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Abstract

A cohesive-zone model for a fiber-reinforced polymer–matrix composite is presented. A two-parameter model with a character-
istic toughness and a characteristic strength can be used to predict the fracture of notched or cracked specimens. The two parameters
can be determined by comparing numerical predictions to experimental observations of a fracture test. It is shown that the engineer-
ing behavior, in terms of strength, deformation and energy dissipation is well-described by such a two-parameter model, but when
the characteristic dimensions of the composite structure (e.g., the initial crack length or ligament length) are very small, extra details
about the cohesive law such as the matrix-cracking strength may be required. Finally, it is shown that a cohesive-zone model pro-
vides excellent predictions of transitions between stable and catastrophic crack growth in the composite, and, hence, permits an
understanding of the energy dissipation during fracture that occurs in these different regimes.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last few decades there has been much interest
in developing failure criteria for laminated polymer–ma-
trix composites used in aerospace applications [16]. A
major focus has been on understanding the mechanics
of delamination [36–38]. In recent years, there has been
renewed interest in the properties of monolithic poly-
mer–matrix composites for automotive applications.
The fundamental physics that governs crack propagation
in these materials is based on the original insights of
Marshall et al. [3], and was put into a fracture-mechanics
framework by Aveston et al. [31]. An effective brittle-
matrix composite reinforced by strong brittle fibers relies
on the fibers being only weakly bonded to the matrix.
0266-3538/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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When a crack passes through the matrix it leaves a wake
of intact fibers behind the tip. These fibers exert closing
tractions on the crack surface and, as the fibers pull-
out of the matrix, they do work against frictional forces
at the matrix–fiber interface. This work dissipates energy
and contributes to the toughness of the composite.

Models for fracture of brittle-matrix composites are
generally based on a fracture-mechanics approach, with
the notion that a sharp crack propagates into the matrix
with bridging fibers behind the tip [31]. The matrix crack
is assumed to propagate when the energy-release rate
acting at the crack tip is equal (1�cf)Cm, where Cm is
the matrix toughness and cf is the area fraction of fibers
on the crack plane. The role of the bridging fibers is to
reduce the energy-release rate available to propagate
the matrix crack. If an initially unbridged crack exists
in the composite (Fig. 1(a)), it will begin to propagate
into the matrix when the applied energy-release rate
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Fig. 1. (a) An initially unbridged crack in a fiber-reinforced composite.
(b) A bridging-model view of a crack advancing into the matrix,
leaving a wake of bridging fibers behind the tip. (c) A cohesive-zone
view of the same crack with a cohesive zone advancing into the matrix
ahead of the crack tip.

1 Or, equivalently, a displacement-based fracture criterion.
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equals (1�cf)Cm. As the crack extends, it leaves a wake
of bridging fibers behind its tip (Fig. 1(b)). The tractions
exerted by these fibers do work and dissipate energy,
increasing the applied energy-release rate required to
continue propagating the crack. This results in R-curve
behavior, with the apparent toughness of the crack
increasing with crack length. Eventually, the opening
of the crack is sufficient to pull the fibers completely
out of the matrix (or the load supported by the fibers
is sufficient to cause them to fail), and the steady-state
limit of toughness is reached. The increment of toughen-
ing associated with bridging by the fibers is given by [7]:

Cb ¼
Z dc

0

rdd; ð1aÞ

where r is the average stress exerted on the crack by the
fibers, d is the effective opening of the crack (accounting
for the relative slip between fibers and matrix [44]), and
dc is the critical crack opening at which the tractions go
to zero. Ignoring any contribution of fiber fracture to
the toughness, the total steady-state toughness of the
composite is then given by

C ¼ ð1� cf/ÞCm þ Cb: ð1bÞ
Micromechanics models focus on deriving expres-

sions for the relationship between the tractions and the
crack opening. For frictional sliding these generally re-
sult in a relationship of the form r / d1/2 [31]; other
modifications include the effects of variable fiber
strengths [14,45] and inclined fibers [18,26]. These rela-
tionships can then be incorporated into fracture
mechanics analyses to understand the behavior of
bridged cracks [9,31,32,35]. The bridging law can also
be determined experimentally. Li and co-workers
[23,25,27] did this for a cement–matrix composite by
relating the measured J-integral [34] to the opening dis-
placement of the tip of the initial crack. A similar ap-
proach was adopted in studies of epoxy–matrix
composites [28,39,40]. Alternative approaches for
deducing the bridging law include backing out the trac-
tions from observed crack-tip profiles [12,30], or meas-
uring the law directly from fully cracked but bridged
tensile specimens [10].

Once the bridging law is known, the fracture behavior
of the composites can be modeled, and phenomena such
as notch-sensitivity [8,10,11,29,42] and ductile-to-brittle
transitions [4,8,13,24] can be analyzed. Two important
parameters that describe fiber bridging behind the crack
tip are the steady-state toughness, Cb, and a characteris-
tic strength, r̂b, (or, a characteristic crack-opening dis-
placement). A characteristic fracture length scale is
given by the parametric group ECb=r̂

2
b, where E is the

modulus of the composite. If this quantity is signifi-
cantly smaller than all of the characteristic geometrical
length scales (such as crack length or notch size), then
the composite behaves in a notch- or crack-sensitive
fashion [42]. Conversely, the composite is considered
to be ‘‘notch’’ or ‘‘crack insensitive’’ (or ‘‘notch ductile’’)
when ECb=r̂

2
b is large compared to any of the character-

istic geometrical length scales.
An alternative approach to analyzing fracture is pro-

vided by cohesive-zone models, as they have evolved
from the early work by Dugdale [15] and others [5,6].
An essential feature of these models that distinguish
them from bridged-crack models is that they automati-
cally introduce a strength-based fracture criterion 1

(cohesive strength) in conjunction with an energy-based
fracture criterion (toughness) for the material ahead of

the crack tip. Fracture analyses are done by embedding
cohesive-zone elements along the fracture plane that de-
form according to a traction–separation law having the
appropriate strength and toughness (area under the trac-
tion–separation curve) [33,46,47]. Generally, cohesive-
zone models (also known as damage models) and
bridged-crack models can be considered to be merely
different perspectives of the same phenomenon, with
the difference between them being what is regarded to
be the crack tip [43]. In a cohesive-zone model both
the crack-fiber interaction and the matrix cracking is
associated with damage ahead of a crack tip (Fig.
1(c)), which is characterized by the steady-state tough-
ness, C, and a characteristic strength, r̂ associated with
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this toughness. The strength parameter can be neglected
if the fracture length scale, EC=r̂2, is significantly smal-
ler than any characteristic geometrical length scale such
as the crack size. The usual analyses of linear-elastic
fracture mechanics. are then appropriate, and the tough-
ness parameter alone can be used to describe crack
propagation.

In such a simple two-parameter form of the cohesive-
zone model, no distinction is made between matrix-
cracking and fiber-bridging. If a distinction between
these two phenomena is required, the traction–separa-
tion law can be broken up into two components – one
associated with matrix cracking and one with fiber
bridging. A schematic illustration of such a law is shown
in Fig. 2, where a second characteristic strength, in the
form of a matrix-cracking strength, r̂m, is introduced
into the problem. If the matrix toughness, Cm, makes
a small contribution to the total toughness (i.e., C � Cb),
then the characteristic strength of the cohesive region is
equal to r̂b, and the matrix-cracking strength can gener-
ally be ignored. Conversely, if C is dominated by the ma-
trix toughness, and the bridging contribution can be
ignored, then the characteristic strength of the cohe-
sive-zone model is equal to r̂m, and r̂b can be ignored.

An ability to deduce fracture properties for a com-
posite, and then to predict the behavior when the com-
posite is bonded or loaded in different geometries is
very important for design. It is the development of such
quantitative design tools that motivated the present
work, of which this paper is the first step in the process.
It is assumed that the intent of such design tools is to
predict the performance of a composite from an engi-
neering perspective: i.e., to predict macroscopic
strengths and deformations of different geometries. Gen-
erally, details of the cohesive law do not affect calcula-
Fig. 2. A schematic traction–separation law that could be used to link
cohesive-zone models and bridged-crack models of crack growth, by
separately identifying the phenomena of matrix-cracking and fiber-
bridging.
tions for crack propagation – often only the
characteristic strength and toughness parameters are
important. 2 Furthermore, cohesive-zone models can
be easily implemented numerically for the efficient anal-
ysis of arbitrary geometries. As has been demonstrated
for adhesive joints [48,49], two-parameter cohesive-zone
models provide a very powerful tool for predicting
fracture.

In the present paper, the use of a mode-I cohesive-
zone model and the determination of the appropriate
parameters is investigated for a polypropylene/glass-
fiber composite. First, the constitutive properties of the
composite were determined by tensile and shear tests,
then compact-tension specimens were used to determine
the mode-I cohesive parameters for the composite by
comparing experimental results to numerical predictions
for crack propagation. A comparison of these parame-
ters to tensile tests of uncracked specimens suggested
that a second strength parameter was required under
some circumstances for this particular material. This
introduced the need to distinguish between a character-
istic strength (associated with the dominant toughening
mechanism) and a cohesive strength in a cohesive-zone
model. Finally, the predictive capability of the cohe-
sive-zone model was verified by examining the behavior
of single edge-notched tensile specimens. It was shown
how fracture instabilities could be predicted accurately.
A companion paper discusses the incorporation of the
cohesive-zone model developed for this composite into
a model for adhesively bonded joints [21]. Ongoing
work is extending these concepts into mixed-mode
failure [22].
2. Characterization of the materials used in this study

The composite used in this study was a polypropyl-
ene-based thermoplastic composite reinforced with
19% (by volume) glass fibers, in the form of a randomly
oriented mat. 3 According to the specifications provided
by the manufacturer, the diameter of the glass fibers was
about 23.5 lm, with 97% of the glass fibers being nom-
inally ‘‘continuous’’, and the rest having a length of less
than about 6 mm. The composite was received in plaque
form; it was re-molded to consolidate the material and
to obtain plaques of different thicknesses. This was done
by pre-heating the as-received material at 210 �C for
10 min, and then re-molding it using a hydraulic press
at 70 �C and 13 MPa for about 1.5 min. Micrographs
of sections of the re-molded composite are shown in
Fig. 3. The constitutive properties of the composite were
2 Bridging analyses often rely on calculating the stress-intensity
factor acting at the matrix crack tip, so that details of the bridging law
may affect the results.

3 Azdel R401 provided by Azdel, Inc.



Fig. 3. Micrographs of polished sections of the composite: (a) perpen-
dicular to the fiber mat and (b) parallel to the fiber mat.
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Fig. 4. (a) Geometry of specimens used for the tensile tests. Strain
gauges were mounted in the one and two directions. (b) Geometry of
specimens used for Iosipescu shear tests. Strain gauges were mounted
in the one, two and three directions. The out-of-plane thickness for
both sets of tests was t = 7.6 ± 0.1 mm.

4 Despite the possible overlap in the range of uncertainty for the
shear yield strength and for the tensile strength, no yield behavior was
ever observed in the 20 tensile specimens that were tested.

540 S. Li et al. / Composites Science and Technology 65 (2005) 537–549
characterized by performing uniaxial tensile tests (Fig.
4(a)) and Iosipescu shear tests (Fig. 4(b)) [2] on speci-
mens cut from orthogonal directions. No significant dif-
ference in the behavior was observed between the two
different orientations, suggesting that the composite
properties could be treated as being transversely iso-
tropic. The tensile tests, performed at a displacement
rate of 0.76 mm/min, indicated that the composite de-
formed in an essentially elastic fashion with a tensile
strength of 100 ± 20 MPa (Fig. 5(a)). Although this
elastic deformation was not completely linear, it could,
within the range of variability of the properties of the
composite, be modeled by a tensile modulus of
6.0 ± 1.5 GPa, and a Poisson�s ratio of 0.30 ± 0.03.
Since this range of elastic properties could be obtained
from specimens cut from a single plaque of the compos-
ite, it appeared that the properties of the composite were
not very homogeneous. At failure, a single crack propa-
gated across the specimen and, although there was
extensive fiber pull-out on the fracture surface, the fail-
ure was catastrophic in the sense that the load dropped
immediately to zero with no indication of crack growth
before the drop (i.e., there was no quasi-static crack
growth: a transition to dynamic fracture occurred imme-
diately). There were no visible edge flaws in the samples,
and polishing did not affect this behavior. Conversely,
the shear tests performed at a displacement rate of
0.2 mm/min indicated elastic/perfectly plastic behavior
with a shear yield strength of 65 ± 15 MPa (Fig.
5(b)). 4 The in-plane shear modulus was determined to
be 2.3 ± 0.5 GPa, which is consistent with the in-plane
elastic constants derived from the tensile tests (again,
confirming the transversely isotropic nature of the
composite).
3. Determination of mode-I cohesive parameters

The cohesive parameters of the composite were deter-
mined by means of compact-tension specimens with the
dimensions shown in Fig. 6. The load–displacement
curves obtained from these specimens at a displacement
rate of 0.4 mm/min are illustrated in Fig. 7. No signifi-
cant difference was observed for specimens machined
in orthogonal directions from the plaques.
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Fig. 5. (a) Normal stress–strain curves from the tensile tests. (b) Shear
stress–strain curves from the Iosipescu shear tests. These figures show
an example of a characteristic curve, and an indication of the
experimental range of data.
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The compact-tension geometry shares a characteris-
tic with the double-cantilever beam [20] in that the
decreasing portions of the load–displacement curves,
obtained after the crack begins to grow, are very sen-
sitive indicators of the mode-I toughness, C (area un-
der the traction–separation curve), and relatively
insensitive to the cohesive strength. Therefore, the
toughness was obtained by matching this region of
the load–displacement curves to predictions from
numerical analyses that incorporated a cohesive zone
at the crack tip. Details of the numerical analyses
are given in [19]. The calculations were done using
the ABAQUS finite-element program (version 6.3),
with the bulk composite being modeled by continuum
elements with constitutive properties as described ear-
lier. The fracture plane ahead of the crack incorpo-
rated four-noded user-defined elements that followed
the traction–separation law of Fig. 8. Since numerical
simulations had demonstrated that the precise shape
of the traction–separation law did not fundamentally
affect the results of the analysis, the simple triangular
law of Fig. 8 was initially chosen as the simplest one
that is completely described by the two dominant
cohesive parameters of strength and toughness. The
area under the traction–separation law of the cohe-
sive-zone was adjusted until the numerical predictions
for the decaying portion of the load–displacement plot
matched the experimental results shown in Fig. 7.
After the toughness had been determined, the charac-
teristic strength was obtained by varying the maximum
stress in the traction–separation law, while maintaining
the toughness at a constant value, until the full load–
displacement curve could be fitted to the experimental
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Fig. 10. Micrograph of the crack-tip region in a compact-tension
specimen.
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data. Since different coupons of the composite exhib-
ited considerable variability in elastic modulus, the
cohesive-zone parameters were found by comparing the
experimental data to numerical calculations using the
appropriate value of modulus for each specimen. The fi-
nal results of these calculations showed that the mode-I
toughness was C = 40 ± 4 kJm�2, and the characteristic
strength was r̂ ¼ 79� 8 MPa.

The resultant predictions for the load–displacement
curves are compared to the experimental results in
Fig. 9. This figure has been plotted in a normalized
fashion to reduce the effect of the modulus variability.
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Fig. 11. (a) An optical micrograph of a compact-tension specimen,
and (b) a diagram of the finite-element model used to determine
displacements ahead of the crack tip.
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The values of the cohesive-zone parameters for the
composite can further be confirmed by looking at
how the crack and bridged region evolve upon loading.
The cohesive-zone parameters would indicate a critical
crack opening at which fiber-pull-out is complete of
1.0 ± 0.2 mm. While this number is certainly in a range
that is consistent with experimental observations of the
crack-tip region (Fig. 10), in practice there is a range of
pull-out lengths and no clear boundary between the
bridged and unbridged crack. Therefore, an alternative
approach to verify the cohesive-zone parameters is to
look at the crack opening within the bridged zone. This
was done by monitoring how the point at which the
crack opening had a specified value moved as the spec-
imen was loaded. Specifically, a scale was fixed to the
surface of a compact-tension specimen that allowed
the distance of this point from the crack mouth to be
measured (Fig. 11). A CCD camera was used to record
images of the bridged region of the crack. As the load
increased and the crack advanced, these images were
used to determine the distance from the crack mouth
where the opening-displacement was equal to 1.0 and
0.5 mm. This distance was then plotted as a function
of the opening-displacement of the crack mouth (which
is related to the applied load – see Fig. 7). Numerical
analyses were performed for the geometry using the
cohesive-zone model, and the results were used to cal-
culate the distance from the crack mouth at which
the crack opening reached 1.0 and 0.5 mm as a function
of opening-displacement of the crack mouth. A com-
parison between the experimental data and the numer-
ical predictions are shown in Fig. 12. While there is a
fairly large range of experimental uncertainty, associ-
ated with the difficulty of measuring the crack opening
precisely, the numerical predictions lie well within the
experimental band, supporting the values of the cohe-
sive-zone parameters deduced for this composite.
4. Discussion

4.1. Three-parameter cohesive zone model

A two-parameter cohesive-zone model with a tough-
ness and a single characteristic strength describes the
fracture behavior of cracked geometries such as the
compact-tension specimen very well (Fig. 9). However,
an inconsistency can immediately be seen when the re-
sults of the tensile tests are considered. In these tests,
fracture occurred at tensile stresses between 80 and
120 MPa, which is a significantly higher range than that
deduced for the characteristic strength (71–87 MPa).
This indicates that the cohesive strength of the compos-
ite must actually be larger than the value deduced for the
characteristic strength, but simple cohesive laws with
characteristic strengths in the range of 80–120 MPa do
not result in satisfactory predictions for the behavior
of the compact-tension tests.

This apparent paradox can be resolved by assuming
that the fracture process involves two completely sepa-
rate processes: matrix cracking followed by fiber pull-
out, with the toughness contribution coming primarily
from the fiber pull-out. Such a phenomenon is consistent
with the physics of composite failure, and was illustrated
schematically in Fig. 2. In that figure, the matrix-crack-
ing strength was drawn as being less than the bridging
strength; however, the data for this composite indicate
that the matrix-cracking strength is bigger than the
bridging strength. Therefore, when the characteristic
dimensions (crack or ligament size) of a specimen be-
come very small, failure is dominated by the matrix
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strength, rather than by the bridging strength, which re-
mains the characteristic strength associated with tough-
ening by fiber pull-out. It should be noted that the
strength of the fibers may be limited by frictional pull-
out, or by an actual fracture strength. Furthermore,
the matrix-cracking strength includes both the stress
supported by the matrix and the stress supported by
the fibers, while the bridging strength is the maximum
load supported by the fibers averaged over the cracked
area. The two strengths can either be determined by
experimental observations, as done in this paper, or by
micro-mechanics modeling if the appropriate parame-
ters are known.

A simple cohesive law that can easily be implemented
in numerical calculations, and that captures the concepts
of matrix cracking and fiber pull-out is shown in Fig. 13.
The total area under the cohesive law was set at
C = 40 ± 4 kJm�2, with a fiber pull-out strength of
r̂b ¼ 79� 8 MPa (the characteristic strength from the
compact tension tests). The matrix-cracking strength,
r̂m, was set at 100 ± 20 MPa, based on the uniaxial ten-
sile tests. This choice is a lower bound that probably
amalgamates the fracture parameters of the matrix with
the effects of inhomogeneties within the composite. It
has the advantage of numerical simplicity, in that intrin-
sic flaws do not need to be modeled when analyzing the
behavior of nominally uncracked composites. If the in-
tent were to model accurately the details of matrix
cracking, a more sophisticated analysis of the matrix-
cracking strength would be needed. However, the intent
here is to provide predictions of the macroscopic behav-
ior of the composite from a design perspective, and the
approach used appears to serve this purpose very well.
The remaining details of the curve, i.e., the displace-
Fig. 13. Schematic traction–separation law used to describe the
fracture of this composite. The peak load corresponds to matrix
cracking. This is followed by fiber pull-out.
ments corresponding to r̂b and r̂m, were chosen so as
to mimic the initial elastic behavior of the composite fol-
lowed by a relatively sudden drop in strength that would
not cause numerical difficulties. When this three-param-
eter cohesive-zone model was used to compute the
behavior of the compact-tension specimen, the results
were indistinguishable from the results based on the
two-parameter model, already plotted in Figs. 9 and
12. However, the three-parameter model also success-
fully described the behavior of the tensile specimens
shown in Fig. 5(a). The additional cohesive-strength
parameter for this material is required when analyzing
geometries with very small crack or ligament lengths.

4.2. Single-edge notched tensile specimens

As noted above, the results of numerical calculations
for cracked geometries are unaffected by the introduc-
tion of a second strength parameter, but the three-
parameter model gives correct predictions for the
behavior of the tensile specimen, predicting catastrophic
failure at the peak load with no crack growth. However,
since the uncracked tensile specimen was actually used
to deduce r̂b, as described in the previous section, a dif-
ferent geometry was required to test whether the cohe-
sive-zone model could be used in a predictive fashion.
Therefore, numerical and experimental studies were
conducted on a series of single-edge-notched tension
(SENT) specimens with a width w = 25 ± 0.5 mm, a
length L = 140 ± 2 mm, a thickness t = 2.8 ± 0.1 mm,
and various initial notch depths (Fig. 14).

The numerical studies were done by applying fixed-
displacement boundary conditions to the ends of the
specimen, and the tensile behavior was predicted as a
function of initial notch size using the three-parameter
cohesive-zone model of Fig. 13. A plot of how the aver-
age ligament strength (maximum load normalized by lig-
ament area) is predicted to vary with notch length is
shown in Fig. 15. Superimposed on this plot are exper-
imental results for the strength obtained by gripping
extensometer
gauge length = 25 mm

w = 25 ± 0.5 mm

a0

L = 140 ± 2 mm

b0

Fig. 14. The geometry of the single-edge notched tensile (SENT)
specimens used in this study. In the experimental tests, the ends of the
specimen were supported by wedge grips. Constant displacement
conditions were applied to the ends of the specimens in the numerical
simulations. The thickness of the specimens was t = 2.8 ± 0.1 mm.
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the specimen in wedge grips, and testing at a displace-
ment rate of 0.01 mms�1. Of particular note in the
numerical predictions is that when the characteristic
dimension of the specimens (either the notch or ligament
size) is very small, the ligament strength is controlled by
the cohesive strength of the composite (the matrix-
cracking strength in this case). With a larger character-
istic dimension, both the toughness and associated
characteristic strength (the fiber-bridging strength) con-
trol the strength of the composite. The effect of uncer-
tainty in the matrix strength can be seen in this figure
– it affects the average ligament strength only when the
specimen has very small characteristic dimensions. At
larger dimensions, the uncertainty in the strength is
dominated by the uncertainty in the toughness and in
the characteristic strength. The experimental results
follow the predicted trends in strength.

Comparisons between the numerical predictions for
the load versus crack-mouth opening displacements
and the experimental results with different initial notch
lengths are shown in Fig. 16. Of particular note is
that, not only are the peak loads correctly predicted,
but the numerical calculations also predict the onset
of catastrophic failure for each set of specimens and,
hence, the maximum applied displacement. The speci-
mens with an initial notch of 2 mm exhibited cata-
strophic failure with no observable crack growth.
The specimens with an initial notch of 7 mm exhibited
some crack growth before failing catastrophically,
while the specimens with an initial notch of 20 mm
failed catastrophically with no observed crack growth.
It should be noted that essentially identical results are
obtained for the two-parameter and three-parameter
models for these three notch sizes, since the size of
the notch or ligament are too large for the behavior
of the specimen to be significantly affected by the ma-
trix strength.

4.3. Transition to catastrophic failure and energy

dissipation during fracture

Both the experimental and numerical results de-
scribed in the previous section exhibited transitions be-
tween stable cracking and catastrophic failure. Cox
and Marshall [13] explored the effects of transitions in
the length of the bridging zone on the ductile-to-brittle
transition in composites. However, in the present situa-
tion, the steady-state cohesive-zone length is fixed, be-
cause the toughness has been defined as being
constant. An alternative mechanism for the transition
to unstable fracture can occur automatically if a crack
is sufficiently small that the stress required to propagate
it is greater than the maximum bridging strength
[4,8,24]. Load-control is a common analytical assump-
tion, and the conditions for catastrophic failure can
readily be found by identifying the maximum load re-
quired to propagate a crack. However, in many practical
situations, the load is applied under displacement-
controlled conditions. Under these conditions, an
instability occurs when the force is decreasing and the
derivative of the applied displacement with respect to
the resultant force, dD/dF, equals zero. This corresponds
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to the condition when there is enough elastic energy for
the crack to propagate with no additional work being
done by the applied loads, and results in a transition to
dynamic fracture. Cohesive-zone models are easily ana-
lyzed under displacement-control, and this condition of
dD/dF = 0 can easily be determined to identify the onset
of catastrophic failure. 5 However, a further discussion
of how these instabilities are linked to the total energy
dissipated by a composite upon fracturing into two parts
is quite illuminating.

Fig. 17(a) shows a plot of the total energy dissipated
per unit width (defined and measured as the area under
the load–displacement curve up to the maximum dis-
placement when the system separates into two parts)
as a function of the initial notch size during fracture
of the SENT geometry shown in Fig. 14. Fig. 17(b)
shows the same data as Fig. 17(a), but with the energy
normalized by the ligament area. Four distinct regions
are identified in Fig. 17(a) and (b). (i) An unstable region
when the initial crack is very small, where the transition
to catastrophic failure occurs before the full develop-
ment of a cohesive zone. (ii) A region at intermediate
crack sizes in which the crack grows with a fully devel-
oped cohesive zone ahead of it. (iii) A second unstable
region in which catastrophic crack growth occurs be-
cause the cohesive-zone interacts with the free boundary
before a steady-state configuration is reached. All cracks
that start off growing in the intermediate stable region
grow to the same critical length before a transition to
catastrophic growth occurs. (iv) A final stable regime
that is observed when the initial ligament is short en-
ough for the cohesive zone to extend all the way across
the ligament and for the fracture load to be sufficiently
low that the composite surfaces move apart in a stable
manner until complete separation occurs. The bounda-
ries between these regimes depend on the properties of
the composite, and on details of the loading and geom-
etry. For example, shorter specimens that are loaded by
rigid grips will tend to have larger regimes of stability.
However, the existence of these different regions of sta-
bility is expected to be a general phenomenon, and the
physics of the transitions between the regions is dis-
cussed in more detail below.
5 The numerical calculations in this paper were static calculations
that terminated at the onset of a numerical instability. However,
numerical algorithms to ensure stability, such as Riks method [1],
showed that these conventional analyses broke down only when
dD/dF = 0, and that there was no subsequent stable regime for these
geometries. Similar observations that the numerical instabilities can be
identified with physical instabilities in the real system have been made
in related cohesive-zone studies [17,48,49]. Other numerical instabilities
caused by mesh size or the shape of the traction–separation law do not
have a physical basis, and have been separated from the effect being
discussed here. All instabilities discussed in this paper have a physical
meaning, and are not numerical artifacts.
The energy dissipated during fracture of an elastic
material under displacement control is the work done
by the applied loads up to the maximum displacement.
It consists of two parts: (i) the energy associated with
creating two new surfaces during loading, (ii) the elastic
energy stored in the system at any transition to instabil-
ity upon the onset of catastrophic crack propagation.
The first term includes the energy associated with the
partial creation of a fracture surface ahead of the crack
tip (in the cohesive zone), and the surface energy associ-
ated with any stable crack growth prior to the onset of
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instability. The second term is converted to kinetic en-
ergy and to whatever surface energy remains to be cre-
ated upon final separation of the material. 6 The total
dissipated energy cannot be less than the fracture energy
Cb0t (represented by the dashed line in Fig. 17), where b0
is the initial ligament length and t is the thickness of the
composite. However, even in a perfectly elastic system,
the total dissipated energy can be greater than the frac-
ture energy because elastic energy is lost in the form of
kinetic energy or phonon emission when a crack propa-
gates under non-equilibrium conditions. When the ini-
tial notch is small, the instability condition is satisfied
before a fully developed cohesive zone is established.
As the initial notch size increases, the work required to
develop a cohesive zone ahead of the crack decreases
more rapidly than the energy required to rupture the
remaining ligament. The length of the cohesive zone at
the point of instability increases and, eventually, a fully
developed cohesive zone is just established at the point
of instability. This is the transition condition for the
crack to begin growing in a stable manner with a steady-
state cohesive zone ahead of the tip; it appears to corre-
spond to the situation when there is just enough elastic
energy stored in the composite to separate the remaining
ligament spontaneously. 7 This condition, defining the
boundary between the unstable regime and the regime
in which steady-state crack growth occurs, appears to
be a general requirement for the onset of stability. This
point can be appreciated more fully by examination of
Fig. 17. It should be noted that the size of the critical
notch at which the transition between stable and unsta-
ble growth occurs depends on the length of the speci-
men, but the condition that the work done to create a
fully developed cohesive zone be approximately equal
to the energy required to rupture the remaining ligament
is always maintained.

The rate of decrease of energy dissipation with liga-
ment area must always equal C during stable crack
growth. This proportionality can be seen in Fig. 17.
However, it will be noted that, in this case, additional
work is done on the composite above that required to
separate the ligament. This excess energy manifests itself
by the onset of a second regime of instability, after the
crack has grown for some length and the cohesive zone
interacts with the free surface. It is this second regime of
instability that limits the length of stable crack growth.
No matter what the initial notch length is, a stable crack
always grows to the same point before the instability oc-
6 Stored elastic energy is recovered and converted to fracture energy
during stable crack growth under equilibrium conditions.

7 Since the elastic displacements associated with the composite are
much greater than the displacements associated with the cohesive zone,
the work done by the applied loads is essentially identical to this value
of stored strain energy.
curs. If the geometry was such that there was no second
instability, the total energy dissipated would follow the
minimum line given by Cb0t all the way from the start
of the stable crack regime to zero ligament thickness.
If the initial ligament is short enough, there will always
be a final regime of complete stability in which the ap-
plied loads drops smoothly to zero as the surfaces sepa-
rate, so the total work done is equal to the toughness
times the ligament area. The size of initial ligament
length for which this regime can be obtained depends
on the compliance of the composite – as before, shorter
lengths of composite will enhance the stability of
fracture.

The stability behavior described above is essentially
identical to what would be obtained with a two-parame-
ter cohesive law, except for the details at extremely small
crack and ligament sizes (less than about half a millime-
ter). A similar discussion on stabilities and energy dissi-
pation is expected to be pertinent for understanding the
behavior of Izod and Charpy tests; cohesive zone mode-
ling with appropriate rate-dependent properties could
probably be used to provide predictive analyses of these
tests. 8
5. Conclusions

Cohesive-zone models provide a useful design tool
for predicting the fracture of fiber-reinforced poly-
mer–matrix composites. A characteristic toughness
and a characteristic strength appear to suffice generally
for describing the behavior of cracked bodies. How-
ever, while any generic two-parameter cohesive law
provides adequate predictive capabilities for many pur-
poses, extra details of the law (such as the shape) may
sometimes be required for accurate modeling when the
characteristic dimensions of a specimen are very small.
In the present case, the effect of including matrix crack-
ing in the analysis was discussed. Appropriate values
for the cohesive parameters can be determined by com-
paring the results of suitable experiments to numerical
calculations. Once these parameters have been deter-
mined, general load–displacement curves can be com-
puted for different geometries that give good
predictions for the performance of the composite,
including strengths, compliances and energy dissipa-
tion. In particular, the approach appears to predict
accurately the onset of catastrophic failure in static
tests – a mode of fracture in which the crack makes a
8 If a lower-toughness mode of crack growth exists, then switching
to this mode may precipitate catastrophic failure earlier than predicted
by the static analysis. Studies of this material in the authors� laboratory
[41] suggest that it is not very rate sensitive, and this model for the
transition to dynamic fracture may be appropriate.
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transition to a dynamic mode, causing rupture with no
further input of energy into the system.
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