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Quadratic Forms

A real quadratic form is the product ' Qx, where Q is a specified n x n matrix with real
coefficients and @ is an n x 1 real, column, vector. Without loss of generality, the matrix
Q can be taken to be symmetric, that is, @ = Q'. Indeed, if Q is not symmetric, we
can always replace it with a symmetric matrix without changing the quadratic form values.

T

Indeed, because z = ' Q= is a scalar, hence 2" = z, and we have

(mTQw)T —2'Q'x =2"Qu.

Therefore, we can write

' Qr=2a" <1Q + EQT) x=x' (L i QT) x,
2 2 2
where % (Q + QT) is a symmetric matrix. Thus, the quadratic form values are unchanged
if Q is replaced with the symmetric matrix % (Q + QT). From now on, in our study of
quadratic forms, we assume that @ is symmetric.

A quadratic form " Qz, or equivalently, the matrix Q, is called positive semi-definite
if £'Qx > 0 for all . It is positive definite if €' Qx > 0 for all  # 0. If Q is positive
semi-definite, then we write Q > 0, if it is positive definite, we write Q > 0. We write
Q, > Q, to mean that Q, — Q, > 0. We say that Q is negative semi-definite if " Qx < 0
for all @, it is negative definite if z" Qx < 0 for all  # 0. Note that Q < 0 if and only if
-Q >0.

We now present tests for definiteness properties of symmetric matrices. We state these

tests in terms of principal minors of a given real, symmetric, n x n matrix @ with elements
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¢ij. We will also give tests for definiteness in terms of eigenvalues of Q. The principal

minors of Q are det @ itself and the determinants of submatrices of @ obtained by removing

successively an i-th row and ¢-th column. Specifically, for p = 1,2,...,n, the principal
minors are
Qiviv  Givip " Qiyip
Ap . ) » ) ) »p — det Z?Zl 1?22 . Z%ZP 1 S ’Ll < ’L2 << Zp S n.
11, 12, .., 1p : : . :
L qipil qipiZ T qipip -

The above are called the principal minors of order p.

In the following, we use the fact that if Q@ = Q", then its eigenvalues are all real.
Theorem 1 The following are equivalent:

(i) The symmetric matriz Q is positive semi-definite.

(i) Principal minors of Q are nonnegative, that is, forp=1,2,... n,
i, gy ., i o .
A TP >0, 1<ii<iyp<---<ip,<n.
11, 12, .., 1p

We now give two tests for Q@ = Q" to be positive definite; one in terms of its leading principal

minors, and the other in terms of its eigenvalues. The leading principal minors of Q are

1 1, 2 ]
A — 11, A, ) — det qi1 qi12 ’
1 L, 2 Q21 q22 |

qi1 412 413
1, 2 3 1,2 ... n
Aj ( ) =det | go1 g @o3 |-, A0 n ) = det Q.

431 432 Q33

Theorem 2 The following are equivalent:
(i) The symmetric matriz Q is positive definite.
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(ii) Leading principal minors of Q are positive, that is,

1, 2, ...
Al T P ) s, p=12,. 0
1, 2, ..., p

If a given matrix Q € R™*" is symmetric, then its eigenvalues are all real and there exists

a unitary matrix U such that

M O oo 0
vlQu=| . 7 | =A (1)
0 0 --- )\,

Using the above, one can show that a symmetric positive semi-definite matrix @ has a

positive semi-definite symmetric square root, denoted Q2 or \/Q, that satisfies

Q*Q"* = Q. (2)

Indeed, it follows from Theorem 1 that if Q = Q' > 0 then its eigenvalues are all nonnega-

tive. Hence,

A% 0 0
0 A2 0

A= T (3)
0 0 .- A

is well defined. Using the fact that U'U = I,,, we can define
Q1/2 _ UA1/2UT, (4)

which has the desired properties.
If Q = Q' is positive semi-definite, and not positive definite, then some of its eigenvalues

are equal to zero. Suppose that @ has r nonzero eigenvalues. Then, there is a unitary matrix,



say U, such that

A O 0 0 |
0 Ao 0 0
U'QU=|0 0 --- XA 0 - 0. (5)
0
0 0 - 0 0 - 0

Let V € R™" be a matrix that consists of the first r columns of the matrix U, and let

A0 e 0
0 A 0

c=| . ? LV (6)
0 0 .. A2

Note that the matrix C is of full rank. We have
Q= c'c. (7)

We refer to (7) as a full rank factorization of Q because C' is of full rank.

The Kronecker Product

Let A be an m xn and B be a p X ¢ matrices. The Kronecker product of A and B, denoted
A ® B, is an mp X ng matrix defined by

[ allB a12B tee alnB
anB apB - ay,B
AeB=| " T (®)
L amlB am2B T amnB _

Thus, the matrix A® B consists of mn blocks. Using the definition of the Kronecker product,

we can verify the following two properties:

(A®B)(C® D) = AC ® BD, (9)
(A9 B)! = AT@B'. (10)
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Let

X:|:331, L2, ...y Ty

be a n X m matrix, where x;, i = 1,2,..., m are the columns of X. Each x; consists of n

elements. Then, the vectorization operator or stacking operator is defined as

.
vee(X) = [mlT, Ty, ..., w;}

-
= [Ill Tor =+ Tp1 T12 T22 - Tp2 " Tim Toam *°° Tnm (11)

is the column nm-vector formed from the columns of X taken in order. Let now A be an

n X n, and C and X be n x m matrices. Then, the matrix equation
AX =C (12)

can be written as
(I, ® A)vec(X) = vec(C). (13)

Let B be an m x m matrix, then the matrix equation
XB=C (14)

can be written as
(B' ® 1) vec(X) = vec(C). (15)

Using the above two facts, we can verify that the Sylvester matrix equation,
AX +XB=C, (16)
where A is n x n, B is m x m, and C is n X m, can be written as
(I,®A+B'®1I,)vec(X) = vec(C). (17)

Let \;, v; be the eigenvalues and eigenvectors, respectively of A, and p; and w; the

eigenvalues and eigenvectors of m x m matrix B. Then,

= )\ivi & ,Uj’l_Uj
= iy (v @ wj). (18)



Thus, the eigenvalues of A ® B are A;j1;, and their respective eigenvectors are v; ® w; for
i=1,2,....m,7=1,2,...,m.
We use the above result to study the matrix equation given by (16). We represent (16)
as
M vec(X) = vec(C), (19)

where
M=I1,2A+B"'®I,. (20)

The solution to (19) is unique if, and only if, the mn x mn matrix M is nonsingular. To

find the condition for this to hold, consider the following matrix
(In+eB")®@ I, +cA)=1,01,+ecM+e’B'® A (21)
whose eigenvalues are
(T +ep) (T4+eX) =1+ (uj + \) + 2\ (22)
because for a square matrix Q,
ANi(l,+eQ)=1+e)(Q).

Comparing terms in € in (21) and (22), we conclude that the eigenvalues of M are \; + 5,

1=1,2,...,n,7=1,2,...,m. Hence, M is nonsingular if and only if
Ai + iy # 0. (23)

The above is the necessary and sufficient condition for the solution X of the matrix equation
AX + X B = C to be unique.

Another useful identity involving the Kronecker product is

vec(ABC) = (C' ® A) vec(B) (24)
For further information on the subject of the Kronecker product, we refer the reader to
Brewer [1].
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