

Constructing Robust Controllers Using Lyapunov's Theorem

by
Stanislaw H. Źak

October 20, 2010

One of the applications of the Lyapunov theorem is to construct robust state-feedback controllers. A basic issue in the control of dynamic systems is the effect of uncertainties, or neglected nonlinearities, on the stability of the closed-loop system.

A controller is viewed robust if it maintains stability for all uncertainties in an expected range. We consider a class of dynamic systems modeled by

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{f}(t, \mathbf{x}(t)) + \mathbf{B}\mathbf{h}(t, \mathbf{x}(t), \mathbf{u}(t)), \quad (1)$$

where $\mathbf{x}(t) \in \mathbb{R}^n$, $\mathbf{u}(t) \in \mathbb{R}^m$, and the functions \mathbf{h} and \mathbf{f} model uncertainties, or nonlinearities, in the system. We refer to \mathbf{h} as the *matched uncertainty* because it affects the system dynamics via the input matrix \mathbf{B} in the same fashion as the input \mathbf{u} does. In other words, the uncertainty \mathbf{h} matches the system input \mathbf{u} . The vector \mathbf{f} models the *unmatched uncertainty*. We assume that the uncertain elements \mathbf{h} and \mathbf{f} satisfy the following norm bounds:

1. $\|\mathbf{h}(t, \mathbf{x}, \mathbf{u})\| \leq \gamma_h \|\mathbf{u}\| + \alpha_h \|\mathbf{x}\|$,
2. $\|\mathbf{f}(t, \mathbf{x})\| \leq \alpha_f \|\mathbf{x}\|$,

where γ_h , α_h , and α_f are known nonnegative constants. We further assume that the matrix \mathbf{A} is asymptotically stable. If this is not the case, we apply a preliminary state-feedback controller $\mathbf{u} = -\mathbf{K}\mathbf{x}$ such that $\mathbf{A} - \mathbf{B}\mathbf{K}$ is asymptotically stable. Such a feedback exists provided that the pair (\mathbf{A}, \mathbf{B}) is stabilizable. Our goal is to construct a linear state-feedback controller that would make the closed-loop system asymptotically stable for arbitrary \mathbf{f} and \mathbf{h} that satisfy the above norm bounds.

Theorem 1 [1, p. 168] Suppose that \mathbf{A} is asymptotically stable, and $\mathbf{P} = \mathbf{P}^\top > 0$ is the solution to the Lyapunov matrix equation $\mathbf{A}^\top \mathbf{P} + \mathbf{P} \mathbf{A} = -2\mathbf{Q}$ for some $\mathbf{Q} = \mathbf{Q}^\top > 0$. Suppose also that

$$\alpha_f < \frac{\lambda_{\min}(\mathbf{Q})}{\lambda_{\max}(\mathbf{P})} \quad \text{and} \quad \gamma_h < 1.$$

Then, the state-feedback controller $\mathbf{u} = -\gamma \mathbf{B}^\top \mathbf{P} \mathbf{x}$, where

$$\gamma > \frac{\alpha_h^2}{4(\lambda_{\min}(\mathbf{Q}) - \alpha_f \lambda_{\max}(\mathbf{P}))(1 - \gamma_h)}$$

stabilizes the uncertain system model (1) for arbitrary \mathbf{f} and \mathbf{h} that satisfy the norm bounds.

Proof The time derivative of the positive definite function $V = \mathbf{x}^\top \mathbf{P} \mathbf{x}$ evaluated on any trajectory of the closed-loop system is

$$\begin{aligned} \dot{V} &= 2\mathbf{x}^\top \mathbf{P} \dot{\mathbf{x}} \\ &= -2\mathbf{x}^\top \mathbf{Q} \mathbf{x} - 2\gamma \mathbf{x}^\top \mathbf{P} \mathbf{B} \mathbf{B}^\top \mathbf{P} \mathbf{x} + 2\mathbf{x}^\top \mathbf{P} \mathbf{f} + 2\mathbf{x}^\top \mathbf{P} \mathbf{B} \mathbf{h}. \end{aligned}$$

Our goal is to determine $\tilde{\gamma} > 0$ such that if $\gamma > \tilde{\gamma}$, then $\dot{V} < 0$, which in turn implies the asymptotic stability of the closed-loop system. To proceed further, recall that if \mathbf{Q} is a symmetric matrix, then

$$\lambda_{\min}(\mathbf{Q})\|\mathbf{x}\|^2 \leq \mathbf{x}^\top \mathbf{Q} \mathbf{x} \leq \lambda_{\max}(\mathbf{Q})\|\mathbf{x}\|^2,$$

and therefore

$$-\mathbf{x}^\top \mathbf{Q} \mathbf{x} \leq -\lambda_{\min}(\mathbf{Q})\|\mathbf{x}\|^2.$$

Furthermore,

$$\mathbf{x}^\top \mathbf{P} \mathbf{B} \mathbf{B}^\top \mathbf{P} \mathbf{x} = \mathbf{x}^\top \mathbf{P} \mathbf{B} (\mathbf{x}^\top \mathbf{P} \mathbf{B})^\top = \|\mathbf{x}^\top \mathbf{P} \mathbf{B}\|^2.$$

For a symmetric positive definite matrix \mathbf{P} , its induced 2-norm is

$$\|\mathbf{P}\| = \lambda_{\max}(\mathbf{P}).$$

Taking the above relations into account, using the norm bounds on the uncertain elements, and performing some manipulations yields

$$\begin{aligned} \dot{V} &\leq -2\lambda_{\min}(\mathbf{Q})\|\mathbf{x}\|^2 - 2\gamma\|\mathbf{x}^\top \mathbf{P} \mathbf{B}\|^2 + 2\alpha_f \lambda_{\max}(\mathbf{P})\|\mathbf{x}\|^2 \\ &\quad + 2\|\mathbf{x}^\top \mathbf{P} \mathbf{B}\| (\alpha_h\|\mathbf{x}\| + \gamma_h\|\mathbf{x}^\top \mathbf{P} \mathbf{B}\|). \end{aligned} \tag{2}$$

Let

$$\tilde{\mathbf{Q}} = \begin{bmatrix} \lambda_{\min}(\mathbf{Q}) - \alpha_f \lambda_{\max}(\mathbf{P}) & -\frac{\alpha_h}{2} \\ -\frac{\alpha_h}{2} & \gamma(1 - \gamma_h) \end{bmatrix} \in \mathbb{R}^{2 \times 2}. \quad (3)$$

Then, we can represent (2) as

$$\dot{V} \leq -2 \begin{bmatrix} \|\mathbf{x}\| & \|\mathbf{x}^\top \mathbf{P} \mathbf{B}\| \end{bmatrix} \tilde{\mathbf{Q}} \begin{bmatrix} \|\mathbf{x}\| \\ \|\mathbf{x}^\top \mathbf{P} \mathbf{B}\| \end{bmatrix}. \quad (4)$$

For \dot{V} to be negative it is enough that the leading principal minors of the matrix $\tilde{\mathbf{Q}}$ given by (3) be positive. The first-order leading principal minor is positive by assumption. For the second-order leading principal minor to be positive it is sufficient that $\gamma_h < 1$ and

$$\gamma > \frac{\alpha_h^2}{4(\lambda_{\min}(\mathbf{Q}) - \alpha_f \lambda_{\max}(\mathbf{P}))(1 - \gamma_h)}.$$

The proof is now complete. \square

Note that if $\gamma_h = 0$, then the closed-loop system is asymptotically stable if

$$\alpha_f < \frac{\lambda_{\min}(\mathbf{Q})}{\lambda_{\max}(\mathbf{P})} \quad \text{and} \quad \gamma > \frac{\alpha_h^2}{4(\lambda_{\min}(\mathbf{Q}) - \alpha_f \lambda_{\max}(\mathbf{P}))}.$$

Example 1 Consider a dynamic system model

$$\begin{aligned} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{b}(u + h(\mathbf{x}, u)) \\ &= \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} (u + h(\mathbf{x}, u)). \end{aligned}$$

Let \mathbf{P} be the solution of the matrix Lyapunov equation $\mathbf{A}^\top \mathbf{P} + \mathbf{P} \mathbf{A} = -2\mathbf{I}_2$. We will design a linear state-feedback controller $u = -\gamma \mathbf{b}^\top \mathbf{P} \mathbf{x}$ so that the origin of the closed-loop system is uniformly asymptotically stable for any $h(\mathbf{x}, u)$ such that

$$|h(\mathbf{x}, u)| \leq 4\|\mathbf{x}\| + \frac{1}{2}|u|. \quad (5)$$

In particular, we will find a bound $\tilde{\gamma} > 0$ so that for any $\gamma > \tilde{\gamma}$ the closed-loop system is uniformly asymptotically stable in the face of uncertainties satisfying the norm bound (5).

Solving the Lyapunov equation $\mathbf{A}^\top \mathbf{P} + \mathbf{P} \mathbf{A} = -2\mathbf{I}_2$ yields

$$\mathbf{P} = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}.$$

Hence,

$$u = -\gamma \mathbf{b}^\top \mathbf{P} \mathbf{x} = -\gamma \left(\frac{1}{2}x_1 + x_2 \right).$$

We obtain a bound on γ by evaluating $\frac{d}{dt}(\mathbf{x}^\top \mathbf{P} \mathbf{x})$ on the trajectories of the closed-loop system. First, we evaluate

$$\begin{aligned} \frac{d}{dt}(\mathbf{x}^\top \mathbf{P} \mathbf{x}) &= 2\mathbf{x}^\top \mathbf{P} \dot{\mathbf{x}} \\ &= 2\mathbf{x}^\top \mathbf{P} (\mathbf{A} \mathbf{x} + \mathbf{b}(u + h(\mathbf{x}, u))) \\ &= -2\mathbf{x}^\top \mathbf{x} - 2\gamma \mathbf{x}^\top \mathbf{P} \mathbf{b} \mathbf{b}^\top \mathbf{P} \mathbf{x} + 2\mathbf{x}^\top \mathbf{P} \mathbf{b} h. \end{aligned}$$

Taking the norms and performing manipulations yields

$$\begin{aligned} \frac{d}{dt}(\mathbf{x}^\top \mathbf{P} \mathbf{x}) &\leq -2\mathbf{x}^\top \mathbf{x} - 2\gamma |\mathbf{x}^\top \mathbf{P} \mathbf{b}|^2 + 2 |\mathbf{x}^\top \mathbf{P} \mathbf{b}| \left(4\|\mathbf{x}\| + \frac{1}{2}\gamma |\mathbf{x}^\top \mathbf{P} \mathbf{b}| \right) \\ &= -2\|\mathbf{x}\|^2 - \gamma |\mathbf{x}^\top \mathbf{P} \mathbf{b}|^2 + 8 |\mathbf{x}^\top \mathbf{P} \mathbf{b}| \|\mathbf{x}\| \\ &= -2 \begin{bmatrix} \|\mathbf{x}\| & |\mathbf{x}^\top \mathbf{P} \mathbf{b}| \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & \gamma/2 \end{bmatrix} \begin{bmatrix} \|\mathbf{x}\| \\ |\mathbf{x}^\top \mathbf{P} \mathbf{b}| \end{bmatrix}. \end{aligned}$$

For $\frac{d}{dt}(\mathbf{x}^\top \mathbf{P} \mathbf{x})$ to be negative definite it is enough that the matrix

$$\begin{bmatrix} 1 & -2 \\ -2 & \gamma/2 \end{bmatrix}$$

be positive definite. This is the case whenever

$$\gamma > \tilde{\gamma} = 8.$$

References

[1] S. H. Źak. *Systems and Control*. Oxford University Press, New York, 2003.