. It also allows the easy incorporation of a velocity-
dependent friction model where the friction coefficient is made a function of pressure
and temperature. In this section we start with a description of the contact algorithm
as presented in Taylor & Flanagan, 1987, followed by an extension to model cohesive
interfaces.
Surface Definition

The contact algorithm must keep track of the relative positions of the two surfaces.
This requires that it store an array listing the surface nodes for each body. In our FEM
code, which is a modified version of FEAP, Zienkiewicz and Taylor, 1993a, the mesh is
generated in blocks, and a subroutine is called to generate the needed arrays of surface
nodes.

To begin, the subroutine identifies all corner nodes on the surface of the block. This
is currently done in a loop over all of the elements, wherein each corner node accumulates
the difference between the node numbers of the other two corner nodes. The end result
of this is that all interior corner nodes accumulate a sum of zero, while the boundary
corner nodes have a nonzero sum. Then, starting with the first boundary corner node,
the algorithm examines the elements attached to the node to find the next corner node
on the boundary, in a counter-clockwise direction. This is easily enough done as the
element connectivities are also defined in a counter-clockwise direction. As each new
boundary corner node is added to the surface array, the midnode between it and the
previous node is also added. The algorithm repeats the process until it returns to the
starting point.
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Figure 4: Two surfaces are tested for contact

Surface Tracking

With every time step, the contact algorithm first must predict the accelerations,
velocities, and displacements for the next time step. Our version of FEAP borrows
these data (&, ¥, ,) from the explicit integration routine that precedes it. The resulting
displacements are then used to determine whether or not contact has taken place.

During each time step, one of the surfaces is designated the master surface, and
the other the slave. The algorithm assumes slave nodes can be penetrating the faces
between the master nodes. Therefore, an array is updated every time step by moving
from a previous closest master node to a closer, adjacent master node, then repeats until
neither adjacent node is closer. This method allows gradual relative motion between
the two surfaces, while reducing the chances of sudden jumps across the material near
sharp corners.

Determining Contact

Once the appropriate master node is chosen, the position of the slave node is com-
pared to the faces on either side of the master node. For a 2-D implementation, these
two faces are the lines connecting the closest master point and the master nodes preced-
ing and following it, respectively. The slave node is projected onto each of these lines to
determine whether or not it falls within the influence of either or both of the two faces.

First of all, the angle between the master faces is bisected, and the location of the
slave node with respect to the bisector is used to determine which master face is near,
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Figure 5: Contact determination algorithm.

and which is far. The near face is the one which lies on the same side of the bisector
as the slave node. Several tests are now made to determine if contact has occurred, as
detailed in Figures 4 and 5. They hinge upon several definitions.

The slave node is considered to be penetrating a face if the dot product between the
projection vector from the slave node to the surface and the master surface normal is
positive. The slave node is considered to be along a face if the above projection vector
intersects the line defined by the face on the same side of the angle bisector as the face
itself. The opposing slave segment is the face on the slave surface (adjacent to the slave
node) that has the most negative dot product of its normal with respect to the master
face normals. Finally, the opposing slave segment is more opposed to the master face
that supplies the most negative dot product of the normals.

Acceleration Corrections

To ensure that the two surfaces do not interpenetrate, any penetrating slave node and
its associated masters must have accelerations applied to them to negate the predicted
contact. First, the penetration force of the slave node is calculated by

Bmgé

f,=-——%n (41)

in which m, is the mass of the slave node, § is the'penetration distance, At is the time
step, and n is the master surface normal vector. Parameter 0 < 3 < 1 represents the
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fraction of a time step that a surface spends as a slave or master surface. For best
results, similar materials should spend approximately equal amounts of time as slave
and master surfaces, as master surfaces behave more stiffly than the slave surface.

Next, this force is balanced to the master nodes using the variable &, distance from
the first node of the contact face to the projection point, nondimensionalized by the
length of the face. Once this is complete, the contributions are summed and virtual work
is used to generate the acceleration correction for the master nodes. The summation is
over the contributions from the slave nodes contacting master node 1.

mg = (1 —&)ms (42)

Mgy = &Ems (43)

fa = (1-9f, (44)

foo = ‘ffp (45)

(m+> moa)an; = Y for. (46)

The correction for the slave node is then calculated using the master node responses,
and is in turn used to get the final normal accelerations in the absence of friction for
the slave and master nodes.

Aaps = (1 - g)anl + fan2 (47)
) f
Ay = a+tags — £ (48)
ms
Amsty = a4 agr. (49)

Friction ‘

Friction forces are handled by a velocity-dependent model, in which they resist the
relative in-plane motion of the contacting surfaces. The relative velocity between the
slave node and the corresponding master surface is calculated by

\A’r = \}S bl (1 - 5)\}1 - 5{’2 (50)
wherein Vg, Vi, and ¥, are the predicticted velocities for the slave node and the two
master nodes, respectively. From this, the relative tangential velocity, v, its magnitude
vs, and the tangential unit vector s can be found by

Vs = Vv, —(n-v,)n (51)

Vs = VsV (52)
Vs

s = U_s (53)

Similarly to the treatment of penetration, a tangential contact force defined as a
fraction of the force that must be applied to the slave node to cancel its relative motion
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is given by
ﬂ7n8 US

fS:——‘ At

A key aspect in the treatment of contact is the definition of a friction coefficient. In

(54)

general the friction coefficient is a function of pressure, sliding velocity, and interface
temperature. In what follows, we introduce a friction coeflicient that is a function of
the sliding velocity v,, namely,

B= fhoo + (o — foo)e” ™ (55)

in which po and g are the low and high-velocity friction coeflicients, and v is a decay
constant. Additional acceleration corrections are then calculated by

f s
as = —min(u(ays — ;n—’t) -, [Zt) (56)
Asly = gy + UsS (57)
s
Qmstry — Qmstr; — (1 - 5)"%‘:‘5 (58)
sy
Qmstr, =  Amstry _f Mg S. (SQ)

A Dynamic Interface/Contact Model

Recently, Espinosa & Lu, 1995, proposed an extension of the above contact algorithm
to model the dynamic behavior of interfaces. The model is based on the interface
model proposed by Tvergaard, 1990, for quasi-static calculations and assumes that the
interface carries forces that oppose separation and shear between two surfaces until
debonding. The magnitude of these forces are a function of the relative separation and

shear displacement between the two surfaces. The normal and tangential displacement
jumps u, and w, respectively, are used to determine a nondimensional parameter ),

defined as
Uy, 2 Uy 2
A‘J(S;) +(5) (60)

where §,, and d; are the relative displacement components at which interface separation
or debonding takes place. Then, the interface traction vector may be calculated by

Uy Uy

T, = 2PN, T,=a%P() (61)
571 5t
27 )
F(A) = Z0ma(l =20+ A7), for 0<A<1, (62)

where 0,4, is the maximum strength of the interface. Note that total debonding occurs
when A = 1.

This interface model is included as part of an overall surface contact algorithm
through the use of interface elements having nodal equivalent forces given by the above

135




defined tractions. Two possibilities need to be considered in the calculation of nodal
equivalent forces. The first is the case of separation, u,, > 0, where the two surfaces
are pulling away from each other. In this case, the interface law described above is
used to apply the appropriate equivalent nodal forces obtained by integration of the
traction vector. If interface failure is detected, A = 1, the surfaces can separate freely.
The second case is that of penetration, u,, < 0. In this case, the contact algorithm pro-
vides the equivalent normal nodal forces, while the interface law provides the equivalent
nodal tangential forces. Upon inte'rface failure, equivalent nodal tangential forces are
computed from the friction law.

THERMAL EFFECTS

As stated in the introduction, large plastic strains and strain rates result in tem-
perature increases in the body. Hence a temperature-dependent material model and
heat conduction need to be added to account for the fact that the behavior of most
materials can change dramatically as the temperature rises. The rise in temperature
is usually caused by the generation of heat through plastic deformation but can also
be the result of friction between sliding interfaces. In this section a discretized heat
equation and its temporal integration is discussed. Moreover, an algorithm accounting
for thermal conductance between bodies in contact consistent with the treatment of
mechanical contact, is presented.
Governing Equations For Thermal Effects

In a temperature-dependent model, an extra level of complexity is added to the
governing equations. Heat production and transfer is controlled by

B (T + Ty) +Q = epl | (63)
2T
v

in volume By, where heat is generated and transferred. In the above equation, () is
the heat source, p is the mass density, ¢ is the specific heat, and k is the thermal
conductivity.

Boundary conditions consist of surface Sy, upon which a prescribed heat flux g is
applied, surface S;, upon which proscribed heat convection h(Ty — T) is applied, and
surface S7, upon which a given temperature is prescribed. These conditions are given
for each surface as

T = Tg on St (64)
= qg=k(Tony +Tyn,) on Sy (65)
g = hTy-T)=k(Tenz+Tyn,) on S, (66)

where T is the temperature at infinity, T is the temperature on Se, and n = (ng, ny)
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is the surface normal vector. A weak form of 64, 65, 66 is given by

/ (kV2T+Q—cpT)ndB~/ (kYT n=gs)ndS— [ (KVT-n=h(T;~T))ndS =0 (67)
B: Sy A

where S = STUS.US,, and 7 is a test function satisfying the boundary condition n = 0
on St. It can be shown that an equivalent expression of the weak form is

(VT - V)dB + / RTndS + / cpTndB = / g5ndS + /B QndB + /S hTyndS
Se B Sy t c

(68)
This equation expresses an energy balance wherein the change in heat energy in volume
By is equal to the net heat added.

For a finite element approach, a Galerkin method provides the discretization

B

T(x) = Nx)T. (69)
7Gx = NE. (70)
Ta = BTe - (71)

in which 7(x) is a weight function approximated using the same shape functions N as
used for T. Note that these shape functions are defined in the deformed configuration.
The quantity 7 is the array of nodal temperatures for an element, while T is the matrix
containing the partial derivatives of T, across the element.

Given the above, the governing equations simplify into the finite element equation

(K+H)T + CT = Rq+Rq + Ry, (72)

wherein the global characteristic conduction, convection, and rate dependent matrices
K, H, C determine the response of the system. They may be compiled from the element
matrices by

1

K

Ske=Y" /A BTkBdA (73)
H = Yhe=Y [ NThNds (74)

C = gce—_—g /A eNTchdA (75)
R, = Z /S NTgpds (76)
Ry = Z [5 NTTyhds (77)
Rq = ;/ACNTQdA (78)
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NQP
= Z( Z WPN;{QP) (79)
e p=1
where Rq, Ry, and Rq are the thermal load vectors.

If thermal conductivity is assumed to be a crystal property, then the large displace-
ments and rotations introduced by the elastic part of the deformation gradient needs
to be accounted for. Following Marusich and Ortiz, 1995, we define k = kFeFeT in 96.
Furthermore, for the plastic process defined earlier, a heat supply @ due to the rate of
plastic work, W7, can be estimated by the Taylor-Quinny formula, viz.,

Q = aW? (80)

in which a is a coefficient of the order of 0.8-0.9.
The whole system of equations may be simplified by joining (K 4+ H) = K, so that

KT + CT = R. (81)

Now, using a direct integration method, the temperature field is computed at each time
step as
1
(—
AN

~

C+ BR) T = (=C — (1 AR)T, + (1= ARy + fRuys  (52)

At
so that, if # = 0, the process becomes an explicit integration algorithm,
CT,pi = (C - AtK)T, + R, (83)

This assumes, of course, initial conditions T = T, at t = 0, as well as a time step below

Atep = 2/Wpqe. In addition, if Cis lumped the algorithm does not require factorization
of C.

Thermal Contact Conductance

The objective is to formulate an algorithm that can account for heat fluxes between
solid bodies. We derive such a scheme consistently with the treatment of mechanical
contact, Le., we define master and slave surfaces each having a different temperature.
If the mechanical contact determines penetration, we define a heat flux between the
surfaces due to a temperature jump and heat generated at the frictional contact resulting
from a jump in velocities across the sliding surface. This heat flux is given by

@p = Blhs(Ts = Tin) =t - (Vs = V)] (84)

in which t is the contact traction vector, v¢ and vy are the slave and master nodal
velocity vectors, Ty is the temperature of the slave node and T, is the temperature of
the master surface at the projection point, viz.,

Tm = fTQ + (1 - g)Tla (85)
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where T; and T, are the temperatures of the precedent and antecedent nodes, respec-
tively, on the master segment. The contact heat transfer coefficient hy is a function of
surface roughness L,, contact area fraction f., material conductivity of the slave and
master surfaces ks and k,,, the conductivity of the material filling the interface ky, and
void area fraction f,, Ozisik, 1977,

2ksk,

1
hs:'—_ cT 1.
Y ks + kn,

. + 1uky) (56)

In general &y < kg, kp, so the last term in the above equation can be neglected. The
contact area fraction generally depends on the interface pressure. We propose to use an
exponential law for f. given by

fczl—flenapa (87)

where f; and « are parameters defining the initial area fraction and the rate at which
f. approaches unity with pressure.

Next, the heat flux is distributed in both surfaces consistently with the discretized
formulation of the heat equation. Equivalent nodal forcing terms are computed by

K= /A ¢, NdA (88)

where A; is the slave node influence surface area. Temperature changes in slave and
master nodes are given by

(C[ —+ ZCSI)AT] = Zr;IAt (89)
T = Tl + ATy (90)

ATS = (1~€)AT1+§AT2 (91)

T, = T,+ (AT, — AT). (92)

It should be noted that in the present algorithm no assumption implying continuity of
the temperature field across the contact surface is made. Moreover, thermal contact
conductance and frictional heat sources are naturally incorporated in the mechanical
contact algorithm. The scheme is easily implemented as part of the contact algorithm
discussed previously.

ADAPTIVE MESH REFINEMENT
Element distortion in dynamic finite plasticity calculations can reduce the stable
time step for an explicit method to a point where the computation no longer advances

and the field variables are not accurately interpolated. A solution to this problem
is to rediscretize the domain with a new, undistorted mesh, and continue with the
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calculation. This requires a procedure to transfer the problem state variables to the new
mesh, while satisfying the governing equations, such that the calculation may continue
without excessive error.

Update of Configuration

Central to the idea of replacing an old, highly distorted mesh, with a new, unde-
formed mesh is the update of the reference configuration. The model presented earlier,
governing the material behavior, uses a Lagrangian formulation. If a mesh is rebuilt, but
the reference configuration is not updated, the distortion merely changes it’s location
from the current configuration to that of the reference. To truly remove the distortion,
the reference configuration must be moved forward to the current configuration.

The reference configuration is defined as the configuration at which the displacements
are zero. So part of updating the reference configuration is setting

% = X+u (93)
o= 0 (94)
= %+1a (95)

wherein X, u, X, and @ are the reference particle positions and displacements in the
old and new reference configurations, respectively. In addition, after the update the
new current particle position x is defined by the new reference % and displacement 1,
as depicted in Figure 6. More is required, however. Remember that the deformation
gradient relates the current configuration to the reference configuration by

po 0% _dXtuw 4 Ou (96)

X X X

where x is the current position field. When the reference is updated, however, the
relation becomes a bit more complicated. After an update, the deformation gradient
expands to

Ox (X +u+ i)

P =X~ x 7)
du 00 ox
= Moax tarax (98)
du ou Ju
= (I+ a—>'(“)+5§(1+ Eﬁ) (99)
such that du/0X may be stored and reset at each update as
du
X = F-1 (100)
We can then compute the deformation gradient F as
Ju
Fold = T4 2=
+ X (101)
ou dx
- old ; Y2 Y&
F = F +35(3X' (102)
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New Ref. Config.
Old Ref. Config. e

Current Configuration

Figure 6: Update of current configuration.

In discretized form, equation 99 becomes

NEN
Fy = Y Nesii (103)
NEN NEN NEN
= Ly+ Y Noguiw+ »_ Nogiia(Tes+ D Nogurs) (104)
a a b

where NEN is the number of nodes per element. Shape functions derivatives, Nq g
and Na,k, are defined with respect to the original and new reference configurations,
respectively.

Interpolation and Consistent Computation of Field Variables

The determination of field variables in the new mesh is accomplished by interpolating
the quantities in the deformed configuration based upon the shape functions of an
auxiliary element connectivity of simple 3-node triangles connecting all of the existing
nodes in the old mesh. For each node in the new mesh, the area coordinates of that node
are computed for each auxiliary element connecting nodes in the old mesh. These area
coordinates are then used as shape functions for the interpolation of the nodal variables.
This sort of interpolation is conducted for the nodal kinematic quantities, including
displacement, velocity, and acceleration. In addition, the same sort of interpolation
is performed for the components of the stress tensor S and the internal variables Q
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New Mesh M et
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I —_—- Old Quadrature
T Point Mesh M,

Figure 7: Interpolation from quadrature points in the old mesh to quadrature
points in the new mesh.

Set of interpolated variables: I( u, v,a, T, S, €?, ¢, §, F°9)
Set of computed variables: C(C", F¢, F?)

Table 3: Interpolated and computed state variables.

using this time an auxiliary mesh obtained by 3-node triangular elements connecting
quadrature points in the old mesh, as shown in Figure 7.

It should be noted that not all of the variables may be interpolated. If everything
was interpolated, the stress state after the mesh update would be inconsistent with the
state of displacement. The problem then requires a suitable choice of field variables to
be interpolated and other field variables to be computed to keep the solution consistent
and stable. The field variables are divided up as shown in Table 3. This is possibly
the most important choice of the remeshing scheme. Remember that the deformation
gradient has the multiplicative decomposition F = F°F?. After interpolation of the set
I the F? is computed from the stresses and displacements so that any error introduced
through the remeshing ends up in a compatible F?, instead of allowing inconsistencies
to build up.

The first step in the calculation of F? requires the determination of the elastic part
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of the deformation gradient in the old mesh. Therefore, before the interpolation is
begun, the deformation gradient F is computed from the displacement field and the
elastic part of F, F¢, is computed from the multiplicative decomposition of F at the
quadrature points in the old mesh, namely

F* = FF?, (105)

Then, through a polar decomposition of F¢, a rotation matrix R® may be identified,
and rendered down to a rotation angle § as shown below.

R — FeUe—-l
cosfd —sinf 0

R® = sinf cosf 0 (106)
0 0 1

This theta is interpolated with the internal variables, then used to rebuild R€ for the
following calculation of F? in the new mesh. Once the stresses and rotation angle have
been interpolated, the shape functions in the new mesh calculated, and the deformation
gradient F computed from the interpolated displacement field u and F°¢, the plastic
part of the deformation gradient F? is recalculated for each quadrature point.

Before calculating F€, the interpolated stresses must be corrected to maintain a
consistent rate of plastic strain. The current material strength s is updated using
the interpolated effective plastic strain € according to equation 22. In addition, the
deviatoric portion of the second Piola-Kirchhoff stress Sy., of the interpolated stress
tensor is corrected using an interpolated effective plastic strain rate €, viz.,

. . 1
Scorr =int 8 <€p+5g)°’ (107)

Sdev = Sde‘ug eg
after which the stress tensor is rebuilt with the new Sye,. This is done to preserve the
plastic strain rate through the mesh, as the plastic strain rate is sensitive to sudden
changes in the effective stress. The elastic right Cauchy-Green deformation tensor is
reconstructed from the material stiffness tensor L and the second Piola-Kirchhoff stress

S, to produce the elastic part of the deformation gradient F¢ namely,

C°® = exp(2L7'S) (108)
F° = R&V/Ce. (109)

Before computing FP, F¢ is scaled so that det F¢ = det F. This is necessary because the
plastic deformation is assumed to be isochoric (det F? = 1), and this must be preserved
through the calculation. Finally, the plastic deformation gradient is computed by

FF =F*'F (110)
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Define boundaries for new mesh based on old mesh.

Create new set of corner nodes from old mesh. Refine as necessary.

Create new elements by Delaunay triangulation.

Remove elements created outside mesh boundaries.

Optimize element shapes.

Define auxiliary interpolation meshes connecting nodes, quadrature points.
Perform polar decomposition on F¢, and save orientation in §.

Interpolate variables in set I.(See Table 3)

e I e

Update reference configuration.

[
o

. Compute new shape functions.

—
—

. Compute variables in set C. (See Table 3)

—
3]

. Replace old state variables with new, and continue with the calculation.

Table 4: Field variable transfer algorithm.

If everything is done correctly, the F? after remeshing should resemble the F? in the
old mesh. A summary of the mesh transfer algorithm is given in Table 4.
Remeshing and Mesh Refinement Method

Remeshing Condition

Transferring the state of a calculation from one discretization to another is compu-
tationally expensive. The key, therefore, to deciding when to undergo this process is
finding when the calculation is becoming inefficient enough with the old mesh to require
a new one. One way to handle this is to track the stable time step for the explicit
integration. As elements become more deformed, the stable time step will dwindle. A
simple criterion for remeshing, therefore, is to set a threshold time step that will force
the program to remesh. The condition currently in use compares the current time step
to a reference value set at the end of the previous remeshing. In this way, if the time
step dwindles to below a fraction of its reference value, a remeshing will be triggered.
This fraction is provided by the user.

Another possible criterion for remeshing could be based on the norm of the displace-
ment gradient || Vul| over the whole mesh. The norm may be calculated at each element,
then compared to a threshold value set by the user. This condition should work well
coupled with the update of the configuration, as it provides a measure of the severity
of the deformation.

Refinement condition

When remeshing, it can be useful to introduce more elements in those regions of the
mesh that are rapidly deforming. One way of deciding which regions need to be refined
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is to examine the rates of plastic work being produced in the elements, Marusich and
Ortiz, 1995.

The rate of plastic work WP is computed at each quadrature point as W? = GéP.
These work rates are averaged for the element. The element rates are in turn averaged
over the whole mesh. Each element rate is compared to the average to decide whether
the element should be refined, coarsened, or left unchanged. This will depend on user-
supplied thresholds, as in

NQUAD

I. = Y. WP/NQUAD (111)
i=1
NUMEL

I = > I/NUMEL (112)
e=1

Be = LJI (113)

Be > Bmar needs to refine

Be < Bmin needs to coarsen, (114)

where 3., is a threshold number greater than one, and 3,,;, is between zero and one.
In addition, maximum and minimum element sizes are defined to limit refinement and
coarsening that could lead to excessive computational times or poor accuracy.
Element Refinement

When a remeshing is triggered, the new mesh is created by a delaunay triangula-
tion algorithm, redefining the element connectivity using the current locations of all of
the corner nodes from the old mesh. When an element is flagged for refinement, its
midnodes are added to the corner node list, resulting in several elements being created
where just one existed before. This method for refinement is used primarily because it
is a very simple and easy way to introduce new elements. Even those elements which
are not refined or optimized are improved in the remeshing operation. As the delau-
nay triangulation routine creates new 6-node elements from existing corner nodes, it
attempts to connect them so that the elements are as close to equilateral as convenient.
In addition, new midnodes are created at the midpoints of the element sides, so that
new elements are perfectly triangular.

Other Considerations

Of course, mesh refinement requires several other considerations that greatly depend
on the specifics of the problem being studied. For example, the boundary conditions
would need to be set for the new mesh and the nodes on the surfaces of bodies redefined
for contact. In addition, in a multi-body problem, it is possible that for some of the
bodies, remeshing is neither needed nor desired. These are problems that may be
considered on a case-by-case basis.

Mesh Optimization
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Not all meshes are suitable for finite element calculations. The error due to the
approximations depends on the size and the shape of the elements. The element sizes are
chosen as a compromise between accuracy and computing cost, and may vary through
the domain according to error estimates or user’s experience. Good meshes may be set
apart from bad ones by the shapes of the elements contained within. Distorted elements
produce errors which degrade the quality of the calculation, and elements with a good
initial shape may distort as they follow the movement of the domain’s boundary. This
has motivated intensive research on mesh-improving techniques, and much experience
in smoothing meshes has come from the field of deformable domains. In Zavattieri et
al., 1995, it was proposed to use, as quality of the mesh, the quality of its worst element,
defined by a measure @,

Qglobal = min Qy (115)

This choice incorporates a well-known fact that one unacceptable element renders the
mesh useless. The problem then becomes one of maximizing an objective function of
the min type. As min functions are non-differentiable, a simple node-by-node algorithm
(described later) is used. This implementation uses a node-movement algorithm that,
in most cases, produces a sequence of meshes of non-decreasing quality.
A Global Mesh Optimization Algorithm

The simultaneous optimization of the locations of all of the nodes in a mesh con-
sisting of thousands of elements is obviously untractable. In Zavattieri, et al., 1995, it
is shown that to improve the worst element of the mesh, it is only necessary to move
those nodes located in close vicinity to it (up to its neighbors of order 1 or 2). Also, in
Zavattieri, et al., 1995, they have incorporated a computationally inexpensive measure
of the quality of a triangle, namely,

Q. = 3} (116)
where A, is the area of element e, P, its perimeter (the sum of the lengths of its three
edges), and C' is a constant which renders the quality of an equilateral triangle equal
to one (C' = 20.784619). The advantages of this definition of quality is discussed in
Zavattieri, 1995.

The objective function Qgieser is maximized over the space of nodal locations. We
only modify the positions of those nodes that belong to the worst element of the mesh,
and their nth-order neighbors (with n=1 or 2). We will refer to as moving nodes those
nodes that are moving at a given stage of the algorithm. The moving nodes are se-
lected among the movable nodes. In the present version of our method, boundary nodes
are non-movables. 1f all the nodes belonging to an element are non-movables, the el-
ement is not considered. The algorithm which identifies nodes as moving, movable or
non-movables is displayed in Table 5. The current implementation uses NL=2, and
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1. Initialization and Global Parameters: Specify a neighborhood level NL and a
maximum number of iterations M. Set boundary nodes as non-movable. Ini-
tialize an integer auxiliary constant PREV with 0.

2. Identify the worst element among those elements of the mesh containing at least
one movable node, KWORST. If the number of movable nodes is zero, stop.

3. If KWORST=PREV, set the three corner nodes of KWORST as: non-movable
and go back to 2.

4. Identify the nodes in a neighborhood of order NL of KWORST. The neighbors
of order 0 are the four nodes belonging to KWORST. Neighbors of order 1 are
those nodes that are not neighbors of order 0, bur are connected by an edge
with at least one neighbor of order 0; and so on.

5. Set as moving nodes those identified in 3 that have not previously been set as
non-movable. Sweep these moving nodes modifying the nodal positions one at
a time, according to the local cluster optimization rule (see below), so as to
improve the quality of the cluster.

6. Assign to PREV the value KWORST.

7. Go back to 2, or Stop if the number of iterations is equal to M.

Table 5: Identification of moving nodes.

M=NUMEL/3 where NUMEL is the number of element of the mesh.
Local Cluster Optimization

The nodal position of each node Iis modified to maximize the quality Q. of the
elements that share this node. Let us define the cluster C associated to a node I of a
triangulation as the set of elements that share this node. We associate to the cluster
C1 a scalar quantity, the quality of the cluster, defined by

go = min Qe- (117)

Quality g¢ is continuous function of the position z; of the central node I of the cluster.
We next introduce a set of sampling positions. Let 29 be the original position of node
I. Then, for every vertex V of the cluster define two sampling points located at

Tsp = taz, + (1Fa)2y, (118)

where o is a small parameter, typically 0.05. Notice that 29 is itself a sampling position.
In two dimensions, the set of sampling points defined in this way would look much as
in Figure 8.

The local cluster optimization rule that has been implemented is the following:

Evaluate qr for all sampling positions, and choose as updated position the
sampling position that mazimizes this quality.

147




Figure 8: Sampling positions for local cluster optimization in 2D.

Most clusters with bad initial quality attain very high quality in just a few iterations,
and then spend lots of local Iterations improving the quality from, say, 0.4 to 0.45.
A good implementation should consider this possibility and stop the local Iterations
whenever a cluster has reached a quality that is greater that some given threshold value
QTol, so as to avoid wasting CPU time improving already-good clusters, and turn to
worse ones. In the calculations later reported a value of QTol = 0.9 was used.

AN APPLICATION TO ROD ON ROD IMPACT.

One important objective in developing a finite element model accounting for large
deformation plasticity and brittle failure is the ability of simulating specially designed
experiments towards the identification of material inelasticity and failure mechanisms.
One such experiment involves the collision of a 6061-T6 aluminum anvil with an un-
confined AD-99.5 alumina rod in a modified Taylor test, Wise and Grady, 1994. In this
test, interferometric measurement of radial and axial velocities provides an estimate of
the compressive dynamic yield strength of the ceramic rod under uniaxial stress. In
Wise and Grady experiments, rod free end velocity was measured with a velocity in-
terferometer (VISAR). Unlike the Taylor test, which was extensively used in the high
strain rate characterization of metals, analyses of the experimentally recorded velocity
histories do not rely on any simplifying assumptions regarding rod deformation, and do
not require an intact rod for recovery. This makes the modified Taylor test very useful
for the study of ceramics failure through numerical simulation of the failure event.
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Figure 9: Axial velocity on alumina bar free surface.

Problem Definition

For this problem, the aluminum impactor is formed into a 134.7mm long T-section
rod with diameters of 20mm and 89mm for the rod and T-flange, respectively. The
flange is 12.7mm thick, while the trailing rod is 122mm long. The rod section of the
anvil was initially incorporated by Wise and Grady to maximize the duration of high
stress levels at the impact end of the target rod. The ceramic rod being tested is an
AD-99.5 alumina rod 80mm long, with a 10.06mm diameter.

In our simulations, the anvil is modeled with 6-node axisymmetric triangular el-
ements using the large deformation material model presented earlier is subjected to
mesh refinement. The ceramic rod also uses 6-node axisymmetric triangular elements,
but this time based on the small-strain microcracking multiple-plane model previously
discussed. No remeshing or optimization is done for the alumina rod. The properties
of the two materials being used are displayed in Table 5 below. In the calculation fea-
tured here, the anvil strikes the specimen at 1035 m/s, in an attempt to simulate the
conditions for shot 5 in Wise and Grady’s experiments.

Velocity Histories

During the impact calculation, the axial velocity at the free end of the ceramic rod
was recorded for comparison with the experimental results of Wise and Grady. In the
experimental records, as seen in Figure 9, the Velbcity curve is shaped by the arrival of
an initial compression, followed by a second compression wave that brought the surface
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6061-T6 Aluminum.
Elastic Properties
E =716 GPa
#=0.3414

po = 2700 kg/m?
Inelastic Properties

o, = 270 MPa
€? = 0.003913
€0 = 1000 s~1
a=3
B =15

Young’s modulus
Poisson’s ratio
Density

Initial yield stress
Reference plastic strain
Reference plastic strain rate
Rate sensitivity exponent
Hardening exponent

AD-99.5 Alumina Ceramic.
Elastic Properties

FE =374 GPa

W= .22

Po = 3890 kg/m3

Inelastic Properties

v=20.1

cr = 5000 m/s
Kre=1.7x 108
a, = 10um

¢, = 1.0 x 10'2 m-3
¢ = 1.0 x 1012
C?l =0.0

Ci =0.0

2 =0.0

€ =5.0x 100
el =0.0

3 =5.0 x 1010
¢ =0.0

Young’s modulus
Poisson’s ratio
Density

Internal friction coefficient
Wave speed

Critical stress intensity factor
Initial crack radius

Crack density for plane 1
Crack density for plane 2
Crack density for plane 3
Crack density for plane 4
Crack density for plane 5
Crack density for plane 6
Crack density for plane 7
Crack density for plane 8
Crack density for plane 9

Contact properties

Mo = .5 Static friction coeff.

Moo = .5 Dynamic friction coeff.

v =0. Friction lawe exponent

B=.5 Contact weighting parameter |

Table 6: Material properties for aluminum/alumina collision.
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velocity to its highest value on the order of .20 mm/us, according to Wise & Grady,
1994. The first wave travels at the ultrasonic longitudinal wave speed C;, = 10.6mm /us,
while the second propagated at the calculated bar wave speed Cp = 9.81mm/us. After
the velocity peaked, it decayed by about 20% to a relatively constant velocity. Two
numerical simulations, with coarse (1) and fine (2) meshes, are plotted in Figure 9.
The calculated free surface velocity, in numerical simulation (1), also rises quickly to a
peak on the order of .20 mm/us, although not as quickly as Wise and Grady’s curve.
This retarded arrival is likely due to the dispersion caused by the relatively coarse
mesh currently modeling the ceramic. In the process, this dispersion eliminates the
initial compression wave. When a finner mesh is used, the first compressive pulse
appears in the velocity trace, although its magnitude is about twice the magnitude
of the experimentally recorded first compressive pulse. After the peak, the velocity
decays to a mean value that is about 75% of the peak value. Notable in the decay is
an overshoot, which then corrects. Espinosa and Brar, 1995, showed that the almost
constant axial velocity, at the ceramic bar end, is the result of ceramic spallation upon
wave reflection at the ceramic rod free surface.

The lack of a well defined elastic precursor in the numerically obtained axial velocity
history, needs further investigation. It may be due, at least in part, to insufficient
inelasticity in the ceramic model. In the present model, only microcracking is considered.
It was shown by Espinosa et al., 1992, that the glassy phase present in the ceramic
microstructure, can lead to a viscoplastic like behavior that can result in further wave
front attenuation (precursor decay).

Contours of Field Variables and Mesh Evolution

To illustrate the features included in the computational algorithm, mesh refinement
and optimization, and mechanical contact, a series of contour/mesh plots showing the
state of the finite element calculation every 2 microseconds is presented. Figures 10-15

are a series of contour plots showing the axial velocities throughout the two rods every 2
microseconds. As time progresses, we can see the stress wave move up the alumina rod
(the upper rod) at a velocity of about 10,000 m/s. Notice that the alumina rod behaves
in a more stiff manner than the plastically-deforming aluminum, up until around 12
microseconds after impact. Then the elements at the end of the alumina rod reach a
point in their state of cracking where they are essentially pulverized, and lose nearly all
stiffness.

As can be expected, the aluminum anvil is cratered by the impact with the ceramic
specimen, and provides a good test for the contact and remeshing capabilities of the
algorithms presented in this paper. The contact algorithm implemented in this cal-
culation allows the aluminum to flow around the penetrating ceramic rod, gradually
tracking the surfaces and redefining closest master nodes to reflect the physical prob-
lem. As deformation increases, the mesh refines itself six times automatically, using the
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Figure 10: Axial velocity contours at t=2pus.
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Figure 11: Axial velocity contours at t=4us.
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Figure 12: Axial velocity contours at t=6us.
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Figure 13: Axial velocity contours at t=8ys.
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Figure 14: Axlial velocity contours at t=10us.
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Figure 15: Axial velocity contours at t=12pus.
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Figure 16: Contours of second invariant of inelastic strain tensor at t=6us.
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Figure 17: Contours of second invariant of inelastic strain tensor at t=12us.
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Figure 19: Effective plastic strain contours at t=12us.
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rate of plastic work condition mentioned previously. Each time, all the elements with a
work rate ratio of G40 > 1.1 were refined. Note that elements that were smaller than
homin = .bmm across were not refined. One test of the interpolation and recomputation
of the state variables due to a mesh rezoning is whether the mesh continues on after
the rezoning without any sudden changes in the field variables. Upon examination of
the velocity history in Figure 9, it can be seen that no discontinuities in velocity or
acceleration are introduced by mesh refinement. One interesting aspect of this problem
is that the most rapid plastic deformation in the aluminum, as highlighted by the mesh
refinement, is confined to a band of roughly constant width, instead of producing a
smooth gradient over a larger area.

In Figures 16 and 17, the contours of the second invariant of the inelastic defor-
mation tensor are depicted as a measure of the degree of microfracture in the alumina
ceramic rod. At 6 microseconds, halfway through the calculation, the deformation is
primarily elastic, with the inelastic deformation due to cracking confined to one rod
diameter. At 12 microseconds, however, the bottom row of elements in the alumina
have suffered a tenfold increase in cracking and are about to collapse. Note that most
of the inelastic deformation is concentrated in the elements on the very end of the rod
and in a spall region near the back which trapped the rebounding tensile wave (not
shown). Also displayed, in Figures 18 and 19, are contours of the effective plastic strain
in the aluminum rod at 6 and 12 microseconds into the calculation. Note that at 6
microseconds after collision, although the plastic strain is severe right near the surface,
it possesses a fairly smooth gradient down to the low-strain regions. At 12 microsec-
onds, however, the edge of the zone of large-scale plastic deformation has become well
defined, where the effective plastic strain leaps from around .3 to greater than 1.0 in a
very steep gradient. What is interesting is that the contours for the low strain (< .4)
do not change very much between the two times. Most of the strain localizes in a band
near the surface. Consistent with the formation of this band is the accumulation of
small elements resulting from the mesh refinement algorithm previously discussed.

ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation through Grants
Nos. MSS-9309006, MSS 9311289, CSM-9523113, and by the Army Office of Scientific
Research through Grant No. DAAH04-96-1-0142. The first author wishes to thank M.
Ortiz and A. Cuitifio for providing valuable insight into the implementation of the large
deformation plasticity algorithm.

REFERENCES

Asaro, R.J., and Rice, J.R., 1977, ‘Strain localization in ductile single crystals,” .J.
Mech. Phys. Solids, 25, 309.

Batra, R.C., and Hwang, J., 1993, ‘An adaptive mesh refinement technique for two-

157




dimensional shear band problems,” Comp. Mech., 12, 255.

Batra, R.C., and Ko, K.I., 1992, ‘An adaptive mesh refinement technique for the
analysis of shear bands in plane strain compression of a thermoviscoplastic solid,’
Comp. Mech., 10, 369.

Bazant, Z.P., and Gambarova, P.G., 1984, ‘Crack shear in concrete: crack band mi-
croplane model.” J. Struct. Engng. ASCE, 110(9), 2015.

Belytschko, T., 1983, ‘An overview of semidiscretization and time integration proce-
dures,” in Computational Methods for Transient Analysis, eds. T. Belytschko and
T. Hughes, 301.

Benson, D.J., 1992, ‘Computational methods in Lagrangian and Eulerian hydrocodes,’
Comput. Methods Appl. Mech. Eng., 99, 235.

Clifton, R.J. and Klopp, R.W., 1985, ‘Pressure-Shear Plate Impact Testing’, Metals
Handbook: Mechanical Testing 8, 9th Edition, p. 230.

Donea, J., 1983, ‘Arbitrary Lagrangian-Eulerian finite element methods,” in Computa-
tional Methods for Transient Analysis, eds. T. Belytschko and T. Hughes, 473.

Duffy, J., 1979, ‘The dynamic plastic behavior of structural materials: A review,’
prepared for the Engineering Foundation.

Dvorkin, E.N., and Petocz, E.G., 1992, ‘On the modelling of 2D metal forming pro-
cesses using flow formulation and the pseudo-concentration technique’, in Proc.
3rd Int. Conf. Comput. Plasticity, eds. D.R.J. Owen, E. Onate, and E. Hinton,
1037.

Espinosa, H.D., 1989, ‘Finite element analysis of stress induced damage in ceramics,’
MSec. Thesis, Brown University, Providence, RI

Espinosa, H.D. and Brar, N.S., 1995, ‘Dynamic failure mechanisms of ceramic bars:
experiments and numerical simulations,” J. Mech. Phys. Solids, 43(10), 1615.

Espinosa, H.D., Raiser, G., Clifton, R.J., and Ortiz, M., 1992, ‘Experimental observa-
tions and numerical modeling of inelasticity in dynamically loaded ceramics,” J.
of Hard Materials, Vol 3, 3-4, pp. 285-313.

Espinosa, H.D., Emore, G., Xu, Y. 1995, ‘High Strain rate behavior of composites
with continuous fibers’, ASME Special Technical Publication, High Strain Rate
Effects on Polymer, Metal and Ceramic Matriz Composites and Other Advanced
Materials, eds. by Y.D.S. Rajapakse and J.R. Vinson, San Francisco, California,
6.

158




Espinosa, H.D., and Lu, H.C., 1995, Unpublished research.

Flanagan, D.P., and Belytschko, T., 1984, ‘Eigenvalues and stable time steps for the
uniform strain hexahedron and quadrilateral,” J. Appl. Mech., 51, 35.

Freund, L.B., 1990, Dynamic Fracture Mechanics, Cambridge University Press, Cam-
bridge.

Havner, K.S., 1973, ‘On the mechanics of crystalline solids,” J. Mech. Phys. Solids,
38, 87.

Hill, R., and Rice, J.R., 1972, ‘Constitutive analysis of elastic-plastic crystals at arbi-
trary strain,” J. Mech. Phys. Solids, 20, 401.

Ju, JW., and Lee, X., 1991, ‘On three dimensional self-consistent micromechanical
damage models for brittle solids,” J. Engng Mech. ASCE, 117(7).

Komanduri, R., 1993, ‘Machining and grinding: A historical review of the classical
papers,” Appl Mech Rev, 46(3), 80.

Lee, E.H., 1969, ‘Elastic plastic deformations at finite strains’, ASME J. Appl. Mech.,
36, 1-6.

Liu, W.K., Chang, H., Chen, J.S., and Belytschko, T., 1988, ‘Arbitrary Lagrangian-
Eulerian Petrov-Galerkin finite elements for nonlinear continua,” Comput. Meth-
ods Appl. Mech. Eng., 68, 259.

Mandel, J., 1972, Plasticité classique et viscoplasticité, Course given at Int. Center for
Mech. Sci., Udine, Springer, Berlin.

Marusich, T.D., and Ortiz, M., 1995, ‘Modelling and simulation of high-speed machin-
ing,” Int J. Num. Meth. Eng., 38, 3675.

Mohan, R., 1991, ‘On crack tip fields in ductile single crystals and bicrystals,” Ph.D.
Thesis, Brown University, Providence, RI.

Needleman, A., 1988, ‘Material rate dependence and mesh sensitivity in localization
problems,” Comput. Meth. Engng., 67, 69.

Nicholas, T., and Rajendran, A.M., 1990, ‘Material characterization at high strain
rates,” in High velocity impact dynamics, ed. by J.A. Zukas, John Wiley and Sons,
Inc.

Ortiz, M., and Quigley, J.J., 1991, ‘Adaptive mesh refinement in strain localization
problems,” Comp. Meth. Appl. Mech. Eng., 90, 781.

1569




Oxley, P.L.B., 1989, Mechanics of Machining, Ellis Horwood, Chichester.
Ozisik, M.N., 1977, Basic Heat Transfer, McGraw-Hill, New York.

Rajendran, A.M., 1992, ‘High strain rate behavior of metals, ceramics, and concrete,’
Air Force Report WL-TR-92-4006, Wright-Patterson Air Force Base, OH.

Rice, J.R., 1971, ‘Inelastic constitutive relations for solids: an internal-variable theory
and its application to metal plasticity,” J. Mech. Phys. Solids, 19, 433.

Sandler, 1.S., and Wright, J.P., 1984, ‘Strain-softening,” Theoretical Foundations for
Large Scale Computations of Nonlinear Materials Behavior, (ed. Nemat Nasser
et al., 285.

Seaman, L., and Dein, J.L., 1983, ‘Representing shear band damage at high strain
rates,” Proc. ITUTAM Symp. on Nonlinear Deformation Waves,” Tallin, Estonia,
Springer-Verlag, Berlin.

Shih, A.J., and Yang, H.T., 1993, ‘Experimental and finite element predictions of
residual stresses due to orthogonal metal cutting,” Int J. Num. Meth. Eng., 36,
1487.

Stillman, D.W., Lum, L., Hallquist, J.O., and Benson, D.J., 1993, ‘An arbitrary
Lagrangian-Eulerian capability for LS-DYNA3D,” AMD, 171, 67.

Taylor, L.M., and Flanagan, D.P., 1987, ‘PRONTO 2D: a two dimensional transient
solid dynamics program’, Sandia Report SANDS&6.

Teodosiu, C., 1970, ‘A dynamic theory of dislocations and its applications to the
theory of elastic-plastic continuum,’ Fundamental Aspects of Dislocation Theory,
2, National Bureau of Standards (U.S.) Special Publication, 837.

Tvergaard, V., 1990, ‘Effect of fibre debonding in a whisker-reinforced metal,” Materials
Science and Engineering, A125, 203.

Weber, G., and Anand, L., 1990, ‘Finite deformation constitutive equations and a time
integration procedure for isotropic, hyperelastic-viscoplastic solids,” Comp. Meth.
Appl. Mech. Eng., 79, 173.

Wise, J.L., and Grady, J.R., 1994, ‘Dynamic, multiaxial impact response of confined
and unconfined ceramic rods,” in Proc. High Pressure Science and Technology,
APS Meeting, eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross, 777.

Yang, H.T., Heinstein, M., and Shih, J.M., 1989, ‘Adaptive 2D finite element simula-
tion of metal forming processes,” Int. J. Num. Meth. Eng., 28, 1409.

160

i ﬂfﬁ@ﬂ%ﬁ




Zavattieri, P.D., Buscaglia, G.C., and Dari, E.A., 1995, ‘Finite element mesh optimiza-
tion in three dimensions,” Submitted to Latin American Applied Research.

Zavattieri, P.D., Dari, E. A., and Buscaglia, G.C., 1995, ‘Optimization strategies in
unstructured mesh generation,” Submitted to Int. J. Numer. Meth. in Eng..

Zavattieri, P.D., 1995, ‘Finite element mesh optimization in three dimensions,’ MSc
Thesis in Nuclear Engineering, Instituto Balseiro, Argentina.

Zhou, M., Ravichandran, G., and Rosakis, A.J., 1996 ‘Dynamically propagating shear
bands in impact-loaded prenotched plates- II. Numerical simulations,” .J. Mech.
Phys. Solids, 44(6), 1007.

Zhu, J.Z., Himton, E. and Zienkiewicz, O.C., 1991, ‘Adaptive finite element analysis
with quadrilaterals. Computers & Structures, 40(5), 1097.

Zienkiewicz, O.C., and Taylor, R.L., 1993a, The Finite Element Method, Jth Ed..1.
Zienkiewicz, O.C., and Taylor, R.L., 1993b, The Finite Element Method, 4th Ed., 2.

Zukas, J.A. , 1990, High velocity impact dynamics John Wiley and Sons, Inc., New
York.

161




