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1 Introduction

It had been stated in the proposal that the objectives of the proffered 3-year research effort
was to incorporate neural networks, fuzzy systems and genetic algorithms into the design
of sliding mode controllers, sliding mode state estimators and sliding mode identifiers of
uncertain or nonlinear dynamical systems. In practice, the controller, as well as the plant, is
subject to various nonlinear constraints like hard bounds on gains, limited energy, or finite
switching speeds that must be taken into account in a realistic controller design. In addition,
due to lack of knowledge of parameter values or inaccuracies in the modeling process, the
designer must cope with uncertainties in the plant model. In this project, a deterministic ap-
proach to the control, identification and state estimation of uncertain dynamical systems has
been taken. The plan is to provide a paradigm for fuzzy modeling that allows for systematic
construction of fuzzy models for the purpose of the controllers’ and state estimators’ design.
Adaptation algorithms for continuous-time sliding mode neural identifiers are currently be-
ing studied and novel variable structure sliding mode fuzzy controllers and state estimators
are being developed. The proposed structures will be integrated into self-organizing fuzzy-
neural sliding mode tracking controllers. The controllers’ and state estimators’ stability and
their guaranteed performance will be analyzed and then tested on a simulation model of a
ground vehicle. This vehicle model is suitable for the evaluation of the vehicle dynamical
behavior in real-time. Optimization of the controllers’ and estimators’ parameters will be
achieved using genetic algorithms. Neural network and fuzzy logic controllers have been used
with considerable success in closed-loop applications. However, these applications, though
very successful, have no proofs of guaranteed stability for uncertain systems with control
variables limited in amplitude. In the proposed research, the direct method of Lyapunov,
Hahn’s extensions of the Lyapunov method and LaSalle’s Invariance Principle are being used
in the stability and guaranteed performance analyses of fuzzy-neural sliding mode control
and identification structures. The results of the proposed research will contribute to the
basic control theory as well as to the intelligent vehicle control systems.

The beginning date of this 3-year project was September 9, 1999. The first stage of



the project is the period between September 9, 1999 and August 8, 2000. The research
effort during the first stage of the project was focused on three areas. The first area is the
investigation of discrete-time variable structure sliding mode control and its applications to
control uncertain dynamical systems. The second area of our research effort is modeling
and fuzzy control of an antilock braking system which is a part of the vehicle model that
we are developing as the test bed for our controllers. Finally, the third area of our research
effort is devoted to fuzzy adaptive robust tracking controllers for uncertain systems. We now

describe, in more detail, our research activities in each of the above mentioned areas.

2 Discrete-Time Variable Structure Control

A variable structure system (VSS) is a dynamical system whose structure changes in ac-
cordance with the current value of its state. A VSS can be viewed as a system composed
of independent structures together with a switching logic to switch between the structures.
To obtain high performance in a closed-loop system, a sliding mode is deliberately induced
via appropriate switching logic to exploit the desirable properties of the components of the
system [21, 22]. Furthermore, a VSS may have properties that do not belong to any of its
structures. Sliding mode is the motion of a dynamical system’s trajectory while confined to
a surface chosen by a designer. Once in sliding mode, the system exhibits an order reduction
which can be effectively used in the design of variable structure sliding mode controllers,
which consists of two phases. They are: the construction of the switching (sliding) sur-
face designed to achieve the desired system behavior, such as stability to the origin when
restricted to the surface, and the selection of feedback gains of the controller so that the
closed-system is stable to the sliding surface.

We distinguish among the continuous-time variable structure sliding mode (VSSM) con-
trol, sampled-data VSSM control, and discrete-time VSSM control. In our research activity
in this stage, we focus on the discrete-time VSSM control which is the subject of a number

of recent papers—see, for example, [16], [18], [14], [6], [28], [19], [27], [23], [17], [7], [20], [26],



among others. In 1989, Kotta [10] noticed that unlike in the continuous-time VSSM control,
the control in the discrete-time case must be upper and lower bounded to guarantee that the
switching surface is attractive. Furthermore, as the state trajectory approaches the switch-
ing manifold, these bounds approach each other and for the system in sliding the bounds
are equal. This observation impelled Kotta [10] to raise the question about applicability of
discrete-time variable structure sliding mode control.

We studied the differences in the requirements for the sliding mode behavior for con-
tinuous and discrete-time systems and investigated the limitations of discrete-time variable
structure sliding mode control. The results of our findings were published in [9].

We considered discrete-time dynamical system models of the form
Lpy1 — ACBk + Buk + dk, (1)

where x; € R", u, € R™, and rank B = m, and the vector d;, models the uncertainties of the
system model. As we mentioned above, the main feature of a variable structure controller is

the switching surface. We considered linear switching surfaces of the form
o(x)=Sx =0, (2)

where S € R™*" is chosen so that the matrix SB is invertible. For the case when dj, = 0,

we have
Oir1 = STin
= S (Axy + Buy)
= (SB)((SB)™' SAwm) +uy)
= (SB> (uk - ueq,k) ) (3)
where
Ueq bk = — (SB)il SACBk, (4)

and is called the equivalent control. In sliding mode along (2), we need
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Note that ||o| is a constant multiple of the distance of xj to the switching surface. It is
clear that xj, is on the switching surface if and only if up = weq .

We now compare the above with its continuous-time counterpart. Suppose that the
system model is

x(t) = Ax(t) + Bu(t). (6)

Let o(t) = Sx(t). Then, we have

&(t) = Sa(t)
= SAx(t)+ SBu(t)
= (SB)((SB)™' SA=z(t) +u(t))
= (8B) (u(t) — ue(t)), (7)

where u.,(t) = — (SB)~' SAx(t). Hence, &(t) = 0 if and only if w(t) = u,(t).

Comparing (3) and (7) we can draw the following conclusions. In the discrete-time case,
we want ||o1|| to be 0 or small for large k in order for the system’s trajectory to reach
the switching surface and stay there thereafter. This forces the control law u; to be u.q ) or
within some bound of it. Such a control strategy brings the trajectory of the discrete-time
system to the switching surface and keeps it there thereafter. Observe that if u, = weq i,
then the switching surface is reached in one step. The controller u;, = u.,, was also analyzed
in [14], [1], and [26]. In the continuous-time case the situation is diametrically opposite. If
the initial state of the system is not on the switching surface, then in order to reach the
surface as fast as possible we should maximize ||&||. Applying u(t) = u.,(t) alone in this
case would keep the closed-loop system trajectory moving along a surface parallel, but not
incidental, to the sliding surface S& = 0. Therefore, the equivalent control, wu.,(t), should
not be used in the continuous-time case unless the state is in a desired neighborhood of the
switching surface.

Our findings here can be summarized simply as: One cannot get away from the equivalent
control in the discrete-time variable structure control if sliding in the closed-loop system is

desired. In cases where the control law contains a copy of the equivalent control, one should
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Figure 1: Antilock brake system components.

have a compelling reason for having extra components in the overall control law. If an extra
component is used, it should be turned off or made small when the state is in a neighborhood
of the switching surface. Furthermore, using the equivalent control alone or equivalent control
plus a constant term does not create a variable structure closed-loop system, but rather a
linear or an affine system. The perfect sliding mode behavior in discrete-time is achieved

with a linear control law.

3 Modeling and Fuzzy Control of Antilock Braking
System

The main components of an antilock brake system (ABS) are: a control unit, a brake force
actuator, and wheel speed sensors. The controller unit monitors the wheel speed, performs
calculations based on the wheel speed, and sends the control signal to the brake force ac-
tuator. A diagram of an ABS unit is shown in Figure 1. The ABS system is considered a
safety feature in that the main purpose of an ABS is to minimize stopping distance under
emergency braking conditions and yet maintain vehicle stability. Antilock brake systems

minimize the stopping distance by preventing the wheels from locking up during braking.
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Figure 2: Road coefficient of adhesion versus wheel slip curves for different road surfaces.

The vehicle brake force is proportional to the normal force on the tires. The proportionality
factor that relates the vehicle brake force to the tire’s normal force is the road coefficient
of adhesion. The road coefficient of adhesion is a function of wheel slip as can be seen in
Figure 2. The wheel slip is defined as the ratio of the slip velocity in the contact patch
(forward velocity minus tire circumferential speed) to forward velocity. Let A denote the

wheel slip, then

—wR
oot o
where
v = vehicle forward velocity
w = tire angular velocity
R, = tire rolling radius.

The above parameters are shown in Figure 3. Note that 0 < A < 1. Following the convention,
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Figure 3: Front wheel free body diagram; for rear wheel F,; becomes Fy,.

we specify the value of A using %. Brake lock-up corresponds to 100% wheel slip, and Figure 2
shows that at 100% slip the road coefficient of adhesion is not maximized. The maximum
road coefficient of adhesion is attained when the wheels are slipping. Therefore, the maximum
braking force acting on the vehicle occurs when the wheels are slipping. Hence, the vehicle
stopping distance is minimized by controlling the wheels to slip in the range where the road
coefficient of adhesion is maximal. The maximum coefficient of adhesion is in the 5% to
30% slip range. Thus, by allowing the wheels to slip in the 5% to 30% range, we maximize
brake force. The operation of an ABS systems is shown in Figure 4 that was adapted from
Gillespie [8, page 68]. The application region is the range of slip (point A) where the driver
applies the brakes and where the slip level is below impending wheel lock-up. When the
wheel slip reaches the range where the coefficient of adhesion is maximized, the ABS system
takes control from the driver (point B). The ABS system releases the brake torque before
the wheels lock-up (point C) and the wheels begin to pick up speed again. As the wheel

speed increases, the wheel slip increases until its slip falls in the maximum brake force region
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Figure 4: ABS operating modes.



(point B). The ABS system then repeatedly applies the brake torque and releases the brake
to keep the wheel slip within the optimal slip region (point B) near the peak of the p-slip
curve.

In our research, we first developed a model for a braking vehicle, and then proposed
a fuzzy logic based ABS controller. For a class of analytic nonlinear models that include
uncertainties, one can use a sliding mode controller. For instance, Drakunov et al. [3] used
a sliding mode approach to develop an ABS controller including a component that performs
a search for optimal tire/road friction force. Other sliding mode based ABS controllers were
developed by Lin, Dobner, and Fruechte [13] and by us [24]. An alternative approach to the
control design for uncertain systems is using fuzzy logic. Mauer [15] developed a fuzzy logic
ABS controller using a quarter car model. Layne, Passino, and Yurkovich [11] developed a
fuzzy learning ABS controller using a quarter car model. We developed a fuzzy logic ABS
controller using our brake system model that includes longitudinal vehicle dynamics, tire
dynamics, and a road surface model. This model is non-analytic because we use look-up
tables for the road adhesion coefficient. Our results of this research effort were reported
in [25].

The brake system we considered by us so far was for straight line braking only. We
demonstrated the use of a fuzzy logic controller for an ABS system for a straight line braking
on an asphalt surface. However, in our model development we neglected transportation delay
caused by the brake hydraulic system and brake pad travel. In our investigation, we found
that this transportation delay in the brake system does severely impact the control system’s
performance. In our future research, we will consider other fuzzy controller designs for brake
system models that include transport delay.

As a system enhancement, we believe that using our approach it will be possible to
construct a fuzzy controller that also performs a surface identification. When the road
surface is identified, the target slip value can be modified according to the surface type.
This optimal slip value corresponds to the maximum road coefficient of adhesion for a given

surface. Using knowledge of the surface type, the controller should be able to further reduce
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stopping distance as compared with the currently available ABS controllers.

4 Fuzzy Adaptive Robust Tracking Controllers

In this section, fuzzy adaptive robust tracking controllers for a class of uncertain dynamical
systems are described that was recently developed in our group. Our paper [12] containing
the results described below was submitted for publication. The controllers’ construction and
their analysis involves sliding modes. We have shown that the closed-loop system driven by
these controllers is stable and the adaptation parameters are bounded. Simulation results

illustrating the performance of the proposed control strategies are included.

4.1 Plant Model and Control Objective

We consider a class of plants modeled by the differential equation

2™ = f(z) + g (z)u+n, (9)

T
where x = | ¢ 4 ... D | | the functions f = f(x) and g = g («) are unknown to

us. The function n = 7(¢, ) models plant’s disturbances. We assume that
n(t, ®)| < d, (10)

where d > 0 is known to us. We further assume that the function g(x) has a positive lower

bound, that is, there exists a positive constant g such that g(x) > g > 0. Let

xq = 24(t) = [ zat) da(t) - 2l ]T

denote the desired state trajectory and let

e = T —Xy
T
= {.T—l'd T—Tg --- x(”_l)_xglnl)]
T
- |:6 6 e e(nfl) .
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We wish to construct a controller v such that

lim e(t) = 0.

t—o00

We analyze two different fuzzy adaptive tracking controllers and show that the plant (9)
driven by these controllers is stable and the adaptation parameters are bounded.

Next, we present background results used by us in the proposed controllers’ construction.

4.2 Background Results
4.2.1 Fuzzy Logic System

A fuzzy logic controller with ¢ inputs, vy, vs,...,v,, and the center average defuzzifier can

be represented as
> H?:l HF} (v;)00

B Iy H?:1 MF]%(UJ') ’

where m is the number of fuzzy rules used to construct the controller, F jl is the j-th fuzzy

u

(11)

set corresponding to the [-th fuzzy rule, and ¢; can be taken as a center of the [-th fuzzy set

corresponding to the controller’s output, u. To proceed, we represent (11) as

m [Tt pp (v5)
u=> m] T 0. (12)
=1 Zl:l Hj:l :LLFJl (/Uj)
Let
T
06—\ 0, - 0, |
and T
B T [T e () IT;_, pem ()
e=la & 6 = DD/ | EVICHINRD Sy | (R

Then, we can represent (12) as

u=0"¢, (13)

where the vector £ is referred to as the regressor vector in the control literature.
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4.2.2 Projection Operator

Consider a vector-valued function of time,
T
O(t)=|0,(t) --- 0,() | €R™,
where, 6;(t) = ay(t), i = 1,---,r. We wish the components 6;(t)s to lie between 6, and 6;,
that is, §; < 6;(t) < ;. One way to achieve this goal is by setting 6;(t) = 0 when 6;(t)

reaches either of the bounds and tends to go beyond the bound, that is,

0 if 6; = 0, and «;(t) <0

a;(t) otherwise.

For compactness, we use the notation Proj for the right hand side of (14). Then, we write

0:(t) = Projo, (o), i =1,...,m, (15)
or in vector notation,
0(t) = Projg(a). (16)
4.2.3 Sliding Modes
Let
S = 81 82 o .. Sn—l ]_ E RlXTL

and o(e) = se. Then, {e: o(e) = 0} will represent a sliding surface in the tracking error, e,
space. The coefficients s; of the sliding surface are chosen in such a way that the system (9)
restricted to the sliding surface is asymptotically stable. Our objective is to construct fuzzy
tracking controllers that force the tracking error to approach the sliding surface, {o(e) = 0},
asymptotically and then stay in some neighborhood of the sliding surface for all subsequent

time. If f and g were known exactly to us and = 0, then the controller
ut = B (—f — o + x&”) — k:Te) , (17)
g
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where
T

k = 0 S1 -+ Sp—1

and p > 0 is a design parameter, would force the tracking error, e, to behave as desired.
We can verify this using standard arguments from sliding mode control practice—see, for
example, [2]. We consider the function V' = %02. Note that V' is positive definite with
respect to the sliding surface {o = 0}. The function V' can be viewed as a distance measure
to the sliding surface {o = 0}. The time derivative of V' evaluated on the trajectories of the

closed-loop system (9), (17) is

V = o6

= o (€™ 451 4 fosi¢)
= 0 (x(”) — x&n) + k:Te)

= 0o (f + gu — x&”) + k:Te) (18)
Substituting into the above equation the control law given by (17) gives
V = —po’. (19)

Thus, the sliding surface, {o = 0}, is asymptotically attractive and the system restricted
to the sliding surface can be made asymptotically stable with respect to the origin by an
appropriate choice of the parameters, s;, of the sliding surface.

The control law (17) requires perfect knowledge of the plant’s model. However, the plant
model components f and g are unknown to us. We next describe how to use adaptive fuzzy
logic controllers to approximate, as closely as possible, the performance of (17). In what
follows, we consider two cases. The first case is when the function f = f(x) is unknown to
us while g = g(«) > 0 is known to us. The second case is when both f and g are unknown

to us. In both cases, we consider the presence of a bounded disturbance modeled by 7.
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4.3 The Controllers
4.3.1 Unknown f(x)

When in our plant model (9) only g(x) is known, n # 0, and f(x) is unknown, we propose to
approximate f(x) with fuzzy logic system of the form OF‘JCE f (), where the functions 6 and
€, will be described after defining relevant symbols. We denote by % an “optimal” vector
such that

0; = argmingfsupweﬂ ‘f(a:) — O?Ef(w) , (20)

where 2 C R" is a region to which the state  is constrained to reside. We assume that
@)~ 6;7¢s(@)| < dy. VaeQ, (21)

where d; > 0 and each element of 67 is a constant and bounded below and above as follows
05 <05 <0p, foralli=1,...,r (22)

or in vector notation,

0; <6; <6y (23)
We define the adaptation parameter error as
Py =0;—0}. (24)
We use the adaptation law
Pr(t) = 6,(t) = Projg (v70&;(t)), (25)

where 75 > 0 is a design parameter. It is easy to verify, using the definition of Proj and the

fact that 0 < H}i < éfl- for each 7, that

q’)? <%Proj9f (vfaﬁf) — 0£f> <0. (26)

We propose the following fuzzy adaptive control law,

1 n
u= p (—O?Ef — o + x((j ) _kTe+ us) (27)

15



with u, satisfying

o(f—07& +uc+n)<e (28)

ous <0, (29)

where € > 0 is a design parameter. We now state a theorem concerning the dynamical
behavior of the closed-loop system driven by the control law (27). A proof of the theorem

can be found in [12].

Theorem 1 For the closed-loop system,

™ = f4gu+tn
u = é (—O?Ef — o + x&n) —kTe+ us) (30)
0, = Projgf (”yfaﬁf)

where ug satisfies (28) and (29), we have:

(i)
o2(t) < e 2tg2(0) + <, (31)
i
(ii) if n = 0 and there exists 0} such that f(x) = O?Téf(a:), then the origin of the (o, ¢ ;)-
space is stable, and hence o(t) and ¢(t) are bounded for allt > 0 and e(t) — 0 as

t — o0.

4.3.2 Selecting u, in control law (27)

We now discuss a method that can be used to select the component u, while implementing

the control law (27)). Let h be a constant such that

hz e 6 -e-

Given the design parameter €, choose positive numbers €7, €5, and €3 such that € = €; +€3+€3.
Then, ug can be chosen as

us = —kyo, (32)

16



where
d2 h2 d2
ks > — + —. 33
o 461 + 462 + 463 ( )
We verify that the above choice of u; guarantees that (32) satisfies (28) and (29). We first

consider the left-hand side of (28). Adding and subtracting O}Tﬁ s and using (24) yields
o(f =078 +us+1) = o(f— 07" € +07 &~ 076, +u,+n)
= U(f_e;Tgf—¢fT€f—ksU+77)- (34)

We now use (33) and group the terms to obtain

*T d?"
o(f — 0€f+u8+77> < U(f_ef Sf_4_€10>

T h? d?
—0 <¢f £f+4—620'> +0<77—4—€30> (35)
Next, we consider each term on the right hand side of the above inequality separately. We

start with the first term. Completing the squares, we obtain

. i P r-67¢\" (1-6"¢
<f o5&~ ) (2\/_ dp//ex ) +( df/\/_)

Neglecting the first term in the above and using the assumption (21), we get

2

d2 d%
<f O*Tgf a> /61 < €. (36)

Completing the squares in the second term on the right-hand side of (35) gives
2 hoBlE ) <¢Ts )
T Sy fSf
—0 +—0) = — o+ + |\
(076 1) = (o aris) (i
T 2
< < br&s )
= \/va
_ ((9f - 9’})T£>2
= _— €9

h
AN
>~ 2
2 2
DRI -
&[] 0s —e]
S €9. (38)
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Completing the squares in the third term on the right-hand side of (35) yields

d? d n \
“(“”‘4_63") - _<2¢a“_d/¢a> e

€3.

IN

Thus,
T —
o (-0 +utn)<at+eatea=c

and hence (28) is satisfied.
Also, us = —kso, ks > 0, satisfies (29).

4.3.3 Unknown f(x) and g(x)

Assume now that g(x) and f(x) are unknown to us and n # 0. We approximate f(x)
and g(x) with fuzzy logic systems, 0?5 s(x) and 035 (), respectively. The conditions on

0?5 () are the same as in the previous case, and the conditions on 055 ,(x) are similar,

that is, the optimal parameter vector, 0;, is
0, = argming supzcq |9(x) — 0, €, (x)| . (39)
We assume that
9(@) - 0;"&(m)| < dy, forallweQ, (40)

where

0, <O <0y, foralli=1,---,7. (41)

The parameter error, ¢, = 6, — 0;, is adapted according to the law,

gﬁg = 99 = Projgg (Vg0 ),

where

1 n
Uq = ﬁ (-0?£f + 33'; ) k:Te) . (42)
g>g

The initial values of the components of 8, are chosen to satisfy (41), where for each i =

1,...,r, we have 0, > 0. This ensures that 055 s > 0 because we choose fuzzy sets so that
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at any t at least one rule fires and so at least one component of & is nonzero and in fact

positive. Using the definition of Proj, one can verify that

qbg <$Pr0j9g (’ygaﬁgua) — aﬁgua> <0. (43)

We propose the following fuzzy adaptive control law,

1 1

u=gre (_eﬁgf 42— k:Te) - ho + u, (44)
959 9
with u, satisfying the following conditions,
o (F— o) 1 KTe b gug + gus ) <. (45)
oug <0, (46)

where € > 0 is a design parameter. Using the definition of u,, given by (42), we represent (44)

as

1
U= Uy — — [0 + Us. (47)
g

Our findings are summarized in the following theorem, whose proof can be found in [12].

Theorem 2 For the closed-loop system,

2™ = f+gu+n
U = Lt (-6% +x(n)—kTe — L0+ uyg

| 0,¢, (~07¢; + i )= (48)
0; = Projgf(yfaﬁf)

6, = Projg_ (740& Ua)

where ug satisfies (45) and (46), we have:
(i)
o2(t) < e~ 262(0) + < (49)

1
(ii) if n = 0 and there exist 6} and 0, 51Twh that f(x) = O}Téf(a:) and g(x) = OZTEg(a:),
then the origin of the { o ¢; P, ] -space is stable and hence o(t), ¢(t), and ¢, (t)

are bounded and e(t) — 0 as t — oo.
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4.3.4 Selecting u, in control law (44)

The component ug appearing in the control law (44) can be chosen similarly as in the previous

case. We need a lower bound on the gain k. Let
hy 2 |[& | |6 = 8] and by = &, | 8, — 8] fual.

Given the design parameter e, select positive numbers €, €, €3, and ¢4 such that ¢ =

€1 + €3 + €3 + €4. Then, k, should satisfy the following condition,

Lol <d§+ugd§,+ W2 R d2>
S_g .

— 50
261 4eq e 4eg + 4ey (50)

When the gain k, satisfies the above condition, us = —kso guarantees that (45) and (46)
are satisfied. To show that this is indeed the case, consider the left-hand side of (45). Use
0T€ Uq + 07 & = (" — k”e from (42), and then add and subtract O}Tﬁf and H;Tﬁgua to

obtain

o (f —xé") + ke + gug + gus —|—77) = 0 (f — O?Ef — Ogﬁgua+gua+gus —|—77)
o (f—077¢;—df&+(9—6,7€,)u,

_¢§€gua + gus + 7]) :

Taking into account (50) in the above and rearranging terms gives
d2
O-(f_xd +kT€+gua+gus+7]) < 0<f 05]‘_—0)

ud?
+o ((g — OZTﬁg) Ug — ﬁa)

h? h?
T T g
—0 <¢f£f + 4—620'> — 0 <¢g§gua + 4—€30'>
d2
+ -
Completing the squares, similarly as in the previous case, yields

2
_ ) T f 9 §f> (9_0*T£9>u‘1
o (f i’ + K et guat gustn) < (fdf/f +(ﬂ|“a|gd9/ﬁ
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(sghes) + (B5e) + (o)
f/\/a hg/\/a d/\/a
%61‘}‘%61"‘62‘}‘634‘64

= €.

Hence, (45) is satisfied, and so is (46) by the fact that us = —kso, where ks > 0.

4.4 Examples

In this Subsection, we present simulation results illustrating the performance of the proposed
control strategies. The controllers are tested on a simplified model of an electric drive system
used by Fischle and Schroder [4] to test their fuzzy adaptive controllers. The plant is modeled
by the differential equation,

g = —% arctan(5z) + CjTU = f(z, %) + gu, (51)

2

where x is the angular position, ¢ =10 Nm/A, and J = 0.1 kg-m*. The reference signal

x4 is generated by the reference system whose transfer function is given by SQM:“O%. The
input signal, w(t), to the reference system is changing its value randomly between -1.5 and

1.5 every 0.5 seconds.

Example 1 In this example, we assume that we know g, where g = 100, and that there are
no disturbances affecting the system, that is, n = 0. We use the control law given by (27),
where f(x) is approximated by a fuzzy logic system. We use fuzzy sets for z and & as in
Fischle and Schroder [4]. They are shown in Figure 5. There are two fuzzy sets for x and

six fuzzy sets for 2. Thus, we can have twelve fuzzy rules possible. They have the form:

Rule 1: TIF z is N AND & is LN THEN y = 6,

Rule 12: IF z is P AND z is LP THEN y = 6,9,

where 0;, i = 1,...,12 are the adaptation parameters. The bounds on the components

of the adaptation parameter vector, 8¢, are chosen as éf = 200 and 0y = —200. All the
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initial values of the components of 8; are set to zero. If we had expert knowledge about
the plant operation, we could incorporate this information into the controller design by
selecting appropriately the initial values of the adaptation parameters. We choose dy = 50
and d, = 10, and v = 5000. The remaining design parameters are: p = 250, ¢; = 50,
€2 = 50. As n(t) = 0, we do not need to worry about €.

We used SIMULINK to simulate the dynamical behavior of the closed-loop system. Its
block diagram is depicted in Figure 6. The regressor generator block produces ¢ from the
input x and the parameter adaptation block updates 6. It is made up of sets of integrators
as shown in Figure 7. The s vector that defines the sliding surface, {e : se = 0}, was chosen
as § = [ 40 1 ] The simulation results are shown in Figures 8 and 9. The output x(t),
the reference signal x,4(t), and the tracking error e(t) are shown in Figure 8. The tracking
error, e(t), is so small that one cannot distinguish between the actual state xz(¢) and the
desired state x4(t). The plots of the control signal u and the components of 8 versus time
are depicted in Figure 9. As the fuzzy logic system adapts the parameter 8, the error, e(?),
gets smaller and smaller. If we used smaller ¢, then we would achieve even smaller tracking

error at the expense of higher control effort.

Example 2 In this example, it is assumed that f(x) and ¢ are unknown to us and the
control law (44) is employed. Unknown f(x) and g are approximated by two separate fuzzy
logic systems using fuzzy sets shown in Figure 5 for both fuzzy logic systems.

The bounds on the adaptation parameters are chosen as: éf = 200, 0y = —200, ég = 150,
and §, = 50. All the initial values of the components of the adaptation parameter vector 6
are set to zero. The initial values of 8, are set to 150 to avoid excessively large control signal
in the early stages of the simulation run. The selected gains are v = 5000 and v, = 1000.
The other design parameters are: €; = 50, e = 100, €3 = 50, and ¢4 = 50. The remaining
parameters are the same as in the previous example.

SIMULINK block diagrams of the closed-loop system and the parameter adaptation law
are depicted in Figure 10 and Figure 14, respectively. The disturbance, 7, is a random

signal, whose plot versus time is shown in Figure 13. We used d = 100 so that the condition,
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Figure 6: SIMULINK block diagram of fuzzy adaptive robust control system of Example 1.
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Figure 8: Plots of z(t) and error e(t) in Example 1.
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Figure 9: Plots of control effort u(t) and the components of the parameter vector 6, versus

time in Example 1.

In(t)] < d, is satisfied. We chose, as before, s = [ 40 1 ] The simulation results are shown
in Figures 12, 13, and 14. As can be seen in Figure 12, the tracking error, e(t), remains very
small even in the presence of the disturbance, n. Plots of the time history of the adaptation

parameters are shown in Figure 14.

5 Presentations

The research progress is monitored through weekly meetings of the principal investigator and
Ph.D. students working on the project to discuss accomplishments and difficulties. During
these meetings the students present the results obtained by them or others to their peers.
Yonggon Lee who is one of the Ph.D. students working on the project, has been chosen a
third place student presenter at the Spring 2000 Workshop of the Electrical and Computer
Engineering Industrial Affiliates Workshop. Our group is in process of preparing papers
to be submitted to the next American Control Conference (ACC) as well as to the next

Conference on Decision and Control (CDC).
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Figure 12: Plots of z(t) and error e(t) versus time in Example 2.
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Figure 13: Plot of control effort u(¢) and disturbance 7(t) versus time in Example 2.
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Example 2
6 Summary

Fischle and Schroder [4, page 38| observed a major limitation of all existing stable adaptive
fuzzy controllers, including the ones proposed by us, is that they were developed for systems
with unlimited actuators’ authority, that is, for systems with no constraints on the effort
level of the actuators. If we are serious about real-life applications of fuzzy adaptive con-
trollers, then the case of the actuators with limited authority has to be rigorously analyzed.
Another issue of practical importance is the convergence of the adaptation parameters to
their “correct” values. Friedland [5, page 345] states: “One may argue that the failure of
a parameter estimate to converge to its correct value is a subsidiary issue as long as the
adaptive control works (even with the incorrect parameter estimate). This reasoning might
be valid if you can ascertain that the algorithm works for every input to which the system
might be subjected. But in most applications the performance of the algorithm is tested only
with a limited set of inputs. Satisfactory performance for this set of inputs is not a reliable

indicator that its performance will be satisfactory for inputs outside the test set.” In the
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current state-of-the-art adaptive control algorithms, the convergence of the adaptation para-
meters is usually ensured through the so called persistently exciting inputs to the adaptation
algorithms. However, the injection of the persistently exciting signals into the adaptation
algorithms may not be feasible in real life applications. Thus, an alternative approach to the
issues of the convergence of the adaptation parameters is needed.

In the next stage of this research project we will also consider neural adaptive track-
ing controllers for uncertain systems. The controllers will be tested on the ground vehicle
simulation model that is currently being investigated by us. The controllers’ tuning will be

performed using genetic algorithms.
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