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Quadratic Forms

A real quadratic form is the product x⊤Qx, where Q is a specified n × n matrix with real

coefficients and x is an n × 1 real, column, vector. Without loss of generality, the matrix

Q can be taken to be symmetric, that is, Q = Q⊤. Indeed, if Q is not symmetric, we

can always replace it with a symmetric matrix without changing the quadratic form values.

Indeed, because z = x⊤Qx is a scalar, hence z⊤ = z, and we have

(

x⊤Qx
)⊤

= x⊤Q⊤x = x⊤Qx.

Therefore, we can write

x⊤Qx = x⊤

(

1

2
Q +

1

2
Q⊤

)

x = x⊤

(

Q + Q⊤

2

)

x,

where 1

2

(

Q + Q⊤
)

is a symmetric matrix. Thus, the quadratic form values are unchanged

if Q is replaced with the symmetric matrix 1

2

(

Q + Q⊤
)

. From now on, in our study of

quadratic forms, we assume that Q is symmetric.

A quadratic form x⊤Qx, or equivalently, the matrix Q, is called positive semi-definite

if x⊤Qx ≥ 0 for all x. It is positive definite if x⊤Qx > 0 for all x 6= 0. If Q is positive

semi-definite, then we write Q ≥ 0, if it is positive definite, we write Q > 0. We write

Q
1
≥ Q

2
to mean that Q

1
− Q

2
≥ 0. We say that Q is negative semi-definite if x⊤Qx ≤ 0

for all x, it is negative definite if x⊤Qx < 0 for all x 6= 0. Note that Q ≤ 0 if and only if

−Q ≥ 0.

We now present tests for definiteness properties of symmetric matrices. We state these

tests in terms of principal minors of a given real, symmetric, n× n matrix Q with elements

1



qij . We will also give tests for definiteness in terms of eigenvalues of Q. The principal

minors of Q are det Q itself and the determinants of submatrices of Q obtained by removing

successively an i-th row and i-th column. Specifically, for p = 1, 2, . . . , n, the principal

minors are

∆p

(

i1, i2, . . . , ip

i1, i2, . . . , ip

)

= det













qi1i1 qi1i2 · · · qi1ip

qi2i1 qi2i2 · · · qi2ip
...

...
. . .

...

qipi1 qipi2 · · · qipip













1 ≤ i1 < i2 < · · · < ip ≤ n.

The above are called the principal minors of order p.

In the following, we use the fact that if Q = Q⊤, then its eigenvalues are all real.

Theorem 1 The following are equivalent:

(i) The symmetric matrix Q is positive semi-definite.

(ii) Principal minors of Q are nonnegative, that is, for p = 1, 2, . . . , n,

∆p

(

i1, i2, . . . , ip

i1, i2, . . . , ip

)

≥ 0, 1 ≤ i1 < i2 < · · · < ip ≤ n.

(iii) Eigenvalues of Q are nonnegative,

λi(Q) ≥ 0, i = 1, 2, . . . , n.

We now give two tests for Q = Q⊤ to be positive definite; one in terms of its leading principal

minors, and the other in terms of its eigenvalues. The leading principal minors of Q are

∆1

(

1

1

)

= q11, ∆2

(

1, 2

1, 2

)

= det

[

q11 q12

q21 q22

]

,

∆3

(

1, 2, 3

1, 2, 3

)

= det







q11 q12 q13

q21 q22 q23

q31 q32 q33






, . . . , ∆n

(

1, 2, . . . , n

1, 2, . . . , n

)

= det Q.

Theorem 2 The following are equivalent:

(i) The symmetric matrix Q is positive definite.
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(ii) Leading principal minors of Q are positive, that is,

∆p

(

1, 2, . . . , p

1, 2, . . . , p

)

> 0, p = 1, 2, . . . , n.

(iii) Eigenvalues of Q are positive,

λi(Q) > 0, i = 1, 2, . . . , n.

If a given matrix Q ∈ R
n×n is symmetric, then its eigenvalues are all real and there exists

a unitary matrix U such that

U⊤QU =













λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 0 · · · λn













= Λ. (1)

Using the above, one can show that a symmetric positive semi-definite matrix Q has a

positive semi-definite symmetric square root, denoted Q1/2 or
√

Q, that satisfies

Q1/2Q1/2 = Q. (2)

Indeed, it follows from Theorem 1 that if Q = Q⊤ ≥ 0 then its eigenvalues are all nonnega-

tive. Hence,

Λ1/2 =













λ
1/2

1
0 · · · 0

0 λ
1/2

2
· · · 0

...
. . .

...

0 0 · · · λ
1/2

n













(3)

is well defined. Using the fact that U⊤U = In, we can define

Q1/2 = UΛ1/2U⊤, (4)

which has the desired properties.

If Q = Q⊤ is positive semi-definite, and not positive definite, then some of its eigenvalues

are equal to zero. Suppose that Q has r nonzero eigenvalues. Then, there is a unitary matrix,
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say U , such that

U⊤QU =





























λ1 0 · · · 0 0 · · · 0

0 λ2 · · · 0 0 · · · 0
...

. . .
...

. . .
...

0 0 · · · λr 0 · · · 0

0 0 · · · 0 0 · · · 0
...

. . .
...

0 0 · · · 0 0 · · · 0





























. (5)

Let V ∈ R
n×r be a matrix that consists of the first r columns of the matrix U , and let

C =













λ
1/2

1
0 · · · 0

0 λ
1/2

2
· · · 0

...
. . .

...

0 0 · · · λ
1/2

r













V ⊤. (6)

Note that the matrix C is of full rank. We have

Q = C⊤C. (7)

We refer to (7) as a full rank factorization of Q because C is of full rank.

The Kronecker Product

Let A be an m×n and B be a p× q matrices. The Kronecker product of A and B, denoted

A ⊗ B, is an mp × nq matrix defined by

A ⊗ B =













a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB













. (8)

Thus, the matrix A⊗B consists of mn blocks. Using the definition of the Kronecker product,

we can verify the following two properties:

(A ⊗ B) (C ⊗ D) = AC ⊗ BD, (9)

(A ⊗ B)⊤ = A⊤ ⊗ B⊤. (10)
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Let

X =
[

x1, x2, . . . , xm

]

be a n × m matrix, where xi, i = 1, 2, . . . , m are the columns of X . Each xi consists of n

elements. Then, the vectorization operator or stacking operator is defined as

vec(X) =
[

x⊤

1
, x⊤

2
, . . . , x⊤

m

]⊤

=
[

x11 x21 · · · xn1 x12 x22 · · · xn2 · · · x1m x2m · · · xnm

]⊤

(11)

is the column nm-vector formed from the columns of X taken in order. Let now A be an

n × n, and C and X be n × m matrices. Then, the matrix equation

AX = C (12)

can be written as

(Im ⊗ A) vec(X) = vec(C). (13)

Let B be an m × m matrix, then the matrix equation

XB = C (14)

can be written as
(

B⊤ ⊗ In

)

vec(X) = vec(C). (15)

Using the above two facts, we can verify that the Sylvester matrix equation,

AX + XB = C, (16)

where A is n × n, B is m × m, and C is n × m, can be written as

(

Im ⊗ A + B⊤ ⊗ In

)

vec(X) = vec(C). (17)

Let λi, vi be the eigenvalues and eigenvectors, respectively of A, and µj and wj the

eigenvalues and eigenvectors of m × m matrix B. Then,

(A ⊗ B) (vi ⊗ wj) = Avi ⊗ Bwj

= λivi ⊗ µjwj

= λiµj (vi ⊗ wj) . (18)
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Thus, the eigenvalues of A ⊗ B are λiµj, and their respective eigenvectors are vi ⊗ wj for

i = 1, 2, . . . , n, j = 1, 2, . . . , m.

We use the above result to study the matrix equation given by (16). We represent (16)

as

M vec(X) = vec(C), (19)

where

M = Im ⊗ A + B⊤ ⊗ In. (20)

The solution to (19) is unique if, and only if, the mn × mn matrix M is nonsingular. To

find the condition for this to hold, consider the following matrix

(

Im + εB⊤
)

⊗ (In + εA) = Im ⊗ In + εM + ε2B⊤ ⊗ A (21)

whose eigenvalues are

(1 + εµj) (1 + ελi) = 1 + ε (µj + λi) + ε2µjλi (22)

because for a square matrix Q,

λi (In + εQ) = 1 + ελi (Q) .

Comparing terms in ε in (21) and (22), we conclude that the eigenvalues of M are λi + µj,

i = 1, 2, . . . , n, j = 1, 2, . . . , m. Hence, M is nonsingular if and only if

λi + µj 6= 0. (23)

The above is the necessary and sufficient condition for the solution X of the matrix equation

AX + XB = C to be unique.

Another useful identity involving the Kronecker product is

vec(ABC) =
(

C⊤ ⊗ A
)

vec(B) (24)

For further information on the subject of the Kronecker product, we refer the reader to

Brewer [1].
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