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1 The Laplace Transform Defintion

The Laplace transform is an operator that transforms a function of time, f(¢), into a new
function of complex variable, F'(s), where s = 0+ jw, as illustrated in Figure 1. The operator
L denotes that the time function f(¢) has been transformed to its Laplace transform, denoted
F(s). The Laplace transform is very useful in solving linear differential equations and hence

Figure 1: Schematic representation of the Laplace transform operator.
in analyzing control systems.
To obtain the Laplace transform of the given function of time, f(¢),

1. multiply f(¢) by a converging factor e=*!. This is a factor that decreases to zero as

time increases to infinity;

2. Integrate f(t)e™*" with respect to time between the limits 0~ and oo to obtain the

Laplace transform of f(t),

F(s) = £(f(0) = [ flyeae

0-




—_— E_l >

Figure 2: Schematic representation of the inverse Laplace transform operation.

The lower limit of integration is 0~, rather than 0, to account for the effect of “instanta-
neous energy transfer”.

The above definition of the Laplace transform is also referred to as the one-sided or
unilateral Laplace transform. In the two-sided, or bilateral, Laplace transform, the lower
limit is —oo. For our purposes the one-sided Laplace transform is sufficient.

If we want to reverse the operation and take the inverse transform, back to the time
domain, we write

LTHE(s)) = f(t).
Taking the inverse Laplace transform is illustrated in Figure 2.
Because we are using the one-sided Laplace transform, we define all functions, whose

Laplace transforms we compute, to be zero for ¢ < 0~. To proceed, we recall the definition
of the unit step function denoted 1(¢),

1 if t>0
1(?) = -
(®) {Oif t<0.

The unit step function is also called the Heaviside function.

Example 1 Find the Laplace transform of
f(t) = e™"1(t),

where a is a real constant. A graph of f(¢) for a = 3 is shown in Figure 3. We have

L(et1(t)) = /

The above integral exists if

o0 [e.9]

e~ e St (t)dt = / e~ (@)t

R(a+s) > 0.
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Figure 3: A plot of e 31().

The region of the s-plane for which the Laplace transform exists is called the Region of
Convergence and abbreviated ROC. Since s = ¢ + jw, the ROC, in our example, is the
region in the s-plane where

0<Ra+s)=Ra+o+jw)=a+o,

that is, the region where ¢ > —a. Proceeding with the integration, we obtain

Le1(t) = (_ ! e-(m)t)

a-+s 0-

1 _
= <_ e—(a—l—s)oo) B <_ 1 o~ (a+s)0 ) _
a+s a+s

For s in the ROC, the first term tends to zero. Hence,

[e.e]

1

L1t =

Using the Laplace transform of the exponential function, we can easily find the Laplace
transform of the unit step. Indeed, if a = 0, then f(t) = e7*1(t) = 1(¢). Hence,

(1)

£OM) =1




2 Linearity Property of the Laplace Transform

The Laplace transform of the sum, or difference, of two functions of time is equal to the
sum, or difference, of the transforms of each function, that is,

L(fi(t) £ f2(t)) = L(f1(t)) £ L(fa(t)) (2)

Indeed,

LA+ f(D) = / T () £ lt) et

= filt)e S dt £ [ fot)e ™ dt
0— (e

= L(fi(t) £ L(f2(t)).

The Laplace transform of the product of a real or complex constant K and a time function
f(t) is equal to the product of the constant and the transform of the time function, that is,

LK) =KL(f(t)). (3)

Indeed,
L(Kf(t)) = Kft)e ®'dt =K [ f(t)e*'dt = KL(f(t)).

0~ 0~
The above two properties can be represented in the form

LK) £ f(0) = KL (A1) £ £(f2(1))

Example 2 To find the Laplace transform of

ft) = K1(t),

where K is a constant, we can use (3) and the Laplace transform of the unit step, given

by (1), to obtain

LKI(®) = KL (1(t) = -

S

Example 3 We will use the linear property of the Laplace transform to find the Laplace
transform of
f(t) = sinwt.
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First, recall the Euler formula,
e/t = coswt + j sinwt.

Hence
)
e " = coswt — j sin wt.

Subtracting the second of the above expressions from the first one and dividing the result
by 25 gives

6jwt —jwt

. —e
sin wt =

2j

. eIwt — gmiwt 1, . .
L (sinwt) =L (T) —r <Z (et — e~ t)) .

Applying to the above (3) yields

Therefore,

1 ) )
L (sinwt) = 2—j£ (e/F — e

Applying now (2), we obtain

£ (sinwt) = = (£ () — £ (¢71Y).

2j
We then use twice the formula for the Laplace transform of the exponential to get
1 1 1
E(sinwt)z—,( — — . )
27 \s—jw s+ jw

Performing algebraic manipulations gives

w

E (Sin C()t) = m

Similarly, we obtain

Jwt —Jjwt
L (coswt) =L <%) :

Hence,

S

£ (COS u)t) = m




3 Laplace Transforms of Derivatives

We will now show that

c (%(tt)) — sF(s) — £ (0)

where F(s) = L(f(t)) and f (07) is the initial value of f, that is, the value of f at 0~. Thus,
differentiating in the time domain corresponds to multiplying F'(s) by s and then subtracting

the initial value of f(t). To derive the above formula, we apply the definition of the Laplace

(T0) - [P0 "

and then evaluate the integral by integrating by parts. Recall that the formula for integrating

transform,

by parts can easily be derived from the formula for the derivative of the product of two
functions. We use the notation,

Then, we have
(wv) = u'v + uv'.

Integrating the above and rearranging gives

/ W = uv — / ', (5)

d
u = —f and v =e %,

dt

We let

Then applying (5) to (4), we obtain

c(T0) = er015 = [T s (e

Assuming that f(¢) is Laplace transformable, the value of e™*' f(¢) at t = oo is zero. Hence,
the right-hand side of the above reduces to

L <%(tt)> =—f(07)+s 000 f(t)e 'dt = sF(s) — f(07).

Thus, we showed that differentiation in the time domain corresponds to an algebraic opera-
tion in the s domain.

Using the Laplace transform of the first derivative of a time function, we can easily
determine the Laplace transform of higher-order derivatives. Indeed, to find the Laplace

d?f(t)
di?

transform of , we let



Then,

£lo0) = 6t = £ () = sr) - 7 (0). @
Note that
Pi(E) _ dg(t)
dt? dt
Hence,

L(#%Q)zﬁ&%?):smﬁ—g@j.

Substituting into the above (6) gives

c(ﬁ;”):s@F@y_fmq)_g@j.

Observing that ¢ (07) = $7 we get

E (dfz(t>) — 82F(8) o Sf (O—) . df (0_>

dt? dt

Successively applying the above arguments, we can obtain the Laplace transform of the n-th
time derivative,

. (df"(t)) _ () i (o) @ @) 0) 4T

dtn a5 T g dtn—1

4 Solving Differential Equations Using Laplace Trans-

form

We now illustrate how to use the Laplace transform and inverse Laplace transform to solve
linear ordinary differential equations. After taking the Laplace transform of both sides of
a differential equation and performing required manipulations in the s domain, we need to
reconstruct the solution in the time domain. This is achieved using the inverse Laplace
transform.

Example 4 We will solve the following differential equation using the Laplace transform,

d*x(t) dx(t)
2 I +7 7 + 5x(t) = 101(¢),
subject to the initial conditions
dz (07)
-1 o )
dt ) € (0 ) ?



where 1(t) is the unit step function.
We take the Laplace transform of both sides of the differential equation to get

oL (dzgﬂ) 7L (dﬁ”) +5L (2(t)) = 10£ (1(¢)).

Using Laplace transforms of time derivatives of a function of time and the Laplace transform
of the unit step function, we obtain

2 <s2X(s) — sz (07) — d:vi)‘)) +7(sX(s) =z (07)) +5X(s) = %

Substituting into the above the initial conditions and rearranging gives

10 10 — 4s% — 12
(2% +Ts+5) X(s) = — —ds — 12 = S
s s
Hence,
X(s) —45* — 125+ 10 —25% —6s+5 —2s% —6s+5 (7)
S) = = == .
s(2s2+7s+5)  s(s2+3554+25) s(s+25)(s+1)

We now need to reconstruct the solution of the differential equation in the time domain. In
other words, given X (s) we want to obtain z(¢) in which z(t) is zero for t < 0 such that
X(s) = L(z(t)). Thus,

w(t) = L7 (X(s)).

To proceed, note that X (s) as given by (7) is a rational function of s, that is, X (s) is a ratio
of two polynomials in s, in which the degree of the numerator with respect to s is smaller
than the degree of the denominator. Such a rational function is called strictly proper and
can be expanded into a sum of partial fractions by writing a term or a series of terms for
each zero of the denominator. We obtain

_K1+ Ko N K
s s+25 s+1

X(s) (8)
We will now compute the constants K;’s. We can do so by representing the right-hand side
of the above as a rational function and then comparing the resulting numerator with the
numerator of (7). We represent (8) as

Ki(s+25)(s+ 1)+ Kas(s+ 1)+ Kss (s + 2.5)
s(s+25)(s+1)
(K1 + Ko+ K3) s* + (35K, + Ko + 2.5K3) s + 2.5K)
s(s+25)(s+1)

X(s) =




Comparing coefficients of like powers of the numerators of (7) and (9) gives three algebraic
equations in three unknowns,

Kl +K2+K3 = =2
35K, + Ky +25K3 = —6

Solving the above system of equations gives

Substituting the above into (8) yields

2 2 6
X(s) = - — .
(5) s+s+2.5 s+1

Applying the inverse Laplace transform to the above, we obtain

2 2 6
=(t) = £(§+s+2.5_s+1)

_ c(g) +£(8+22_5) _£<si1)

= (2427 —6e7") 1(1).

5 Laplace Transforms of Integrals

We first consider taking the Laplace transform of

. f(x)dx. (10)

Let F(s) denote the Laplace transform of f(¢), that is, F'(s) = L(f(t)). We find the Laplace
transform of (10) using integration by parts to obtain

c( Ot f(:):)d:)s) = / N ( Ot f(a:)dx) e~*tdt. (11)

Recall the formula for integration by parts,

/u/vzuv—/uz/.
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Let

1 t
u=——e"*" and v= f(z)dz
s -
Note that p P
v
@ dt ), (z)dx = f(1).

Integrating (11) by parts gives

oo

' 1 —st ! )dx 1 * —st
E( . f(x)dx) = . f(z)d N + . / e f(t)dt.

The first term on the right-hand side is zero at both the lower and upper limits. The value
at the lower limit, ¢ = 07, is clearly zero. The value at the upper limit, ¢ = oo, is zero
because we assumed that f(t) is Laplace transformable. Hence,

E(Otﬂ@¢0::Ff) (12)

We next find the Laplace transform of

[;ﬂ@m. (13)

Applying the definition and using the fact that the Laplace transform is linear yields

L([;ﬂ@@):£<[;ﬂ@m>+c<;f@mazﬁug+5@)

The limits of the first integral are constant, therefore the integral will be a constant. Hence,

O fla)dx
Fi(s) = 7f_oo fs( ) )
while by (12), .
ggp:iﬁ
Therefore,
t s O f(2)dx
L ( } f(x)dx) = Fi ) + [ J;( ) (14)
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Example 5 We find the Laplace transform of the voltage, v (t), across a capacitor C'. We
have

Using (14) gives )
11(s) | 2 Sui@)dn

L (vo(t)) =

C’ s s
Since f x)dzx is the charge, ¢, on the capacitor at t = 0~ and v = ¢/C, we obtain
I(s)  ve(07)
L t) =—
(wo(t) = 5 4

6 More Properties of the Laplace Transform

We will now show that translation in the time domain corresponds to multiplication by an
exponential in the s domain, that is,

L(ft—a)u(t—a))=eF(s), a>0

where F'(s) = L(f(t)). We have

L(f(t—a)u(t—a))= f(t—a) (t —a)e *'dt = / f(t—a)e dt,

0-

because u(t — a) = 0 for t < a. Next, we change the variable of integration. We let
r=1t—a.

Then, x = 07 when t = a=, x = oo when t = oo, and dxr = dt. Substituting the above
into (15) yields

L(fit—a)u(t—a)) = h f(z)e *@tIdy = ¢=5a h f(x)e™**dr = e"*F(s),

0~ 0~

which is the desired result.
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We will now prove the time/frequency scaling property,

1 S
L(f(at)) = —F (5) . a>0
Indeed, applying the Laplace transform yields
L(f(at)) = f(at)e *'dt. (15)

-
Let # = at. Then, dt = 1dz. Substituting the above into (15) gives
1 [ s 1
Lif(at) =~ [ f@eDdr=—r (),
a Jo- a \a

which was to be shown.
Using the sifting property we can show that

L(6(H) =1

Indeed, applying the definition of the Laplace transform and using the sifting property, we

obtain
0+

E(é(t)):/ooé(t)e_“dt:eo/ S(t)dt = 1.

7 The z-Transform Definition

The z-transform is an operator denoted Z(-) that, when applied to a sequence of numbers
produces a function of a variable z.

Definition 1 For a given sequence of numbers

y(0),y(1),...,y(k),...

its z-transform is the series defined as

— y(k)

Y(z) = Z(y(k)) = Z Tk

k=0

Example 6 We find the Z-transform of the sampled unit step, f(kT) = 1. The Z-transform

of this sequence is

F(z) = Y f(kT)z7"



f(KT) F(z)

Figure 4: The Z-transform operator is acting on a sequence of numbers resulting in a function
of the variable z.

If z is a complex variable such that |z| > 1, then the above sequence converges and we have

1

1-1/z
z

F(z) =

z—1

Example 7 We find the Z-transform of the sampled unit ramp, f(kT) = k7. The Z-
transform of this sequence is

F(z) = Z kTz"
k=0
= T(z" 427243272 +-1) (16)
Multiplying both sides of the above by z gives
2F(z) =T (14227 +3272+--+) (17)
Subtracting (16) from (17) yields

2F(z2) = F(z) = (z—1)F(2)

- . (18)



Hence, the Z-transform of f(kT) = kT is

z
Z(kT) = T(z — 1y (19)
Example 8 We now find the Z-transform of the geometric sequence
f(k) = a*". (20)
We obtain
o kT 5
2Ty =S 21
(™) ; zk z—aTl (21
for [z| > |a”|.

8 Some Properties of the Z-Transform

We analyze now three basic properties that are especially useful when computing transforms
of more complicated sequences.
Linearity property: The Z-transform is a linear operator, that is,

(i) if F1(2) = Z(f(kT)) and Fy(2) = Z(fo(kT)) then

(i) if F(z) = Z(f(kT)) then
Z(cf(kT)) = cF(z),
where c is a real or complex number.

We can represent the above two properties as: if Fi(z) = Z(f1(kT)) and Fy(z) = Z(f2(kT)),
and c is a real or complex number, then
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Z-transform of a delayed sequence: If the sequence f(kT') has the Z-transform F'(z),
then the unit delayed sequence

gory - {16 k2

has the Z-transform

G(z) = 27'F(2). (22)
We use the definition of the Z-transform to prove the above property;
G(z) = Y =z Fg(kT)
k=0
= Y 2 f((k=1)T)
k=1
= Y (k- 1T
k=1
= =) 2T
5=0
= 2'F(2).

Z-transform of an advanced sequence: If the sequence f(kT') has the Z-transform F'(z),
then the unit advanced sequence h(kT) = f((k+ 1)T), k > 0, has the transform

Z(f((k+1)T)) = 2F(z) — 2f(0). (23)
To prove the above, we apply the definition of the Z-transform to obtain
H(z) = > 2 *h(kT)
k=0
=S R+ )T
k=0
= S sk )T
k=0

= 2 Z7f(T)
j=1

= 2) 27 f(§T) - 2f(0)

J=0

= zF(z) — zf(0).
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Example 9 We find the Z-transform of the delayed geometric sequence,

0 for k=0
F(KT) = { a®*= VT for k> 0. (24)

Applying (22) to the geometric sequence (20) yields

1

z—a”l

Z(f(kT) =

(25)

9 Solving Difference Equations Using the Z-Transform

The Z-transform is a very effective tool for solving linear, constant-coefficients difference
equations. The basis for the method is the Z-transform of an advanced sequence given
by (23). Repeated application of this property gives

Z(f((k+2)T)) = 2°F(2) — 2° f(0) — 2£(T). (26)
Applying again (23) to (26) gives
Z(f((k+3)T)) = 2°F(2) = 2°f(0) = 22 f(T) — 2f(2T) (27)
and so on.

Example 10 We solve the difference equation
o[k + 1)+ 3zk] =2, k=0,1,...,

where z(0) = 0. Applying the Z-transform to both sides of the above difference equation

gives
2X(2) — 22(0) + 3X(2) = . i 5
Hence, ;
= te—y

which is a strictly proper rational function of z. We represent X (z) in partial fraction form

as
A B

X(z)=2+3+z_2,
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where

3 2
A= (E+3)X()loy =5 and B=(:-2)X(2).., = ;.
Therefore,
2
X(2) = 3/5 /5 .
z+3 z—-2

We use (25) when applying the inverse Z-transform to the above,
x[k] = {

Example 11 We solve the difference equation

for k=0
(=3)F1 4 22871 for k>1

uw O

wlk + 1)+ 3z[k] =2, k=0,1,...,

where z(0) = 5. Applying the Z-transform to both sides of the above difference equation

gives
z

z—2

2X(2) — zz(0) + 3X(z2) =

Hence,
. 522—-92 z(52—9)
X&) = -9 " G o=

The above rational function is not strictly proper so we use a different approach than in

Example 10. In this example z is a factor of the numerator so we can represent the above as

X(z)  52-9
2 (2+3)(z-2)

and express the right hand side in partial fraction format as

X(2) _24/5  1)5

z 243 z2-2

Th
s _24 z 1 =z

X(z)=— — .

=53 52

Taking into account (21) when applying the inverse Z-transform yields
24 1

5(—$k+gﬁ, k>0
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