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One of the applications of the Lyapunov theorem is to construct robust state-feedback
controllers. A basic issue in the control of dynamic systems is the effect of uncertainties, or
neglected nonlinearities, on the stability of the closed-loop system.

A controller is viewed robust if it maintains stability for all uncertainties in an expected

range. We consider a class of dynamic systems modeled by
w(t) = Az(t) + Bu(t) + f(t, z(t)) + Bh(t, (1), u(t)), (1)

where x(t) € R", u(t) € R™, and the functions h and f model uncertainties, or nonlin-
earities, in the system. We refer to h as the matched uncertainty because it affects the
system dynamics via the input matrix B in the same fashion as the input w does. In other
words, the uncertainty h matches the system input w. The vector f models the unmatched
uncertainty. We assume that the uncertain elements h and f satisfy the following norm

bounds:
L [[h(t,z, w)| < ynllull + anllz],

2. |F @2 < aplle]],

where 73, ap, and o are known nonnegative constants. We further assume that the matrix
A is asymptotically stable. If this is not the case, we apply a preliminary state-feedback
controller u = — K such that A — BK is asymptotically stable. Such a feedback exists
provided that the pair (A, B) is stabilizable. Our goal is to construct a linear state-feedback
controller that would make the closed-loop system asymptotically stable for arbitrary f and

h that satisfy the above norm bounds.



Theorem 1 [1, p. 168] Suppose that A is asymptotically stable, and P = P' > 0 is the
solution to the Lyapunov matriz equation A'P + PA = —2Q for some Q = Q' > 0.

Suppose also that
)\min (Q)

)\max(P)
Then, the state-feedback controller w = —yB' Px, where

ay < and vy, < 1.

4 (Amin(Q) — fAmax(P)) (1 =)

stabilizes the uncertain system model (1) for arbitrary f and h that satisfy the norm bounds.

v >

Proof The time derivative of the positive definite function V = x" Px evaluated on any

trajectory of the closed-loop system is
V = 2z P
= —2¢'Qx—2vx' PBB'Px+2x'Pf +2x' PBh.

Our goal is to determine ¥ > 0 such that if v > 74, then V < 0, which in turn implies
the asymptotic stability of the closed-loop system. To proceed further, recall that if Q is a

symmetric matrix, then

Anin(Q)]|z]? < 2" Q2 < M (Q) |2,

and therefore
—2'Qx < —M\uin(Q)| ||

Furthermore,
' PBB Px—x PB(z' PB) = |z PB|>

For a symmetric positive definite matrix P, its induced 2-norm is
[P = Amax(P).

Taking the above relations into account, using the norm bounds on the uncertain elements,

and performing some manipulations yields

Vo< =20un(Q)]]* — 2y 2" PBI* + 20 Anax(P) | ||
+2lla” PB| (anllz]| + vyl PBI) . (2)
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Let

~ >\min - )\max P —
O - (Q) Sf (P) 2 c R22. (3)
& (L =)
Then, we can represent (2) as
: - ]
V<=2 PB . 4
<2l el 1epmi|e| | o ®

For V to be negative it is enough that the leading principal minors of the matrix Q given
by (3) be positive. The first-order leading principal minor is positive by assumption. For
the second-order leading principal minor to be positive it is sufficient that v, < 1 and

ap

4 (Amin(Q) - afAmax(P)) (1 - ’Yh) .

v o>

The proof is now complete.
(I

Note that if v, = 0, then the closed-loop system is asymptotically stable if

Amin(Q)
>\max<P)

2
ay,

4 ()‘min(Q) - O‘f)‘max(P)) ‘

af < and v >

Example 1 Consider a dynamic system model

x = Ax+blu+ h(xz,u))
=2 0
o -1

Let P be the solution of the matrix Lyapunov equation A" P+ PA = —2I,. We will design

x + (u+ h(x,u)).

a linear state-feedback controller u = —yb' Pz so that the origin of the closed-loop system

is uniformly asymptotically stable for any h(x,u) such that
1
(@, u)| < 42| + Flul ()

In particular, we will find a bound 4 > 0 so that for any v > 7 the closed-loop system is

uniformly asymptotically stable in the face of uncertainties satisfying the norm bound (5).



Solving the Lyapunov equation A" P + PA = —21I, yields

1/2 0
0 11

Hence,

1
u=—vb"'Px = — (5171 + mg) :

We obtain a bound on v by evaluating % (af;TPa:) on the trajectories of the closed-loop

system. First, we evaluate

% (:BTP:B) = 2z' Px
— 22" P (Ax + b(u+ h(z,u)))
= —2x'x —2yx' Pbb' Px + 2x' Pbh.

Taking the norms and performing manipulations yields

% (z'Pz) < —2x'x—2y ’a:TPb|2 +2|z Pb| (4H:1:H + %fy ‘azTPb’)

= 22||z||* -~ !wTPb|2 +8 |:I:TPb| |||

1 =2 edl
~2 /2 || |["Pb| |

For % (acTPa:) to be negative definite it is enough that the matrix

1 =2
-2 /2

be positive definite. This is the case whenever

2| |lz| |2"Pb] |

v >5=_8.
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