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1 Introduction

It had been stated in the proposal that the objectives of the proffered 3-year research effort

was to incorporate neural networks, fuzzy systems and genetic algorithms into the design

of sliding mode controllers, sliding mode state estimators and sliding mode identifiers of

uncertain or nonlinear dynamical systems. In practice, the controller, as well as the plant, is

subject to various nonlinear constraints like hard bounds on gains, limited energy, or finite

switching speeds that must be taken into account in a realistic controller design. In addition,

due to lack of knowledge of parameter values or inaccuracies in the modeling process, the

designer must cope with uncertainties in the plant model. In this project, a deterministic ap-

proach to the control, identification and state estimation of uncertain dynamical systems has

been taken. The plan is to provide a paradigm for fuzzy modeling that allows for systematic

construction of fuzzy models for the purpose of the controllers’ and state estimators’ design.

Adaptation algorithms for continuous-time sliding mode neural identifiers are currently be-

ing studied and novel variable structure sliding mode fuzzy controllers and state estimators

are being developed. The proposed structures will be integrated into self-organizing fuzzy-

neural sliding mode tracking controllers. The controllers’ and state estimators’ stability and

their guaranteed performance will be analyzed and then tested on a simulation model of a

ground vehicle. This vehicle model is suitable for the evaluation of the vehicle dynamical

behavior in real-time. Optimization of the controllers’ and estimators’ parameters will be

achieved using genetic algorithms. Neural network and fuzzy logic controllers have been used

with considerable success in closed-loop applications. However, these applications, though

very successful, have no proofs of guaranteed stability for uncertain systems with control

variables limited in amplitude. In the proposed research, the direct method of Lyapunov,

Hahn’s extensions of the Lyapunov method and LaSalle’s Invariance Principle are being used

in the stability and guaranteed performance analyses of fuzzy-neural sliding mode control

and identification structures. The results of the proposed research will contribute to the

basic control theory as well as to the intelligent vehicle control systems.

The beginning date of this 3-year project was September 9, 1999. The first stage of
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the project is the period between September 9, 1999 and August 8, 2000. The research

effort during the first stage of the project was focused on three areas. The first area is the

investigation of discrete-time variable structure sliding mode control and its applications to

control uncertain dynamical systems. The second area of our research effort is modeling

and fuzzy control of an antilock braking system which is a part of the vehicle model that

we are developing as the test bed for our controllers. Finally, the third area of our research

effort is devoted to fuzzy adaptive robust tracking controllers for uncertain systems. We now

describe, in more detail, our research activities in each of the above mentioned areas.

2 Discrete-Time Variable Structure Control

A variable structure system (VSS) is a dynamical system whose structure changes in ac-

cordance with the current value of its state. A VSS can be viewed as a system composed

of independent structures together with a switching logic to switch between the structures.

To obtain high performance in a closed-loop system, a sliding mode is deliberately induced

via appropriate switching logic to exploit the desirable properties of the components of the

system [21, 22]. Furthermore, a VSS may have properties that do not belong to any of its

structures. Sliding mode is the motion of a dynamical system’s trajectory while confined to

a surface chosen by a designer. Once in sliding mode, the system exhibits an order reduction

which can be effectively used in the design of variable structure sliding mode controllers,

which consists of two phases. They are: the construction of the switching (sliding) sur-

face designed to achieve the desired system behavior, such as stability to the origin when

restricted to the surface, and the selection of feedback gains of the controller so that the

closed-system is stable to the sliding surface.

We distinguish among the continuous-time variable structure sliding mode (VSSM) con-

trol, sampled-data VSSM control, and discrete-time VSSM control. In our research activity

in this stage, we focus on the discrete-time VSSM control which is the subject of a number

of recent papers—see, for example, [16], [18], [14], [6], [28], [19], [27], [23], [17], [7], [20], [26],
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among others. In 1989, Kotta [10] noticed that unlike in the continuous-time VSSM control,

the control in the discrete-time case must be upper and lower bounded to guarantee that the

switching surface is attractive. Furthermore, as the state trajectory approaches the switch-

ing manifold, these bounds approach each other and for the system in sliding the bounds

are equal. This observation impelled Kotta [10] to raise the question about applicability of

discrete-time variable structure sliding mode control.

We studied the differences in the requirements for the sliding mode behavior for con-

tinuous and discrete-time systems and investigated the limitations of discrete-time variable

structure sliding mode control. The results of our findings were published in [9].

We considered discrete-time dynamical system models of the form

xk+1 = Axk + Buk + dk, (1)

where xk ∈ R
n, uk ∈ R

m, and rank B = m, and the vector dk models the uncertainties of the

system model. As we mentioned above, the main feature of a variable structure controller is

the switching surface. We considered linear switching surfaces of the form

σ(x) = Sx = 0, (2)

where S ∈ R
m×n is chosen so that the matrix SB is invertible. For the case when dk = 0,

we have

σk+1 = Sxk+1

= S (Axk + Buk)

= (SB)
(
(SB)−1 SAxk + uk

)
= (SB) (uk − ueq,k) , (3)

where

ueq,k = − (SB)−1 SAxk, (4)

and is called the equivalent control. In sliding mode along (2), we need

σk = σ (xk) = 0. (5)

4



Note that ‖σk‖ is a constant multiple of the distance of xk to the switching surface. It is

clear that xk+1 is on the switching surface if and only if uk = ueq,k.

We now compare the above with its continuous-time counterpart. Suppose that the

system model is

ẋ(t) = Ax(t) + Bu(t). (6)

Let σ(t) = Sx(t). Then, we have

σ̇(t) = Sẋ(t)

= SAx(t) + SBu(t)

= (SB)
(
(SB)−1 SAx(t) + u(t)

)
= (SB) (u(t)− ueq(t)) , (7)

where ueq(t) = − (SB)−1 SAx(t). Hence, σ̇(t) = 0 if and only if u(t) = ueq(t).

Comparing (3) and (7) we can draw the following conclusions. In the discrete-time case,

we want ‖σk+1‖ to be 0 or small for large k in order for the system’s trajectory to reach

the switching surface and stay there thereafter. This forces the control law uk to be ueq,k or

within some bound of it. Such a control strategy brings the trajectory of the discrete-time

system to the switching surface and keeps it there thereafter. Observe that if uk = ueq,k,

then the switching surface is reached in one step. The controller uk = ueq,k was also analyzed

in [14], [1], and [26]. In the continuous-time case the situation is diametrically opposite. If

the initial state of the system is not on the switching surface, then in order to reach the

surface as fast as possible we should maximize ‖σ̇‖. Applying u(t) = ueq(t) alone in this

case would keep the closed-loop system trajectory moving along a surface parallel, but not

incidental, to the sliding surface Sx = 0. Therefore, the equivalent control, ueq(t), should

not be used in the continuous-time case unless the state is in a desired neighborhood of the

switching surface.

Our findings here can be summarized simply as: One cannot get away from the equivalent

control in the discrete-time variable structure control if sliding in the closed-loop system is

desired. In cases where the control law contains a copy of the equivalent control, one should
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Figure 1: Antilock brake system components.

have a compelling reason for having extra components in the overall control law. If an extra

component is used, it should be turned off or made small when the state is in a neighborhood

of the switching surface. Furthermore, using the equivalent control alone or equivalent control

plus a constant term does not create a variable structure closed-loop system, but rather a

linear or an affine system. The perfect sliding mode behavior in discrete-time is achieved

with a linear control law.

3 Modeling and Fuzzy Control of Antilock Braking

System

The main components of an antilock brake system (ABS) are: a control unit, a brake force

actuator, and wheel speed sensors. The controller unit monitors the wheel speed, performs

calculations based on the wheel speed, and sends the control signal to the brake force ac-

tuator. A diagram of an ABS unit is shown in Figure 1. The ABS system is considered a

safety feature in that the main purpose of an ABS is to minimize stopping distance under

emergency braking conditions and yet maintain vehicle stability. Antilock brake systems

minimize the stopping distance by preventing the wheels from locking up during braking.
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Figure 2: Road coefficient of adhesion versus wheel slip curves for different road surfaces.

The vehicle brake force is proportional to the normal force on the tires. The proportionality

factor that relates the vehicle brake force to the tire’s normal force is the road coefficient

of adhesion. The road coefficient of adhesion is a function of wheel slip as can be seen in

Figure 2. The wheel slip is defined as the ratio of the slip velocity in the contact patch

(forward velocity minus tire circumferential speed) to forward velocity. Let λ denote the

wheel slip, then

λ =
v − ωRw

v
, (8)

where

v = vehicle forward velocity

ω = tire angular velocity

Rw = tire rolling radius.

The above parameters are shown in Figure 3. Note that 0 ≤ λ ≤ 1. Following the convention,

7



Figure 3: Front wheel free body diagram; for rear wheel Fbf becomes Fbr.

we specify the value of λ using %. Brake lock-up corresponds to 100% wheel slip, and Figure 2

shows that at 100% slip the road coefficient of adhesion is not maximized. The maximum

road coefficient of adhesion is attained when the wheels are slipping. Therefore, the maximum

braking force acting on the vehicle occurs when the wheels are slipping. Hence, the vehicle

stopping distance is minimized by controlling the wheels to slip in the range where the road

coefficient of adhesion is maximal. The maximum coefficient of adhesion is in the 5% to

30% slip range. Thus, by allowing the wheels to slip in the 5% to 30% range, we maximize

brake force. The operation of an ABS systems is shown in Figure 4 that was adapted from

Gillespie [8, page 68]. The application region is the range of slip (point A) where the driver

applies the brakes and where the slip level is below impending wheel lock-up. When the

wheel slip reaches the range where the coefficient of adhesion is maximized, the ABS system

takes control from the driver (point B). The ABS system releases the brake torque before

the wheels lock-up (point C) and the wheels begin to pick up speed again. As the wheel

speed increases, the wheel slip increases until its slip falls in the maximum brake force region
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Figure 4: ABS operating modes.
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(point B). The ABS system then repeatedly applies the brake torque and releases the brake

to keep the wheel slip within the optimal slip region (point B) near the peak of the µ-slip

curve.

In our research, we first developed a model for a braking vehicle, and then proposed

a fuzzy logic based ABS controller. For a class of analytic nonlinear models that include

uncertainties, one can use a sliding mode controller. For instance, Drakunov et al. [3] used

a sliding mode approach to develop an ABS controller including a component that performs

a search for optimal tire/road friction force. Other sliding mode based ABS controllers were

developed by Lin, Dobner, and Fruechte [13] and by us [24]. An alternative approach to the

control design for uncertain systems is using fuzzy logic. Mauer [15] developed a fuzzy logic

ABS controller using a quarter car model. Layne, Passino, and Yurkovich [11] developed a

fuzzy learning ABS controller using a quarter car model. We developed a fuzzy logic ABS

controller using our brake system model that includes longitudinal vehicle dynamics, tire

dynamics, and a road surface model. This model is non-analytic because we use look-up

tables for the road adhesion coefficient. Our results of this research effort were reported

in [25].

The brake system we considered by us so far was for straight line braking only. We

demonstrated the use of a fuzzy logic controller for an ABS system for a straight line braking

on an asphalt surface. However, in our model development we neglected transportation delay

caused by the brake hydraulic system and brake pad travel. In our investigation, we found

that this transportation delay in the brake system does severely impact the control system’s

performance. In our future research, we will consider other fuzzy controller designs for brake

system models that include transport delay.

As a system enhancement, we believe that using our approach it will be possible to

construct a fuzzy controller that also performs a surface identification. When the road

surface is identified, the target slip value can be modified according to the surface type.

This optimal slip value corresponds to the maximum road coefficient of adhesion for a given

surface. Using knowledge of the surface type, the controller should be able to further reduce
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stopping distance as compared with the currently available ABS controllers.

4 Fuzzy Adaptive Robust Tracking Controllers

In this section, fuzzy adaptive robust tracking controllers for a class of uncertain dynamical

systems are described that was recently developed in our group. Our paper [12] containing

the results described below was submitted for publication. The controllers’ construction and

their analysis involves sliding modes. We have shown that the closed-loop system driven by

these controllers is stable and the adaptation parameters are bounded. Simulation results

illustrating the performance of the proposed control strategies are included.

4.1 Plant Model and Control Objective

We consider a class of plants modeled by the differential equation

x(n) = f (x) + g (x) u + η, (9)

where x =
[

x ẋ · · · x(n−1)

]T
, the functions f = f (x) and g = g (x) are unknown to

us. The function η = η(t, x) models plant’s disturbances. We assume that

|η(t, x)| ≤ d, (10)

where d > 0 is known to us. We further assume that the function g(x) has a positive lower

bound, that is, there exists a positive constant g such that g(x) ≥ g > 0. Let

xd = xd(t) =
[

xd(t) ẋd(t) · · · x
(n−1)
d (t)

]T

denote the desired state trajectory and let

e = x− xd

=
[

x− xd ẋ− ẋd · · · x(n−1) − x
(n−1)
d

]T

=
[

e ė · · · e(n−1)

]T
.

11



We wish to construct a controller u such that

lim
t→∞e(t) = 0.

We analyze two different fuzzy adaptive tracking controllers and show that the plant (9)

driven by these controllers is stable and the adaptation parameters are bounded.

Next, we present background results used by us in the proposed controllers’ construction.

4.2 Background Results

4.2.1 Fuzzy Logic System

A fuzzy logic controller with q inputs, v1, v2, . . . , vq, and the center average defuzzifier can

be represented as

u =

∑m
l=1

∏q
j=1 µF l

j
(vj)θl∑m

l=1

∏q
j=1 µF l

j
(vj)

, (11)

where m is the number of fuzzy rules used to construct the controller, F l
j is the j-th fuzzy

set corresponding to the l-th fuzzy rule, and cl can be taken as a center of the l-th fuzzy set

corresponding to the controller’s output, u. To proceed, we represent (11) as

u =
m∑

l=1




∏q
j=1 µF l

j
(vj)∑m

l=1

∏q
j=1 µF l

j
(vj)


 θl. (12)

Let

θ =
[

θ1 θ2 · · · θm

]T

and

ξ =
[

ξ1 ξ2 · · · ξm

]T
=

[ ∏q

j=1
µ

F1
j
(vj)∑m

l=1

∏q

j=1
µ

F l
j
(vj)

· · ·
∏q

j=1
µF m

j
(vj)∑m

l=1

∏q

j=1
µ

F l
j
(vj)

]T

.

Then, we can represent (12) as

u = θT ξ, (13)

where the vector ξ is referred to as the regressor vector in the control literature.
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4.2.2 Projection Operator

Consider a vector-valued function of time,

θ(t) =
[

θ1(t) · · · θm(t)

]T
∈ R

m,

where, θ̇i(t) = αi(t), i = 1, · · · , r. We wish the components θi(t)s to lie between θi and θ̄i,

that is, θi ≤ θi(t) ≤ θ̄i. One way to achieve this goal is by setting θ̇i(t) = 0 when θi(t)

reaches either of the bounds and tends to go beyond the bound, that is,

θ̇i(t) =




0 if θi = θi and αi(t) < 0

0 if θi = θ̄i and αi(t) > 0

αi(t) otherwise.

(14)

For compactness, we use the notation Proj for the right hand side of (14). Then, we write

θ̇i(t) = Projθi
(αi), i = 1, . . . , m, (15)

or in vector notation,

θ̇(t) = Projθ(α). (16)

4.2.3 Sliding Modes

Let

s =
[

s1 s2 · · · sn−1 1

]
∈ R

1×n

and σ(e) = se. Then, {e : σ(e) = 0} will represent a sliding surface in the tracking error, e,

space. The coefficients si of the sliding surface are chosen in such a way that the system (9)

restricted to the sliding surface is asymptotically stable. Our objective is to construct fuzzy

tracking controllers that force the tracking error to approach the sliding surface, {σ(e) = 0},
asymptotically and then stay in some neighborhood of the sliding surface for all subsequent

time. If f and g were known exactly to us and η = 0, then the controller

u∗ =
1

g

(
−f − µσ + x

(n)
d − kT e

)
, (17)
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where

k =
[

0 s1 · · · sn−1

]T

and µ > 0 is a design parameter, would force the tracking error, e, to behave as desired.

We can verify this using standard arguments from sliding mode control practice—see, for

example, [2]. We consider the function V = 1
2
σ2. Note that V is positive definite with

respect to the sliding surface {σ = 0}. The function V can be viewed as a distance measure

to the sliding surface {σ = 0}. The time derivative of V evaluated on the trajectories of the

closed-loop system (9), (17) is

V̇ = σσ̇

= σs
de

dt

= σ
(
e(n) + sn−1e

(n−1) + · · ·+ s1ė
)

= σ
(
x(n) − x

(n)
d + kT e

)
= σ

(
f + gu− x

(n)
d + kT e

)
(18)

Substituting into the above equation the control law given by (17) gives

V̇ = −µσ2. (19)

Thus, the sliding surface, {σ = 0}, is asymptotically attractive and the system restricted

to the sliding surface can be made asymptotically stable with respect to the origin by an

appropriate choice of the parameters, si, of the sliding surface.

The control law (17) requires perfect knowledge of the plant’s model. However, the plant

model components f and g are unknown to us. We next describe how to use adaptive fuzzy

logic controllers to approximate, as closely as possible, the performance of (17). In what

follows, we consider two cases. The first case is when the function f = f(x) is unknown to

us while g = g(x) > 0 is known to us. The second case is when both f and g are unknown

to us. In both cases, we consider the presence of a bounded disturbance modeled by η.
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4.3 The Controllers

4.3.1 Unknown f(x)

When in our plant model (9) only g(x) is known, η 6= 0, and f(x) is unknown, we propose to

approximate f(x) with fuzzy logic system of the form θT
f ξf (x), where the functions θf and

ξf will be described after defining relevant symbols. We denote by θ∗f an “optimal” vector

such that

θ∗f = argminθf
supx∈Ω

∣∣∣f(x)− θT
f ξf(x)

∣∣∣ , (20)

where Ω ⊆ R
n is a region to which the state x is constrained to reside. We assume that

∣∣∣f(x)− θ∗f
T ξf(x)

∣∣∣ ≤ df , ∀ x ∈ Ω, (21)

where df > 0 and each element of θ∗f is a constant and bounded below and above as follows

θfi ≤ θ∗fi ≤ θ̄fi, for all i = 1, . . . , r, (22)

or in vector notation,

θf ≤ θ∗f ≤ θ̄f . (23)

We define the adaptation parameter error as

φf = θf − θ∗f . (24)

We use the adaptation law

φ̇f (t) = θ̇f (t) = Projθf
(γfσξf (t)), (25)

where γf > 0 is a design parameter. It is easy to verify, using the definition of Proj and the

fact that θfi ≤ θ∗fi ≤ θ̄fi for each i, that

φT
f

(
1

γf

Projθf

(
γfσξf

)
− σξf

)
≤ 0. (26)

We propose the following fuzzy adaptive control law,

u =
1

g

(
−θT

f ξf − µσ + x
(n)
d − kT e + us

)
(27)
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with us satisfying

σ
(
f − θT

f ξf + us + η
)
≤ ε, (28)

σus ≤ 0, (29)

where ε > 0 is a design parameter. We now state a theorem concerning the dynamical

behavior of the closed-loop system driven by the control law (27). A proof of the theorem

can be found in [12].

Theorem 1 For the closed-loop system,

x(n) = f + gu + η

u = 1
g

(
−θT

f ξf − µσ + x
(n)
d − kT e + us

)
θ̇f = Projθf

(γfσξf)




(30)

where us satisfies (28) and (29), we have:

(i)

σ2(t) ≤ e−2µtσ2(0) +
ε

µ
; (31)

(ii) if η = 0 and there exists θ∗f such that f(x) = θ∗f
T ξf (x), then the origin of the (σ, φf)-

space is stable, and hence σ(t) and φf(t) are bounded for all t ≥ 0 and e(t) → 0 as

t →∞.

4.3.2 Selecting us in control law (27)

We now discuss a method that can be used to select the component us while implementing

the control law (27)). Let h be a constant such that

h ≥
wwwξf

wwwwwwθ̄f − θf

www .

Given the design parameter ε, choose positive numbers ε1, ε2, and ε3 such that ε = ε1+ε2+ε3.

Then, us can be chosen as

us = −ksσ, (32)
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where

ks ≥
d2

f

4ε1

+
h2

4ε2

+
d2

4ε3

. (33)

We verify that the above choice of us guarantees that (32) satisfies (28) and (29). We first

consider the left-hand side of (28). Adding and subtracting θ∗f
T ξf and using (24) yields

σ(f − θT
f ξf + us + η) = σ(f − θ∗f

T ξf + θ∗f
T ξf − θT

f ξf + us + η)

= σ(f − θ∗f
T ξf − φf

T ξf − ksσ + η). (34)

We now use (33) and group the terms to obtain

σ(f − θT
f ξf + us + η) ≤ σ

(
f − θ∗f

T ξf −
d2

f

4ε1
σ

)

−σ

(
φf

T ξf +
h2

4ε2

σ

)
+ σ

(
η − d2

4ε3

σ

)
. (35)

Next, we consider each term on the right hand side of the above inequality separately. We

start with the first term. Completing the squares, we obtain

σ

(
f − θ∗f

T ξf −
d2

f

4ε1
σ

)
= −


 df

2
√

ε1
σ − f − θ∗f

T ξf

df/
√

ε1




2

+


f − θ∗f

T ξf

df/
√

ε1




2

.

Neglecting the first term in the above and using the assumption (21), we get

σ
(
f − θ∗f

T ξf −
d2

f

4ε1
σ
)
≤ d2

f

d2
f/ε1

≤ ε1. (36)

Completing the squares in the second term on the right-hand side of (35) gives

−σ

(
φf

T ξf +
h2

4ε2
σ

)
= −

(
h

2
√

ε2
σ +

φT
f ξf

h/
√

ε2

)2

+

(
φT

f ξf

h/
√

ε2

)2

≤
(

φT
f ξf

h/
√

ε2

)2

=

(
(θf − θ∗f)

T ξ

h

)2

ε2

≤
wwwθf − θ∗f

www2 wwwξf

www2

h2
ε2

≤
wwwθf − θ∗f

www2 wwwξf

www2

wwwξf

www2 wwwθ̄f − θf

www2 ε2 (37)

≤ ε2. (38)
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Completing the squares in the third term on the right-hand side of (35) yields

σ

(
η(t)− d2

4ε3

σ

)
= −

(
d

2
√

ε3

σ − η

d/
√

ε3

)2

+
η2

d2
ε3

≤ ε3.

Thus,

σ
(
f − θT

f ξf + us + η
)
≤ ε1 + ε2 + ε3 = ε.

and hence (28) is satisfied.

Also, us = −ksσ, ks > 0, satisfies (29).

4.3.3 Unknown f(x) and g(x)

Assume now that g(x) and f(x) are unknown to us and η 6= 0. We approximate f(x)

and g(x) with fuzzy logic systems, θT
f ξf(x) and θT

g ξg(x), respectively. The conditions on

θT
f ξf(x) are the same as in the previous case, and the conditions on θT

g ξg(x) are similar,

that is, the optimal parameter vector, θ∗g, is

θ∗g = argminθg
supx∈Ω

∣∣∣g(x)− θg
T ξg(x)

∣∣∣ . (39)

We assume that ∣∣∣g(x)− θ∗g
T ξ(x)

∣∣∣ ≤ dg, for all x ∈ Ω, (40)

where

θgi ≤ θ∗gi ≤ θ̄gi, for all i = 1, · · · , r. (41)

The parameter error, φg = θg − θ∗g, is adapted according to the law,

φ̇g = θ̇g = Projθg
(γgσξgua),

where

ua =
1

θT
g ξg

(
−θT

f ξf + x
(n)
d − kT e

)
. (42)

The initial values of the components of θg are chosen to satisfy (41), where for each i =

1, . . . , r, we have θgi > 0. This ensures that θT
g ξg > 0 because we choose fuzzy sets so that
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at any t at least one rule fires and so at least one component of ξ is nonzero and in fact

positive. Using the definition of Proj, one can verify that

φT
g

(
1

γg

Projθg

(
γgσξgua

)
− σξgua

)
≤ 0. (43)

We propose the following fuzzy adaptive control law,

u =
1

θT
g ξg

(
−θT

f ξf + x
(n)
d − kT e

)
− 1

g
µσ + us (44)

with us satisfying the following conditions,

σ
(
f − x

(n)
d + kT e + gua + gus + η

)
≤ ε, (45)

σus ≤ 0, (46)

where ε > 0 is a design parameter. Using the definition of ua, given by (42), we represent (44)

as

u = ua − 1

g
µσ + us. (47)

Our findings are summarized in the following theorem, whose proof can be found in [12].

Theorem 2 For the closed-loop system,

x(n) = f + gu + η

u = 1

θT

g ξg

(
−θT

f ξf + x
(n)
d − kT e

)
− 1

g
µσ + us

θ̇f = Projθf
(γfσξf)

θ̇g = Projθg
(γgσξgua)




(48)

where us satisfies (45) and (46), we have:

(i)

σ2(t) ≤ e−2µtσ2(0) +
ε

µ
; (49)

(ii) if η = 0 and there exist θ∗f and θ∗g such that f(x) = θ∗f
T ξf(x) and g(x) = θ∗g

T ξg(x),

then the origin of the
[

σ φf φg

]T
-space is stable and hence σ(t), φf(t), and φg(t)

are bounded and e(t) → 0 as t →∞.
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4.3.4 Selecting us in control law (44)

The component us appearing in the control law (44) can be chosen similarly as in the previous

case. We need a lower bound on the gain ks. Let

hf ≥
wwwξf

wwwwwwθ̄f − θf

www and hg ≥
wwwξg

wwwwwwθ̄g − θg

www |ua| .

Given the design parameter ε, select positive numbers ε1, ε2, ε3, and ε4 such that ε =

ε1 + ε2 + ε3 + ε4. Then, ks should satisfy the following condition,

ks ≥ 1

g

(
d2

f + u2
ad

2
g

2ε1
+

h2
f

4ε2
+

h2
g

4ε3
+

d2

4ε4

)
. (50)

When the gain ks satisfies the above condition, us = −ksσ guarantees that (45) and (46)

are satisfied. To show that this is indeed the case, consider the left-hand side of (45). Use

θT
g ξgua + θT

f ξf = x
(n)
d − kT e from (42), and then add and subtract θ∗f

T ξf and θ∗g
T ξgua to

obtain

σ
(
f − x

(n)
d + kT e + gua + gus + η

)
= σ

(
f − θT

f ξf − θT
g ξgua + gua + gus + η

)
= σ

(
f − θ∗f

T ξf − φT
f ξf + (g − θ∗g

T ξg)ua

−φT
g ξgua + gus + η

)
.

Taking into account (50) in the above and rearranging terms gives

σ
(
f − x

(n)
d + kT e + gua + gus + η

)
≤ σ

(
f − θT

f ξf −
d2

f

2ε1
σ

)

+σ

((
g − θ∗g

T ξg

)
ua −

u2
ad

2
g

2ε1

σ

)

−σ

(
φT

f ξf +
h2

f

4ε2

σ

)
− σ

(
φT

g ξgua +
h2

g

4ε3

σ

)

+σ

(
η − d2

4ε4
σ

)
.

Completing the squares, similarly as in the previous case, yields

σ
(
f − x

(n)
d + kT e + gua + gus + η

)
≤

(
f − θT

f ξf√
2df/

√
ε1

)2

+


 (g − θ∗g

T ξg)ua√
2 |ua| dg/

√
ε1




2

20



+

(
φT

f ξf

h2
f/
√

ε2

)2

+

(
φT

g ξgua

h2
g/
√

ε3

)2

+

(
η

d/
√

ε4

)2

≤ 1

2
ε1 +

1

2
ε1 + ε2 + ε3 + ε4

= ε.

Hence, (45) is satisfied, and so is (46) by the fact that us = −ksσ, where ks > 0.

4.4 Examples

In this Subsection, we present simulation results illustrating the performance of the proposed

control strategies. The controllers are tested on a simplified model of an electric drive system

used by Fischle and Schröder [4] to test their fuzzy adaptive controllers. The plant is modeled

by the differential equation,

ẍ = − 5

J
arctan(5ẋ) +

cT

J
u = f(x, ẋ) + gu, (51)

where x is the angular position, cT =10 Nm/A, and J = 0.1 kg·m2. The reference signal

xd is generated by the reference system whose transfer function is given by 400
s2+40s+400

. The

input signal, w(t), to the reference system is changing its value randomly between -1.5 and

1.5 every 0.5 seconds.

Example 1 In this example, we assume that we know g, where g = 100, and that there are

no disturbances affecting the system, that is, η = 0. We use the control law given by (27),

where f(x) is approximated by a fuzzy logic system. We use fuzzy sets for x and ẋ as in

Fischle and Schröder [4]. They are shown in Figure 5. There are two fuzzy sets for x and

six fuzzy sets for ẋ. Thus, we can have twelve fuzzy rules possible. They have the form:

Rule 1: IF x is N AND ẋ is LN THEN y = θ1

...

Rule 12: IF x is P AND ẋ is LP THEN y = θ12,

where θi, i = 1, . . . , 12 are the adaptation parameters. The bounds on the components

of the adaptation parameter vector, θf , are chosen as θ̄f = 200 and θf = −200. All the
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initial values of the components of θf are set to zero. If we had expert knowledge about

the plant operation, we could incorporate this information into the controller design by

selecting appropriately the initial values of the adaptation parameters. We choose df = 50

and dg = 10, and γf = 5000. The remaining design parameters are: µ = 250, ε1 = 50,

ε2 = 50. As η(t) = 0, we do not need to worry about ε3.

We used SIMULINK to simulate the dynamical behavior of the closed-loop system. Its

block diagram is depicted in Figure 6. The regressor generator block produces ξ from the

input x and the parameter adaptation block updates θf . It is made up of sets of integrators

as shown in Figure 7. The s vector that defines the sliding surface, {e : se = 0}, was chosen

as s =
[

40 1

]
. The simulation results are shown in Figures 8 and 9. The output x(t),

the reference signal xd(t), and the tracking error e(t) are shown in Figure 8. The tracking

error, e(t), is so small that one cannot distinguish between the actual state x(t) and the

desired state xd(t). The plots of the control signal u and the components of θf versus time

are depicted in Figure 9. As the fuzzy logic system adapts the parameter θf , the error, e(t),

gets smaller and smaller. If we used smaller ε, then we would achieve even smaller tracking

error at the expense of higher control effort.

Example 2 In this example, it is assumed that f(x) and g are unknown to us and the

control law (44) is employed. Unknown f(x) and g are approximated by two separate fuzzy

logic systems using fuzzy sets shown in Figure 5 for both fuzzy logic systems.

The bounds on the adaptation parameters are chosen as: θ̄f = 200, θf = −200, θ̄g = 150,

and θg = 50. All the initial values of the components of the adaptation parameter vector θf

are set to zero. The initial values of θg are set to 150 to avoid excessively large control signal

in the early stages of the simulation run. The selected gains are γf = 5000 and γg = 1000.

The other design parameters are: ε1 = 50, ε2 = 100, ε3 = 50, and ε4 = 50. The remaining

parameters are the same as in the previous example.

SIMULINK block diagrams of the closed-loop system and the parameter adaptation law

are depicted in Figure 10 and Figure 14, respectively. The disturbance, η, is a random

signal, whose plot versus time is shown in Figure 13. We used d = 100 so that the condition,
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Figure 5: Fuzzy sets for x and ẋ.
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Figure 6: SIMULINK block diagram of fuzzy adaptive robust control system of Example 1.
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Figure 8: Plots of x(t) and error e(t) in Example 1.

24



0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

u

Time (sec)

0 2 4 6 8 10 12 14 16 18 20
−200

−100

0

100

200

θ f

Time (sec)

Figure 9: Plots of control effort u(t) and the components of the parameter vector θf versus

time in Example 1.

|η(t)| ≤ d, is satisfied. We chose, as before, s =
[

40 1

]
. The simulation results are shown

in Figures 12, 13, and 14. As can be seen in Figure 12, the tracking error, e(t), remains very

small even in the presence of the disturbance, η. Plots of the time history of the adaptation

parameters are shown in Figure 14.

5 Presentations

The research progress is monitored through weekly meetings of the principal investigator and

Ph.D. students working on the project to discuss accomplishments and difficulties. During

these meetings the students present the results obtained by them or others to their peers.

Yonggon Lee who is one of the Ph.D. students working on the project, has been chosen a

third place student presenter at the Spring 2000 Workshop of the Electrical and Computer

Engineering Industrial Affiliates Workshop. Our group is in process of preparing papers

to be submitted to the next American Control Conference (ACC) as well as to the next

Conference on Decision and Control (CDC).
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ple 2.
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Figure 11: Parameter adaptation block of Example 2.
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Figure 12: Plots of x(t) and error e(t) versus time in Example 2.
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Figure 13: Plot of control effort u(t) and disturbance η(t) versus time in Example 2.
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Figure 14: Plots of the components of the parameter vectors θf and θg versus time in

Example 2

6 Summary

Fischle and Schröder [4, page 38] observed a major limitation of all existing stable adaptive

fuzzy controllers, including the ones proposed by us, is that they were developed for systems

with unlimited actuators’ authority, that is, for systems with no constraints on the effort

level of the actuators. If we are serious about real-life applications of fuzzy adaptive con-

trollers, then the case of the actuators with limited authority has to be rigorously analyzed.

Another issue of practical importance is the convergence of the adaptation parameters to

their “correct” values. Friedland [5, page 345] states: “One may argue that the failure of

a parameter estimate to converge to its correct value is a subsidiary issue as long as the

adaptive control works (even with the incorrect parameter estimate). This reasoning might

be valid if you can ascertain that the algorithm works for every input to which the system

might be subjected. But in most applications the performance of the algorithm is tested only

with a limited set of inputs. Satisfactory performance for this set of inputs is not a reliable

indicator that its performance will be satisfactory for inputs outside the test set.” In the
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current state-of-the-art adaptive control algorithms, the convergence of the adaptation para-

meters is usually ensured through the so called persistently exciting inputs to the adaptation

algorithms. However, the injection of the persistently exciting signals into the adaptation

algorithms may not be feasible in real life applications. Thus, an alternative approach to the

issues of the convergence of the adaptation parameters is needed.

In the next stage of this research project we will also consider neural adaptive track-

ing controllers for uncertain systems. The controllers will be tested on the ground vehicle

simulation model that is currently being investigated by us. The controllers’ tuning will be

performed using genetic algorithms.
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