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One of the applications of the Lyapunov theorem is to construct robust state-feedback

controllers. A basic issue in the control of dynamic systems is the effect of uncertainties, or

neglected nonlinearities, on the stability of the closed-loop system.

A controller is viewed robust if it maintains stability for all uncertainties in an expected

range. We consider a class of dynamic systems modeled by

ẋ(t) = Ax(t) + Bu(t) + f(t,x(t)) + Bh(t,x(t),u(t)), (1)

where x(t) ∈ R
n, u(t) ∈ R

m, and the functions h and f model uncertainties, or nonlin-

earities, in the system. We refer to h as the matched uncertainty because it affects the

system dynamics via the input matrix B in the same fashion as the input u does. In other

words, the uncertainty h matches the system input u. The vector f models the unmatched

uncertainty . We assume that the uncertain elements h and f satisfy the following norm

bounds:

1. ‖h(t,x,u)‖ ≤ γh‖u‖ + αh‖x‖,

2. ‖f(t,x)‖ ≤ αf‖x‖,

where γh, αh, and αf are known nonnegative constants. We further assume that the matrix

A is asymptotically stable. If this is not the case, we apply a preliminary state-feedback

controller u = −Kx such that A − BK is asymptotically stable. Such a feedback exists

provided that the pair (A,B) is stabilizable. Our goal is to construct a linear state-feedback

controller that would make the closed-loop system asymptotically stable for arbitrary f and

h that satisfy the above norm bounds.
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Theorem 1 [1, p. 168] Suppose that A is asymptotically stable, and P = P⊤ > 0 is the

solution to the Lyapunov matrix equation A⊤P + PA = −2Q for some Q = Q⊤ > 0.

Suppose also that

αf <
λmin(Q)

λmax(P )
and γh < 1.

Then, the state-feedback controller u = −γB⊤Px, where

γ >
α2

h

4 (λmin(Q) − αfλmax(P )) (1 − γh)

stabilizes the uncertain system model (1) for arbitrary f and h that satisfy the norm bounds.

Proof The time derivative of the positive definite function V = x⊤Px evaluated on any

trajectory of the closed-loop system is

V̇ = 2x⊤P ẋ

= −2x⊤Qx − 2γx⊤PBB⊤Px + 2x⊤Pf + 2x⊤PBh.

Our goal is to determine γ̃ > 0 such that if γ > γ̃, then V̇ < 0, which in turn implies

the asymptotic stability of the closed-loop system. To proceed further, recall that if Q is a

symmetric matrix, then

λmin(Q)‖x‖2 ≤ x⊤Qx ≤ λmax(Q)‖x‖2,

and therefore

−x⊤Qx ≤ −λmin(Q)‖x‖2.

Furthermore,

x⊤PBB⊤Px = x⊤PB
(

x⊤PB
)⊤

= ‖x⊤PB‖2.

For a symmetric positive definite matrix P , its induced 2-norm is

‖P ‖ = λmax(P ).

Taking the above relations into account, using the norm bounds on the uncertain elements,

and performing some manipulations yields

V̇ ≤ −2λmin(Q)‖x‖2 − 2γ‖x⊤PB‖2 + 2αfλmax(P )‖x‖2

+2‖x⊤PB‖
(

αh‖x‖ + γhγ‖x
⊤PB‖

)

. (2)
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Let

Q̃ =

[

λmin(Q) − αfλmax(P ) −αh

2

−αh

2
γ(1 − γh)

]

∈ R
2×2. (3)

Then, we can represent (2) as

V̇ ≤ −2
[

‖x‖ ‖x⊤PB‖
]

Q̃

[

‖x‖

‖x⊤PB‖

]

. (4)

For V̇ to be negative it is enough that the leading principal minors of the matrix Q̃ given

by (3) be positive. The first-order leading principal minor is positive by assumption. For

the second-order leading principal minor to be positive it is sufficient that γh < 1 and

γ >
α2

h

4 (λmin(Q) − αfλmax(P )) (1 − γh)
.

The proof is now complete.
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Note that if γh = 0, then the closed-loop system is asymptotically stable if

αf <
λmin(Q)

λmax(P )
and γ >

α2

h

4 (λmin(Q) − αfλmax(P ))
.

Example 1 Consider a dynamic system model

ẋ = Ax + b(u + h(x, u))

=

[

−2 0

0 −1

]

x +

[

1

1

]

(u + h(x, u)).

Let P be the solution of the matrix Lyapunov equation A⊤P +PA = −2I2. We will design

a linear state-feedback controller u = −γb⊤Px so that the origin of the closed-loop system

is uniformly asymptotically stable for any h(x, u) such that

|h(x, u)| ≤ 4‖x‖ +
1

2
|u|. (5)

In particular, we will find a bound γ̃ > 0 so that for any γ > γ̃ the closed-loop system is

uniformly asymptotically stable in the face of uncertainties satisfying the norm bound (5).
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Solving the Lyapunov equation A⊤P + PA = −2I2 yields

P =

[

1/2 0

0 1

]

.

Hence,

u = −γb⊤Px = −γ

(

1

2
x1 + x2

)

.

We obtain a bound on γ by evaluating d
dt

(

x⊤Px
)

on the trajectories of the closed-loop

system. First, we evaluate

d

dt

(

x⊤Px
)

= 2x⊤P ẋ

= 2x⊤P (Ax + b(u + h(x, u)))

= −2x⊤x − 2γx⊤Pbb⊤Px + 2x⊤Pbh.

Taking the norms and performing manipulations yields

d

dt

(

x⊤Px
)

≤ −2x⊤x − 2γ
∣

∣x⊤Pb
∣

∣

2

+ 2
∣

∣x⊤Pb
∣

∣

(

4‖x‖ +
1

2
γ

∣

∣x⊤Pb
∣

∣

)

= −2‖x‖2 − γ
∣

∣x⊤Pb
∣

∣

2

+ 8
∣

∣x⊤Pb
∣

∣ ‖x‖

= −2
[

‖x‖
∣

∣x⊤Pb
∣

∣

]

[

1 −2

−2 γ/2

][

‖x‖
∣

∣x⊤Pb
∣

∣

]

.

For d
dt

(

x⊤Px
)

to be negative definite it is enough that the matrix

[

1 −2

−2 γ/2

]

be positive definite. This is the case whenever

γ > γ̃ = 8.

References
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