

Quadratic Forms and the Kronecker Product

by

Stanislaw H. Źak

September 28, 2010

Quadratic Forms

A real *quadratic form* is the product $\mathbf{x}^\top \mathbf{Q} \mathbf{x}$, where \mathbf{Q} is a specified $n \times n$ matrix with real coefficients and \mathbf{x} is an $n \times 1$ real, column, vector. Without loss of generality, the matrix \mathbf{Q} can be taken to be symmetric, that is, $\mathbf{Q} = \mathbf{Q}^\top$. Indeed, if \mathbf{Q} is not symmetric, we can always replace it with a symmetric matrix without changing the quadratic form values. Indeed, because $z = \mathbf{x}^\top \mathbf{Q} \mathbf{x}$ is a scalar, hence $z^\top = z$, and we have

$$(\mathbf{x}^\top \mathbf{Q} \mathbf{x})^\top = \mathbf{x}^\top \mathbf{Q}^\top \mathbf{x} = \mathbf{x}^\top \mathbf{Q} \mathbf{x}.$$

Therefore, we can write

$$\mathbf{x}^\top \mathbf{Q} \mathbf{x} = \mathbf{x}^\top \left(\frac{1}{2} \mathbf{Q} + \frac{1}{2} \mathbf{Q}^\top \right) \mathbf{x} = \mathbf{x}^\top \left(\frac{\mathbf{Q} + \mathbf{Q}^\top}{2} \right) \mathbf{x},$$

where $\frac{1}{2} (\mathbf{Q} + \mathbf{Q}^\top)$ is a symmetric matrix. Thus, the quadratic form values are unchanged if \mathbf{Q} is replaced with the symmetric matrix $\frac{1}{2} (\mathbf{Q} + \mathbf{Q}^\top)$. From now on, in our study of quadratic forms, we assume that \mathbf{Q} is symmetric.

A quadratic form $\mathbf{x}^\top \mathbf{Q} \mathbf{x}$, or equivalently, the matrix \mathbf{Q} , is called *positive semi-definite* if $\mathbf{x}^\top \mathbf{Q} \mathbf{x} \geq 0$ for all \mathbf{x} . It is *positive definite* if $\mathbf{x}^\top \mathbf{Q} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$. If \mathbf{Q} is positive semi-definite, then we write $\mathbf{Q} \geq 0$, if it is positive definite, we write $\mathbf{Q} > 0$. We write $\mathbf{Q}_1 \geq \mathbf{Q}_2$ to mean that $\mathbf{Q}_1 - \mathbf{Q}_2 \geq 0$. We say that \mathbf{Q} is *negative semi-definite* if $\mathbf{x}^\top \mathbf{Q} \mathbf{x} \leq 0$ for all \mathbf{x} , it is *negative definite* if $\mathbf{x}^\top \mathbf{Q} \mathbf{x} < 0$ for all $\mathbf{x} \neq 0$. Note that $\mathbf{Q} \leq 0$ if and only if $-\mathbf{Q} \geq 0$.

We now present tests for definiteness properties of symmetric matrices. We state these tests in terms of *principal minors* of a given real, symmetric, $n \times n$ matrix \mathbf{Q} with elements

q_{ij} . We will also give tests for definiteness in terms of eigenvalues of \mathbf{Q} . The principal minors of \mathbf{Q} are $\det \mathbf{Q}$ itself and the determinants of submatrices of \mathbf{Q} obtained by removing successively an i -th row and i -th column. Specifically, for $p = 1, 2, \dots, n$, the principal minors are

$$\Delta_p \begin{pmatrix} i_1, & i_2, & \dots, & i_p \\ i_1, & i_2, & \dots, & i_p \end{pmatrix} = \det \begin{bmatrix} q_{i_1 i_1} & q_{i_1 i_2} & \cdots & q_{i_1 i_p} \\ q_{i_2 i_1} & q_{i_2 i_2} & \cdots & q_{i_2 i_p} \\ \vdots & \vdots & \ddots & \vdots \\ q_{i_p i_1} & q_{i_p i_2} & \cdots & q_{i_p i_p} \end{bmatrix} \quad 1 \leq i_1 < i_2 < \cdots < i_p \leq n.$$

The above are called the principal minors of order p .

In the following, we use the fact that if $\mathbf{Q} = \mathbf{Q}^\top$, then its eigenvalues are all real.

Theorem 1 *The following are equivalent:*

- (i) *The symmetric matrix \mathbf{Q} is positive semi-definite.*
- (ii) *Principal minors of \mathbf{Q} are nonnegative, that is, for $p = 1, 2, \dots, n$,*

$$\Delta_p \begin{pmatrix} i_1, & i_2, & \dots, & i_p \\ i_1, & i_2, & \dots, & i_p \end{pmatrix} \geq 0, \quad 1 \leq i_1 < i_2 < \cdots < i_p \leq n.$$

- (iii) *Eigenvalues of \mathbf{Q} are nonnegative,*

$$\lambda_i(\mathbf{Q}) \geq 0, \quad i = 1, 2, \dots, n.$$

We now give two tests for $\mathbf{Q} = \mathbf{Q}^\top$ to be positive definite; one in terms of its leading principal minors, and the other in terms of its eigenvalues. The *leading principal minors* of \mathbf{Q} are

$$\begin{aligned} \Delta_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} &= q_{11}, \quad \Delta_2 \begin{pmatrix} 1, & 2 \\ 1, & 2 \end{pmatrix} = \det \begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}, \\ \Delta_3 \begin{pmatrix} 1, & 2, & 3 \\ 1, & 2, & 3 \end{pmatrix} &= \det \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix}, \dots, \Delta_n \begin{pmatrix} 1, & 2, & \dots, & n \\ 1, & 2, & \dots, & n \end{pmatrix} = \det \mathbf{Q}. \end{aligned}$$

Theorem 2 *The following are equivalent:*

- (i) *The symmetric matrix \mathbf{Q} is positive definite.*

(ii) *Leading principal minors of \mathbf{Q} are positive, that is,*

$$\Delta_p \begin{pmatrix} 1, & 2, & \dots, & p \\ 1, & 2, & \dots, & p \end{pmatrix} > 0, \quad p = 1, 2, \dots, n.$$

(iii) *Eigenvalues of \mathbf{Q} are positive,*

$$\lambda_i(\mathbf{Q}) > 0, \quad i = 1, 2, \dots, n.$$

If a given matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is symmetric, then its eigenvalues are all real and there exists a unitary matrix \mathbf{U} such that

$$\mathbf{U}^\top \mathbf{Q} \mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = \mathbf{\Lambda}. \quad (1)$$

Using the above, one can show that a symmetric positive semi-definite matrix \mathbf{Q} has a positive semi-definite symmetric square root, denoted $\mathbf{Q}^{1/2}$ or $\sqrt{\mathbf{Q}}$, that satisfies

$$\mathbf{Q}^{1/2} \mathbf{Q}^{1/2} = \mathbf{Q}. \quad (2)$$

Indeed, it follows from Theorem 1 that if $\mathbf{Q} = \mathbf{Q}^\top \geq 0$ then its eigenvalues are all nonnegative. Hence,

$$\mathbf{\Lambda}^{1/2} = \begin{bmatrix} \lambda_1^{1/2} & 0 & \dots & 0 \\ 0 & \lambda_2^{1/2} & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^{1/2} \end{bmatrix} \quad (3)$$

is well defined. Using the fact that $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_n$, we can define

$$\mathbf{Q}^{1/2} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^\top, \quad (4)$$

which has the desired properties.

If $\mathbf{Q} = \mathbf{Q}^\top$ is positive semi-definite, and not positive definite, then some of its eigenvalues are equal to zero. Suppose that \mathbf{Q} has r nonzero eigenvalues. Then, there is a unitary matrix,

say \mathbf{U} , such that

$$\mathbf{U}^\top \mathbf{Q} \mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & & & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}. \quad (5)$$

Let $\mathbf{V} \in \mathbb{R}^{n \times r}$ be a matrix that consists of the first r columns of the matrix \mathbf{U} , and let

$$\mathbf{C} = \begin{bmatrix} \lambda_1^{1/2} & 0 & \cdots & 0 \\ 0 & \lambda_2^{1/2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_r^{1/2} \end{bmatrix} \mathbf{V}^\top. \quad (6)$$

Note that the matrix \mathbf{C} is of full rank. We have

$$\mathbf{Q} = \mathbf{C}^\top \mathbf{C}. \quad (7)$$

We refer to (7) as a full rank factorization of \mathbf{Q} because \mathbf{C} is of full rank.

The Kronecker Product

Let \mathbf{A} be an $m \times n$ and \mathbf{B} be a $p \times q$ matrices. The *Kronecker product* of \mathbf{A} and \mathbf{B} , denoted $\mathbf{A} \otimes \mathbf{B}$, is an $mp \times nq$ matrix defined by

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \cdots & a_{2n}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & a_{m2}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}. \quad (8)$$

Thus, the matrix $\mathbf{A} \otimes \mathbf{B}$ consists of mn blocks. Using the definition of the Kronecker product, we can verify the following two properties:

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD}, \quad (9)$$

$$(\mathbf{A} \otimes \mathbf{B})^\top = \mathbf{A}^\top \otimes \mathbf{B}^\top. \quad (10)$$

Let

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1, & \mathbf{x}_2, & \dots, & \mathbf{x}_m \end{bmatrix}$$

be a $n \times m$ matrix, where \mathbf{x}_i , $i = 1, 2, \dots, m$ are the columns of \mathbf{X} . Each \mathbf{x}_i consists of n elements. Then, the *vectorization operator* or *stacking operator* is defined as

$$\begin{aligned} \text{vec}(\mathbf{X}) &= \begin{bmatrix} \mathbf{x}_1^\top, & \mathbf{x}_2^\top, & \dots, & \mathbf{x}_m^\top \end{bmatrix}^\top \\ &= \begin{bmatrix} x_{11} & x_{21} & \cdots & x_{n1} & x_{12} & x_{22} & \cdots & x_{n2} & \cdots & x_{1m} & x_{2m} & \cdots & x_{nm} \end{bmatrix}^\top \end{aligned} \quad (11)$$

is the column nm -vector formed from the columns of \mathbf{X} taken in order. Let now \mathbf{A} be an $n \times n$, and \mathbf{C} and \mathbf{X} be $n \times m$ matrices. Then, the matrix equation

$$\mathbf{AX} = \mathbf{C} \quad (12)$$

can be written as

$$(\mathbf{I}_m \otimes \mathbf{A}) \text{vec}(\mathbf{X}) = \text{vec}(\mathbf{C}). \quad (13)$$

Let \mathbf{B} be an $m \times m$ matrix, then the matrix equation

$$\mathbf{XB} = \mathbf{C} \quad (14)$$

can be written as

$$(\mathbf{B}^\top \otimes \mathbf{I}_n) \text{vec}(\mathbf{X}) = \text{vec}(\mathbf{C}). \quad (15)$$

Using the above two facts, we can verify that the Sylvester matrix equation,

$$\mathbf{AX} + \mathbf{XB} = \mathbf{C}, \quad (16)$$

where \mathbf{A} is $n \times n$, \mathbf{B} is $m \times m$, and \mathbf{C} is $n \times m$, can be written as

$$(\mathbf{I}_m \otimes \mathbf{A} + \mathbf{B}^\top \otimes \mathbf{I}_n) \text{vec}(\mathbf{X}) = \text{vec}(\mathbf{C}). \quad (17)$$

Let λ_i , \mathbf{v}_i be the eigenvalues and eigenvectors, respectively of \mathbf{A} , and μ_j and \mathbf{w}_j the eigenvalues and eigenvectors of $m \times m$ matrix \mathbf{B} . Then,

$$\begin{aligned} (\mathbf{A} \otimes \mathbf{B})(\mathbf{v}_i \otimes \mathbf{w}_j) &= \mathbf{A}\mathbf{v}_i \otimes \mathbf{B}\mathbf{w}_j \\ &= \lambda_i \mathbf{v}_i \otimes \mu_j \mathbf{w}_j \\ &= \lambda_i \mu_j (\mathbf{v}_i \otimes \mathbf{w}_j). \end{aligned} \quad (18)$$

Thus, the eigenvalues of $\mathbf{A} \otimes \mathbf{B}$ are $\lambda_i \mu_j$, and their respective eigenvectors are $\mathbf{v}_i \otimes \mathbf{w}_j$ for $i = 1, 2, \dots, n$, $j = 1, 2, \dots, m$.

We use the above result to study the matrix equation given by (16). We represent (16) as

$$\mathbf{M} \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{C}), \quad (19)$$

where

$$\mathbf{M} = \mathbf{I}_m \otimes \mathbf{A} + \mathbf{B}^\top \otimes \mathbf{I}_n. \quad (20)$$

The solution to (19) is unique if, and only if, the $mn \times mn$ matrix \mathbf{M} is nonsingular. To find the condition for this to hold, consider the following matrix

$$(\mathbf{I}_m + \varepsilon \mathbf{B}^\top) \otimes (\mathbf{I}_n + \varepsilon \mathbf{A}) = \mathbf{I}_m \otimes \mathbf{I}_n + \varepsilon \mathbf{M} + \varepsilon^2 \mathbf{B}^\top \otimes \mathbf{A} \quad (21)$$

whose eigenvalues are

$$(1 + \varepsilon \mu_j)(1 + \varepsilon \lambda_i) = 1 + \varepsilon(\mu_j + \lambda_i) + \varepsilon^2 \mu_j \lambda_i \quad (22)$$

because for a square matrix \mathbf{Q} ,

$$\lambda_i(\mathbf{I}_n + \varepsilon \mathbf{Q}) = 1 + \varepsilon \lambda_i(\mathbf{Q}).$$

Comparing terms in ε in (21) and (22), we conclude that the eigenvalues of \mathbf{M} are $\lambda_i + \mu_j$, $i = 1, 2, \dots, n$, $j = 1, 2, \dots, m$. Hence, \mathbf{M} is nonsingular if and only if

$$\lambda_i + \mu_j \neq 0. \quad (23)$$

The above is the necessary and sufficient condition for the solution \mathbf{X} of the matrix equation $\mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B} = \mathbf{C}$ to be unique.

Another useful identity involving the Kronecker product is

$$\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}^\top \otimes \mathbf{A}) \operatorname{vec}(\mathbf{B}) \quad (24)$$

For further information on the subject of the Kronecker product, we refer the reader to Brewer [1].

References

[1] J. W. Brewer. Kronecker products and matrix calculus in system theory. *IEEE Transactions on Circuits and Systems*, CAS-25(9):772–781, September 1978.