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Early amplifiers were made of crude materials that tended to disinte-

grate over use, causing the amp to “run away.” Not only would an aging

relay amplify the phone signal, it would mistakenly compound any tiny

deviation from the range it expected until the mushrooming error filled

and killed the system. What was needed was Heron’s regula, a counter

signal to rein in the chief signal, to dampen the effect of the perpetual

recycling. Black came up with a negative feedback loop, which was

designated negative in contrast to the snowballing positive loop of the

amplifier. Conceptually, the electrical negative feedback loop is a toilet

flusher or thermostat. This braking circuit keeps the amplifier honed

in on a steady amplification in the same way a thermostat hones in on

a steady temperature. But instead of metallic levers, a weak train of

electrons talks to itself. [6, page 116]

1 What Is a System?

A system is a collection of interacting components. An electric motor, an airplane, as well as

a biological unit such as the human arm are examples of systems. A system is characterized

by two properties. They are:

1. the interrelations between the components that are contained within the system,

2. the system boundaries that separate the components within the system from the com-

ponents outside.

The system boundaries can be real or imagined. They are elastic in the sense that we

may choose, at any stage of the system analysis, to consider only a part of the original system

as a system on its own. We call it a subsystem of the original system. On the other hand,

we may decide to expand the boundaries of the original system to include new components.

In Figure 1, we represent system’s boundaries using a box.

The interactions between the system components may be governed, for example, by

physical, biological, or economical laws. In dealing with systems, we are interested in the
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Figure 1: Representation of a system.

effects of external quantities upon the behavior of the system quantities. We refer to the

external quantities acting on the system as the inputs to the system. The output of the system

is its response to the input. The outputs are internal quantities available for measurement.

A system is a continuous-time system if it accepts continuous-time signals as its inputs

and produces continuous-time signals as its outputs. We use the lowercase italic u(t) to

denote the input of the continuous-time single-input system, where the time t is assumed

to range from −∞ to ∞. For the multi-input continuous-time system, we use the boldface

italic u(t) to denote its input, where u(t) is an m × 1 column vector, that is,

u(t) =













u1(t)

u2(t)
...

um(t)













.

Similarly, the output of the single-output continuous-time system will be denoted as y(t),

while the output of the multi-output continuous-time system will be denoted as

y(t) =













y1(t)

y2(t)
...

yp(t)













,

that is, the output y(t) is a column vector composed of p components.

A system is a discrete-time system if it accepts discrete-time signals as its inputs and

produces discrete-time signals as its outputs. An example of a discrete-time signal is shown

in Figure 2.

A discrete-time signal can be viewed as a sequence of points obtained from measurements

at successive times. Thus a discrete-time sinal has a natural temporal ordering. We consider

only the case where all discrete-time signals have the same sampling period denoted h.

We use the lowercase italic u[k] to denote the input of the discrete-time single-input

system, where k denotes discrete time instant and is assumed to range from −∞ to ∞.
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Figure 2: An example of a discrete-time signal with the sampling period h = 0.2 sec.

Thus,

u[k] := u(kh),

where the symbol “:=” denotes arithmetic assignment. Thus the statement “u[k] := u(kh)”

should be interpreted to mean “u[k] becomes u(kh).” For the multi-input discrete-time

system, we use the boldface italic u[k] to denote its input, where u[k] := u(kh) is an m× 1

vector, that is,

u[k] =













u1[k]

u2[k]
...

um[k]













.

Similarly, the output of the single-output discrete-time system will be denoted as y[k], where

y[k] := y(kh). The output of the multi-output discrete-time system will be denoted as

y[k] =













y1[k]

y2[k]
...

yp[k]













,

that is, the output y[k] is a column vector composed of p components.
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1.1 Memoryless, Causal, and Lumped Systems

A system is a memoryless system if its output at time t0 depends only on the input applied at

t0 and is independent of the input applied before t0, that is, current output of a memoryless

system depends only on its current input; it is independent of past inputs. An example of

memoryless system is a circuit consisting of only resistors.

In a causal or non-anticipatory system its current output may depend on current and

past inputs but not on future inputs. In a non-causal system, its current output depends

on future input. Such a system can predict or anticipate what inputs will be applied in the

future. Physical systems have no such capability, that is, physical systems are causal.

To proceed, we consider, following Kailath [4, p. 63], a simple system consisting of a

capacitor and a voltage source as shown in Figure 3. The input u is a current through the

Figure 3: A circuit where the the past input from −∞ up to t affects the current output at

time t.

capacitor and the output y is a voltage x across the capacitor. The relation between voltage

and current for a capacitor has the form,

y(t) =
1

C

∫ t

−∞

u(τ)dτ.

It follows from the above that the system output is affected by its past input from −∞

to time t. Tracking the past inputs may be impractical if not impossible. To alleviate the

problem, the concept of state is introduced that we discuss next.

The condition or the state of the system are described by the state variables denoted xi.

The state variables provide the information that together with the knowledge of the system

inputs enable us to determine the future state of the system. In other words, “A dynamical

system consists of a set of possible states, together with a rule that determines the present

state in terms of past states” [1, page 1].
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Definition 1 [2, p. 6] The state x(t0) of a system at time t0 is the information at t0 that,

together with the input u(t), for t ≥ t0, determines uniquely the output y(t) for all t ≥ t0.

Returning to the example above, we select the voltage across the capacitor as the system

state, which is also its output. Then, we write

y(t) = x(t)

=
1

C

∫ t

−∞

u(τ)dτ

=
1

C

∫ t0

−∞

u(τ)dτ +
1

C

∫ t

t0

u(τ)dτ

= x(t0) +
1

C

∫ t

t0

u(τ)dτ.

Thus, if we know the initial state x(t0) and the current input u(t), then the past input is

irrelevant in the process of calculating the output y(t) for t ≥ t0 because the initial state

“summarizes” the past input.

A system is a lumped system if the number of state variables is finite, that is, the state

vector x is composed of finite number of components. A simple example of lumped system

is the circuit shown in Figure 3. More examples of lumped systems are given in Section ??.

A system is distributed if its state consists of infinitely many components. We now give

an example of a distributed system.

Example 1 [2, p. 7] Consider the unit-time delay system model of the form,

y(t) = u(t− 1).

In this example, the output is the input delayed by one time unit. To determine y(t) for

t > t0, we need the information about u(t) on the time interval [t0 − 1, t0]. Thus the initial

state of this time-delay system is the set of points, {u(t) : t ∈ [t0 − 1, t0]}. However, there

are infinitely many points u(t) on this interval. Thus, the above time-delay system is a

distributed system because its state is infinitely dimensional.

In practice it is often not possible or too expensive to measure or determine the values

of all of the state variables. Instead, only their subset or combination can be measured.

The system quantities whose behavior can be measured or observed constitute the system’s

outputs.
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1.2 Formulation of the Control Problem

In engineering applications, when dealing with dynamic systems, we are interested in speci-

fying the system inputs that force the system states or outputs to behave with time in some

pre-specified manner. That is, we are interested in controlling the system states or outputs.

This is accomplished by means of a controller whose task is to produce the required system’s

inputs that in turn result in the desired system’s outputs. An interconnection of the system

and a controller is called a control system. In Figure 4 and 5, we show two different types of

control systems that we discuss in the next section. Constructing a controller is a part of the

control problem. The essential elements of the control problem, as described by Owens [9,

page 181], are:

1. a dynamic system to be controlled,

2. a specified objective for the system,

3. a set of admissible controllers, and

4. a means of measuring the performance of any given control strategy to evaluate its

effectiveness.

We now examine these elements one by one. The first step in the controller design

procedure is the construction of a truth model of the dynamics of the process to be controlled.

The truth model is a simulation model that includes all the relevant characteristics of the

process. The truth model is too complicated for use in the controller design. Thus, we need to

develop a simplified model that can be used to design a controller. Such a simplified model is

labeled by Friedland [3] as the design model. The design model should capture the essential

feature of the process. During the modeling process, properties of the system, physical

constraints, and technical requirements should be taken into account. We discuss in more

detail the process of constructing mathematical models of physical systems in sections ??

and ??.

The objective of a control system is to complete some specified task. This can be ex-

pressed as a combination of constraints on the output or state variables and limits on the

time available to complete the control objective. For example, the objective of a controller

might be to force the output, of a single output system, to settle within a certain percentage

of the given value after pre-specified time.

Control input signals are obtained from physical devices capable of providing only a

limited amount of energy. We term the class of controllers that can be considered for the

given control design problem as the set of admissible controllers.
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We can evaluate the performance of any given control law by visual inspection of the tran-

sient characteristics of the controlled system after the design is complete. But this method

of assessment of the effectiveness of the given control strategy is highly inaccurate. We

therefore try to quantify the means of evaluating performance in the form of a performance

index or cost functional at the beginning of the design process. We construct a numerical

index of performance whose value reflects the quality of any admissible controller in accom-

plishing the system objective. This performance index is assumed to have the property that

its numerical value decreases as the quality of the controller increases. This is the reason

why we sometimes refer to the performance index as the penalty functional. The “best”

controller then is the one that produces the smallest value of the performance index. We call

an admissible controller that simultaneously ensures the completion of the system objective

and the minimization of the performance index an optimal controller for the system.

1.3 Open-Loop Versus Closed-Loop

We distinguish between two types of control systems. They are:

• open-loop control systems, and

• closed-loop control systems.

An open-loop control system usually contains:

1. A process to be controlled, labeled plant,

2. The controlling variable of the plant, called the plant input, or just input for short,

3. The controlled variable of the plant, called the plant output, or just output for short,

4. A reference input, which dictates the desired value of the output,

5. A controller that acts upon the reference input in order to form the system input which

would force the behavior of the output in accordance with the reference signal.

Note that the plant and controller themselves can be considered as systems on their own.

A schematic representation of an open-loop system is depicted in Figure 4. In an open-loop

control system the output has no influence on the input or reference signal. The controller

operates without taking into account the output. Thus, the plant input is formed with no

influence of the output. A household appliance such as an iron is a simple example of an

open-loop control system. In this example, we consider the iron itself as the plant or process
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Figure 5: Closed-loop control system.

to be controlled. Here we set the temperature control mechanism for the desired temperature.

This setting, for example very hot, is the reference input. We can view the potentiometer,

inside the iron, as a controller, or a control actuator. It regulates the temperature of the

iron by allowing the necessary amount of resistance to produce the desired temperature. The

plant’s output is the temperature of the heated iron.

Not every control system is an open-loop system. Another type of a control system is

a closed-loop system. We can convert an open-loop system into a closed-loop system by

adding, to an open-loop system, the following components:

6. The feedback loop where the output signal is measured with a sensor and then the

measured signal is fed back to the summing junction,

7. The summing junction, where the measured output signal is subtracted from the ref-

erence, command, input signal in order to generate an error signal, also labeled as an

actuating signal.

A schematic of a closed-loop control system, or feedback system, is shown in Figure 5. In

a closed-loop system the error signal causes an appropriate action of the controller, which
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Figure 6: A simplified schematic of the flyball governor.

in turn “instructs” the plant to behave in a certain way in order to approach the desired

output, as specified by the reference input signal. Thus, in the closed-loop system, output

information is fed back to the controller, and the controller then appropriately modifies the

plant output behavior. A controller, also called a compensator, can be placed either in the

forward loop, or in the feedback loop. Thus, a central component of the closed-loop system

is feedback. Norbert Wiener defined feedback in 1954 as follows: “Feedback is a method of

controlling a system by reinserting into it the results of its past performance.” [6, p. 439].

If the goal of the controller is to maintain the output at a constant value, then we

have a regulator control system. A “centrifugal speed regulator”, or the “flyball governor,”

commonly known as Watt’s governor, is an example of a regulator in a closed-loop system.

A schematic of Watt’s governor is shown in Figure 6.

The task of the centrifugal speed regulator is to control setting of a throttle valve auto-

matically to maintain the desired engine speed. The nominal speed is set by adjusting the

valve in the throttle. As the engine speeds up the weights are thrown outwards, the throttle
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partially closes and the engine slows down. As the engine slows down below its nominal

speed, the throttle is opened up and the engine gains its speed. The operation of an engine

equipped with a centrifugal speed regulator can be represented using the block diagram of

Figure 5. The reference input to the closed-loop system is the desired engine speed. The

desired engine speed is obtained by appropriately setting the valve. The system output is

the actual engine speed. The flyball governor is our controller, while the engine represents

the plant. The control signal generated by the controller is the setting of the throttle valve.

We mention at this juncture that Watt’s application of the centrifugal speed governor in

1788, to regulate the speed of the steam engine, marks the starting point for the development

of automatic control, and in particular feedback control, as a science [7]. Before 1788,

steam engines were controlled manually using the throttle valve. The flyball governor spread

widely and quickly. It has been estimated that by 1868 there were about 75,000 flyball

governors working in England alone [7]. The flyball governor is credited for the hatching of

the industrial revolution. We devise a mathematical model of this revolutionary invention

in Subsection ??, and in Section ?? we perform a quantitative analysis of its dynamical

behavior.

If the goal of the controller is to force the output to follow a desired trajectory, then

we have a servomechanism or tracking control system. As we mentioned before, to de-

sign a controller, we need first to analyze the plant quantitatively. The analysis requires

a mathematical or linguistic description of the interrelations between the system quantities

themselves as well as the interrelations between system quantities and system inputs.

2 Linearity

It follows from Definition 1 that a system accepts the input, u(t), and the initial state, x(t0),

to produce its output, y(t). We thus can view a system as an operator that acts on two

inputs, u(t) and x(t0) to produce an output, y(t). We use the symbol L to represent a

system. Then its operation can be described as

L(u(t), x(t0)) = y(t).

A system L is said to possess an additivity property if for any t0 and any xi(t0) and ui(t),

t ≥ t0, if

L(ui(t), xi(t0)) = yi(t), i = 1, 2,

then

L(u1(t) + u2(t), x1(t0) + x2(t0)) = y1(t) + y2(t).
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-u1(t) + u2(t)
L(·, ·)

System

?

x1(t0) + x2(t0)

-y1(t) + y2(t)

Figure 7: Illustration of the additivity property.

We illustrate the above property in Figure 7.

A system L is said to possess a homogeneity property if for any t0 and any x(t0) and u(t),

t ≥ t0, if

L(u(t), x(t0)) = y(t),

then

L(cu(t), cx(t0)) = cy(t),

where c is real or complex constant. We illustrate the above property in Figure 8.

-ciui(t)
L(·, ·)

System

?

cixi(t0)

-ciyi(t)

Figure 8: Illustration of the homogeneity property.

A system L is said to possess a superposition property if for any t0 and any xi(t0) and

ui(t), t ≥ t0, if

L(ui(t), xi(t0)) = yi(t), i = 1, 2,

then

L(c1u1(t) + c2u2(t), c1x1(t0) + c2x2(t0)) = c1y1(t) + c2y2(t).

We illustrate the above property in Figure 9.

Note that the superposition property is a combination of the additivity and homogeneity

properties.

11



-c1u1(t) + c2u2(t)
L(·, ·)

System

?

c1x1(t0) + c2x2(t0)

-c1y1(t) + c2y2(t)

Figure 9: Illustration of the superposition property.

Definition 2 A system is said to be linear if it possesses the superposition property.

A system is said to be nonlinear if it does not have the superposition property.

For an informative discussion on some subtleties in the definition of linearity, we recom-

mend Kailath [4, Section 1.1].

If u(t) = 0 for t ≥ 0, then the system’s output will be produced exclusively by the initial

condition x(t0). We call such an output the zero-input response and denote it as yzi.

If, on the other hand, the initial state x(t0) = 0, then the output will be produced

exclusively by the input. This output is called the zero-state response and is denoted yzs.

If the system is linear, then the additivity property implies that the total response, y(t)

is the sum of the zero-input and zero-state responses, that is,

y(t) = yzi(t) + yzs(t), t ≥ t0.

For linear systems the superposition property holds for zero-state and zero-input re-

sponses separately as well. In our discussion here, for the sake of simplicity, we do not

display the second argument in the operator L when we set zero initial state or zero input.

Now, if we set the initial state to zero, x(t0) = 0 and if

L(uj(t)) = yzs,j(t), j = 1, 2,

then

L(c1u1(t) + c2u2(t)) = c1yzs,1(t) + c2yzs,2(t).

Similarly, if we set u(t) = 0 for t ≥ t0 and if

L(xj(t0)) = yzi,j(t), j = 1, 2,

then

L(c1x1(t0) + c2x2(t0)) = c1yzi,1(t) + c2yzi,2(t).
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3 Input-Output Description of Linear Systems

In this Section, we develop a mathematical description of the zero-state response of linear

systems. We assume that the initial state is zero and so the system’s output is exclusively

due to the system input.

Definition 3 We say that the system is relaxed at t0 if its initial condition at t0 is zero,

that is, x(t0) = 0.

To proceed, we need certain facts about the impulse function, δ(t), that we now review.

3.1 The Impulse Function and Its Properties

The impulse function, denoted δ(t), also called the Dirac function, is a signal of infinite

amplitude, zero duration, and unity area. We can construct an impulse function as the limit

of pulse functions

pεi
(t) =

1

εi

(1(t) − 1(t − εi))

as εi → 0, where 1(t) is the unit step function defined as

1(t) =

{

1 if t ≥ 0

0 if t < 0.

The pulse pεi
is illustrated in Figure 10. Note that the pulse functions have the following

features as εi → 0:

1. the amplitude approaches infinity,

2. the duration of the pulses approaches zero,

3. the area under each pulse is constant; in our example the area equals unity.

The unit impulse function is defined as

∫

∞

−∞

δ(t)dt = 1 and δ(t) = 0 for t 6= 0.

The above definition states that the area under the impulse function is constant. The area

represents the strength of the impulse function. The impulse function of strength K is

denoted Kδ(t). Its graphical representation is depicted in Figure 11. The strength of the

impulse is shown next to the arrow’s head. The shifted impulse function of strength K is

also shown in Figure 11. The unit impulse function can be thought of as a derivative of the
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Figure 10: Generating the unit impulse function as the limit of the pulse functions.

unit step function, that is,

δ(t) =
d1(t)

dt
.

The function shown in Figure 12 approaches the unit step function as ε → 0. The function

shown in Figure 13, which is the derivative of the function from Figure 12, approaches the

unit impulse function as ε → 0.

The impulse function has the sifting property,

∫

∞

−∞

f(t)δ(t − a)dt = f(a)

where f(t) is a continuous function of time. It follows from the above that the impulse

function sifts out everything except the value of f at t = a—hence the name of the property.

To verify the validity of the sifting property, we note that δ(t− a) is zero everywhere except

at t = a. Hence, we can write,
∫

∞

−∞

f(t)δ(t − a)dt =

∫ a+ε

a−ε

f(t)δ(t − a)dt.

By assumption, f is continuous at a. Therefore, it must take the value of f(a) as t → a.

Thus,
∫ a+ε

a−ε

f(t)δ(t − a)dt = f(a)

∫ a+ε

a−ε

δ(t − a)dt = f(a),

which was to be demonstrated.
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Figure 11: Graphical representation of the impulse Kδ(t) and Kδ(t − a).

Figure 12: The function 1ǫ approaches the unit step as ε → 0.

We now discuss another important property of the impulse function—the sampling prop-

erty. Since δ(t − a) = 0 for t 6= a,

f(t)δ(t − a) = 0 for t 6= a

as is

f(a)δ(t − a) = 0 for t 6= a.

However, when t = a, we have

f(t)δ(t − a) = f(a)δ(t − a) for t = a

provided that f(a) exists. Therefore,

f(t)δ(t − a) = f(a)δ(t − a) for all t

The above property is called the sampling property of the impulse function.

Examples
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Figure 13: The derivative of 1ε(t) shown in Figure 12. As ε → 0, δε(t) approches δ(t).

(i) (cos 3t)δ(t − π) = (cos 3π)δ(t − π) = −δ(t − π);

(ii) e−2tδ(t) = e−2(0)δ(t) = δ(t);

(iii) (1 − e−4t) δ(t) = (1 − e0) δ(t) = 0δ(t) = 0.

3.2 Zero-State Response Description of Continuous-Time, Relaxed,

Causal Systems

Suppose that the system under consideration is a single-input single-output (SISO) linear

system. Let δ∆(t− t1) be the pulse depicted in Figure 14. The pulse has width ∆ and height

1/∆.

We can use the pulse δ∆(t − t1) to approximate an input signal u(t) as illustrated in

Figure 15. That is, we can approximate the control signal u(t) as

u(t) ≈
∑

i

u(ti)δ∆(t − ti)∆. (1)

Let y(t) = g∆(t, ti) be the system output at time t produced by the pulse u(t) = δ∆(t−ti)

applied at time ti. Then by the homogeneity property, the input u(t) = δ∆(t − ti)u(ti)∆

would produce the output, y(t) = g∆(t, ti)u(ti)∆. Applying the additivity property, we

conclude that the input given by (1) will produce the output

y(t) ≈
∑

i

g∆(t, ti)u(ti)∆. (2)

Now if ∆ → 0, then

δ∆(t − ti) → δ(t − ti)
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Figure 14: The pulse δ∆(t − t1) at t = t1.

Figure 15: Approximating the control signal u(t).
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and the corresponding output of the system is denoted g(t, ti). Next, as ∆ → 0 the ap-

proximation in (2) becomes an equality, the summation an integration, the discrete time ti

becomes a continuum that we denote using the symbol τ , while ∆ will be represented as dτ .

Taking the above into account, (2) takes the form,

y(t) =

∫

∞

−∞

g(t, τ)u(τ)dτ. (3)

We note that g(t, τ) is a function of two variables. The first variable denotes the time t at

which the output is observed, while the second variable, τ , denotes the time at which the

impulse input is applied.

We call g(t, τ) the impulse response because it is the system’s output when excited with

the impulse input.

For the causal system, the output cannot appear before the input is applied. Therefore,

for the causal systems,

g(t, τ) = 0 for t < τ

and we can replace the upper integration limit in (3) with t to obtain

y(t) =

∫ t

−∞

g(t, τ)u(τ)dτ. (4)

For the relaxed system at t0, its initial state, x(t0) = 0. Hence, the system output is

produced exclusively by the input u(t) for t ≥ t0. Thus we can replace the lower integration

limit in (4) with t0, and we obtain for the linear, relaxed at t0, causal system the following

expression for its impulse response;

y(t) =

∫ t

t0

g(t, τ)u(τ)dτ. (5)

For the multi-input multi-output (MIMO) linear, relaxed at t0, casual system with p

output components and m inputs, the above expression generalizes to

y(t) =

∫ t

t0

G(t, τ)u(τ)dτ,

where

G(t, τ) =













g11(t, τ) g12(t, τ) · · · g1m(t, τ)

g21(t, τ) g22(t, τ) · · · g2m(t, τ)
...

...
. . .

...

gp1(t, τ) gp2(t, τ) · · · gpm(t, τ)













.

In the above, gij(t, τ) is the impulse response at time t at the i-th output due to an impulse

applied at time τ at the j-th input, with other inputs set to zero.

We refer to the matrix G as the impulse response matrix.
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3.3 Input-Output Description of Continuous Time-Invariant Sys-

tems

Suppose that we have a system with the initial state x(t0), the input u(t) applied from t0 that

produced the output y(t) for t ≥ t0. We compactly describe the above mental experiment as

L(u(t), x(t0)) = y(t), for t ≥ t0.

The above system is said to be time-invariant if for any T , if the initial state is shifted

to time t0 + T , the same input is applied from t0 + T rather than at t0, then the output is

the same except that now it starts to appear at t0 + T , that is,

L(u(t − T ), x(t0 + T )) = y(t − T ), for t ≥ t0 + T.

Therefore, the impulse response of a linear, relaxed at t0, causal, time invariant system can

be described as

g(t, τ) = g(t + T, τ + T ) = g(t− τ, 0), (6)

which we compactly denote as g(t − τ). Note that the impulse response of an LTI system,

g(t − τ), is a function of one variable, where g(t) = g(t − 0) is the system output at time t

to an impulse applied at τ = 0. The LTI system is causal if g(t) = 0 for t < 0.

Taking into account (6), we represent the expression for the output (5) of a linear, relaxed

at t0, causal, LTI system as

y(t) =

∫ t

0

g(t − τ)u(τ)dτ, (7)

where, without loss of generality, we replaced t0 with 0. The integration in (7) is known as

the convolution integral. The above integral relation is also written in a shorthand notation

as

y(t) = g(t) ∗ u(t),

where the asterisk signifies the integral relation between g(t) and u(t). The integral relation

g(t) ∗ u(t) is read as “g(t) is convolved with u(t).”

Note that the convolution is a commutative operation, that is,

y(t) =

∫ t

0

g(t− τ)u(τ)dτ =

∫ t

0

g(τ)u(t − τ)dτ, (8)

which can be represented as

y(t) = g(t) ∗ u(t) = u(t) ∗ g(t).
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A very useful tool in the analysis and design of LTI dynamic systems is the Laplace

transform. Applying the Laplace transform to (7) gives

Y (s) = L(y(t))

=

∫

∞

0−

(
∫ t

τ=0

g(t − τ)u(τ)dτ

)

e−stdt.

For causal systems, g(t) = 0 for t < 0−; equivalently, g(t − τ) = 0 for τ > t−. This means

that we can replace the upper integration limit t in the above with ∞, and performing some

simple manipulations, we obtain

Y (s) =

∫

∞

0−

(
∫

∞

τ=0−
g(t− τ)u(τ)dτ

)

e−stdt

=

∫

∞

0−

(
∫

∞

τ=0−
g(t− τ)u(τ)dτ

)

e−s(t−τ)e−sτdt

=

∫

∞

0−

(
∫

∞

τ=0−
g(t− τ)e−s(t−τ)dt

)

u(τ)e−sτdτ

=

∫

∞

0−
g(t− τ)e−s(t−τ)dt

∫

∞

τ=0−
u(τ)e−sτdτ

= G(s)U(s), (9)

where G(s) is called the transfer function of the system and U(s) is the Laplace transform

of the input signal.

The Laplace transform of the convolution of two functions of time is equal to the products

of their Laplace transforms, that is,

L(g(t) ∗ u(t)) = L(g(t))L(u(t)) = G(s)U(s).

That is, to the product in the s-domain there corresponds the the convolution in the time

domain.

If a linear time-invariant system is lumped, its transfer function, G(s), is a rational

function of s, that is,

G(s) =
N(s)

D(s)
,

where N(s) and D(s) are polynomials in s.

For the MIMO LTI dynamic system, (9) takes the form,












Y1(s)

Y2(s)
...

Yp(s)













=













G11(s) G12(s) · · · G1m(s)

G21(s) G22(s) · · · G2m(s)
...

...
. . .

...

Gp1(s) Gp2(s) · · · Gpm(s)

























U1(s)

U2(s)
...

Um(s)













.
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We represent the above in a vector-matrix notation as

Y (s) = G(s)U(s),

where G(s) is called the transfer function matrix.

Example 2 If we apply the impulse input in the unit-time delay system of Example 1, then

the output is δ(t − 1). Hence the impulse response of this system is

g(t) = δ(t − 1). (10)

The transfer function of the unit-time delay system of Example 1 is

G(s) = e−s. (11)

Example 3 The integrator can be described as

y(t) = kI

∫ t

−∞

u(τ)dτ, (12)

where kI is the gain. We can equivalently describe the integrator as

dy(t)

dt
= kIu(t). (13)

The impulse response of the integrator is the unit step function also known as the Heaviside

step function.

The transfer function of the integrator described by (12) or by (13) is

G(s) =
kI

s
.

Example 4 The ideal differentiator is described as

y(t) = kD

du(t)

dt
,
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where kD is the differentiator’s gain. Its impulse response is

g(t) = kD

dδ(t)

dt

=











0 for t 6= 0

+∞ for t = 0−

−∞ for t = 0+,

(14)

The transfer function of the ideal differentiator is

G(s) = kDs.

3.4 State-Space Description of Continuous Time-Invariant Sys-

tems

Every linear time-invariant (LTI) lumped causal system can be described by a set of equations

of the form,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 (15)

y(t) = Cx(t) + Du(t), (16)

where

x(t) =













x1(t)

x2(t)
...

xn(t)













is the state vector. The matrices A, B, C, and D are constant real matrices. A block

diagram representation of the state-space description given by (15) and (16) is depicted in

Figure 16.

Taking the Laplace transform of (15) and (16) gives

sX(s) − x(0−) = AX(s) + BU(s) (17)

Y (s) = CX(s) + DU(s). (18)

We compute X(s) from (17),

X(s) = (sIn − A)−1
x(0−) + (sIn − A)−1

BU(s)
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Figure 16: Block diagram representation of the state-space description given by (15) and (16).

Substituting the above into (18) yields

Y (s) = C (sIn − A)−1
x(0−) + C (sIn − A)−1

BU(s) + DU(s).

If the initial condition is zero, then we obtain the expression for the transfer function matrix,

G(s) = C (sIn − A)−1
B + D. (19)

3.5 Input-Output Description of Discrete Time-Invariant Systems

Recall that a discrete-time system accepts discrete-time signals and produces discrete-time

signals as its output.

As in with a continuous-time system, a discrete-time system is linear if it possesses the

superposition property.

The response of a discrete-time linear system is the sum of the zero-state and zero-input

responses. Both the zero-state and zero-input responses possess the superposition property.

A discrete-time system is causal if its current output depends on the current and past

inputs.

The discrete system state, x[k0], is the information at time k0 that together with u[k]

for k ≥ k0 uniquely determines the system output y[k] for k ≥ k0.

If the number of the components in the state vector x is finite, then this discrete system

is lumped; otherwise it is distributed. If there is a time delay in a continuous-time system,
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-

∑

∞

m=−∞
δ[k − m]u[m] Linear

Discrete
System

-

∑

∞

m=−∞
g[k, m]u[m]

Figure 17: Output of linear discrete-time system in response to the input sequence (20).

then this system is distributed. On the other hand, if in a discrete-time system the time

delay is an integer multiple of the sampling period h, then such a system is a lumped system.

To proceed, we define the impulse sequence denoted δ[k − m] as

δ[k − m] =

{

1 if k = m

0 if k 6= m,

where both k and m are integers that denote sampling instances.

Suppose now that we have an input sequence denoted u[k]. We express this input se-

quence as

u[k] =

∞
∑

m=−∞

u[k]δ[k − m] (20)

Let now g[k, m] denote the discrete-time system output at time k when excited with the

impulse sequence, δ[k−m], at the time instant m. Because by assumption the discrete system

under consideration is linear, hence by the homogeneity property the input δ[k − m]u[m]

will yield the output, g[k, m]u[m]. Combining the above with the additivity property, we

conclude that the input,
∑

∞

m=−∞
δ[k − m]u[m] will yield the output,

∑

∞

m=−∞
g[k, m]u[m].

We illustrate the above in Figure 17.

In a causal discrete-time linear system, no output can appear before an input is applied.

Hence,

g[k, m] = 0 for k < m.

If, in addition, the system is relaxed at k0, then the output will take the form,

y[k] =

k
∑

m=k0

g[k, m]u[m].

Note that for time-invariant linear causal system we can always set k0 = 0 to obtain

y[k] =
k
∑

m=0

g[k − m]u[m]. (21)
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The above is referred to as a discrete convolution. It is easy to check that the discrete

convolution possesses the commutativity property, that is,

y[k] =
k
∑

m=0

g[k − m]u[m] =
k
∑

m=0

g[m]u[k − m].

Applying the z-transform to (21) gives

Y (z) = Z(y[k])

=
∞
∑

k=0

(

k
∑

m=0

g[k − m]u[m]

)

z−k.

Taking into account the causality assumption, we can replace the upper integration limit k

with ∞. Then performing simple manipulations, we obtain

Y (z) =

∞
∑

k=0

(

∞
∑

m=0

g[k − m]u[m]

)

z−(k−m)z−m

=

∞
∑

m=0

(

∞
∑

m=0

g[k − m]z−(k−m)

)

u[m]z−m

=

(

∞
∑

l=0

g[l]z−l

)(

∞
∑

m=0

u[m]z−m

)

= G(z)U(z),

where we interchanged the order of summations, introduced the new variable l = k−m and

took into account the fact that g[l] = 0 for l < 0.

The z-transform of the impulse response, denoted G(z), is called the discrete transfer

function. Note that the transfer functions describe only the zero-state responses.

Example 5 [2, p. 33] Consider the unit-sampling-time delay system model of the form,

y[k] = u[k − 1].

The impulse response of the above system is

g[k] = δ[k − 1].

The discrete transfer function is obtained by taking the z-transform of the impulse response.

We obtain

G(z) = Z(δ[k − 1])

=
1

z
.
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Figure 18: Block diagram representation of the state-space description given by (22) and (23).

The above transfer function is a rational function of z. Thus the above system is a lumped

system. Note that in the continuous-time case, systems involving time delays are distributed

system. As the above example shows, this is not necessarily the case in discrete-time systems.

3.6 State-Space Description of Discrete Time-Invariant Systems

Every discrete linear time-invariant (LTI) lumped causal system can be described by a set

of equations of the form,

x[k + 1] = Ax[k] + Bu[k], x[0] = x0 (22)

y[k] = Cx[k] + Du[k], (23)

where

x[k] =







x1[k]
...

xn[k]







is the state vector. The matrices A, B, C, and D are constant real matrices. A block

diagram representation of the state-space description given by (22) and (23) is depicted in

Figure 18.
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Let X(z) denote the z-transform of x[k], that is,

X(z) = Z(x[k]).

Then, the z-transform of x[k + 1] is

Z(x[k + 1]) =

∞
∑

k=0

x[k + 1]z−k

= z
∞
∑

k=0

x[k + 1]z−(k+1)

= z

(

∞
∑

j=1

x[j]z−j + x[0] − x[0]

)

= z (X(z) − x[0]) . (24)

Applying the z-transform to (22) and (23) and taking into account (24) gives

zX(z) − zx[0] = AX(z) + BU(z), x[0] = x0 (25)

Y (z) = CX(z) + DU(z). (26)

We calculate X(z) from (25) to obtain

X(z) = (zIn − A)−1 zx[0] + (zIn − A)−1
BU(z).

Substituting the above into (26) yields

Y (z) = C (zIn − A)−1 zx[0] + C (zIn − A)−1
BU (z) + DU(z).

If set the initial condition to zero, that is, x[0] = 0, then we have

Y (z) =
(

C (zIn − A)−1
B + D

)

U(z).

Thus the transfer function of the discrete time-invariant system described by (22) and (23)

is

G(z) = C (zIn − A)−1
B + D. (27)

Note that the above is the discrete equivalent of (19).

We add that to a model represented in a state-space format, there corresponds a unique

transfer function matrix. On the hand, there are infinitely many state-space representations

that have the same transfer function matrix.
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4 From Transfer Function to State-Space Description

If the Laplace variable s is replaced in (19) with the z-transform variable z then we ob-

tain (27), and vice versa. Thus a method of converting a transfer function into a state-space

representation for continuous linear time-invariant lumped systems is applicable also for

discrete linear time-invariant lumped systems.

We say that a transfer function G(s) is realizable if there exists a quadruple of constant

matrices (A, B, C, D) such that G(s) = C (sIn − A)−1
B + D. We call such a quadruple

(A, B, C, D) a realization of G(s).

We begin our discussion with a single-input single-output (SISO) system modeled by a

transfer function,

Y (s)

U(s)
= G(s)

=
N(s)

D(s)

=
bmsm + bm−1s

m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

(28)

that is a proper rational function, which means that

degs N(s) ≤ degs D(s).

Note that in (28) the highest coefficient of the denominator polynomial is unity. If this was

not the case, we would divide the numerator and the denominator by the highest coefficient

of the denominator thus forcing an = 1.

If G(s) is proper but not strictly, that is, degs N(s) = degs D(s), equivalently, m = n,

then we divide the numerator N(s) by the denominator D(s) to obtain

G(s) = G(s)sp + G(∞), (29)

where G(s)sp denotes the strictly proper part of G(s) and G(∞) = bm.

Our goal is to find a realization of G(s), that is, a quadruple, (A, b, c, d) such that

G(s) = c(sI − A)−1b + d. (30)

Note that c(sI −A)−1b is a strictly proper rational function and d is a scalar. Therefore, in

our construction of a realization of G(s), we first extract the strictly proper part as in (29).

We then find a triple (A, b, c) such that

G(s)sp = c(sI − A)−1b. (31)
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1
sn+an−1sn−1+···+a0

-U(s) -C(s)
bmsm + · · ·+ b0

-Y (s)

Figure 19: Decomposition of G(s) to construct its state-space realization.

A realization of G(s) will have the form (A, b, c, G(∞)), that is, d = G(∞).

To proceed, we assume for simplicity that G(s) = G(s)sp. We split our procedure of

finding a triple (A, b, c) such that (31) holds into two steps. In the first step, we introduce

an intermediate Laplace variable, C(s), such that

Y (s)

U(s)
=

Y (s)

C(s)

C(s)

U(s)

=
1

sn + an−1sn−1 + · · ·+ a1s + a0

(

bmsm + bm−1s
m−1 + · · · + b1s + b0

)

. (32)

We illustrate the operation given by (32) in Figure 19. We first concern ourselves with the

transfer function
Y (s)

C(s)
=

1

sn + an−1sn−1 + · · ·+ a0
.

Performing cross-multiplication gives
(

sn + an−1s
n−1 + · · ·+ a0

)

Y (s) = C(s).

Taking the inverse Laplace transform and assuming zero initial conditions yields

y(n) + an−1y
(n−1) + · · · + a1ẏ + a0y = c.

We define the state variables:

x1 = y

x2 = ẏ = ẋ1

...

xn−1 = y(n−2) = ẋn−2

xn = y(n−1) = ẋn−1































(33)

Note that

ẋn = y(n)

= −a0y − a1ẏ − · · · − an−1y
(n−1) + c

= −a0x1 − a1x2 − · · · − an−1xn + c. (34)
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Figure 20: Implementation of (35).

We represent (33) and (34) in the matrix-vector format as

















ẋ1

ẋ2

...

ẋn−1

ẋn

















=

















0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
. . .

...
...

0 0 0 · · · 0 1

−a0 −a1 −a2 · · · −an−2 −an−1

































x1

x2

...

xn−1

xn

















+

















0

0
...

0

1

















c (35)

The above set of n first-order ordinary differential equations can be simulated using a circuit

shown in Figure 20.

We next concern ourselves with the transfer function

Y (s)

C(s)
= bmsm + bm−1s

m−1 + · · ·+ b1s + b0,

which we represent as

Y (s) = bmsmC(s) + bm−1s
m−1C(s) + · · ·+ b1sC(s) + b0C(s).

Taking the inverse Laplace transform, we obtain

y = bmc(m) + bm−1c
(m−1) + · · ·+ b1ċ + b0c (36)
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Note that

c = x1

ċ = ẋ1 = x2

...

c(m−1) = ẋm−1 = xm

c(m) = ẋm = xm+1.

Hence, we can represent y in terms of the state variables,

y = bmxm+1 + bm−1xm + · · ·+ b1x2 + b0x1,

or, equivalently, as

y =
[

b0 b1 · · · bm−1 bm 0 · · · 0
]

















x1

x2

...

xn−1

xn

















. (37)

Combining (35) and (37), we obtain a realization of a strictly proper transfer function (28).

This state-space realization has the form,

ẋ =

















0 1 · · · 0 0

0 0 · · · 0 0
...

. . .
...

...

0 0 · · · 0 1

−a0 −a1 · · · −an−2 −an−1

















x +

















0

0
...

0

1

















u (38)

y =
[

b0 · · · bm · · · 0
]

x. (39)

We depict the above realization in Figure 21.

The above realization is only one of the infinitely possible realization of a given rational

function G(s). Using (39) and (39), we can easily obtain another realization of G(s). First

note that G(s) can be viewed as an 1 × 1 matrix; therefore, its transpose equals itself, that

is,

G(s)⊤ = G(s).
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Figure 21: Implementation of (21).

Applying the transposition operation to both sides of (30) and using the property of the

transpose of a product of matrices, we obtain

G(s) = G(s)⊤

=
(

c(sI − A)−1b + d
)⊤

= b⊤
(

(sI − A)−1
)⊤

c⊤ + d⊤

= b⊤
(

sI − A⊤
)−1

c⊤ + d.

Thus, we have another realization of G(s) of the form

˙̃x =

















0 0 · · · 0 −a0

1 0 · · · 0 −a1

...
. . .

...
...

0 0 · · · 0 −an−2

0 0 · · · 1 −an−1

















x̃ +

















b0

b1

...

bn−2

bn−1

















u (40)

y =
[

0 0 · · · 0 0 · · · 1
]

x̃ + G(∞). (41)

We now summarize and generalize the above discussion for multi-input multi-output

transfer functions in the form of the following theorem.

Theorem 1 A transfer function G(s) is realizable if and only if G(s) is a proper rational

matrix.
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Proof (⇐=) We first prove that for a given a rational proper transfer function G(s) ∈

R
p×m(s) there is a realization. The proof is constructive. We begin by decomposing G(s) as

G(s) = G(s)sp + G(∞),

where G(s)sp denotes the strictly proper part of G(s). Let

d(s) = sr + αr−1s
r−1 + · · · + α1s + α0

be the least common denominator of all rational function components of G(s)sp. Note that

the highest coefficient of d(s) is unity. We can always make αr = 1 by dividing, if necessary,

the corresponding numerator polynomials and d(s) by αr. We then express G(s)sp as

G(s)sp =
N(s)

d(s)

=
N r−1s

r−1 + · · ·+ N 1s + N 0

d(s)
,

where each N i is an p × m constant matrix. We now show that the following state-space

representation yields a realization of G(s):

ẋ =

















O Im O · · · O O

O O Im · · · O O
...

...
...

. . .
...

...

O O O · · · O Im

−α0Im −α1Im −α2Im · · · −αr−2Im −αr−1Im

















x +

















O

O
...

O

Im

















u

y =
[

N 0 N 1 N 2 · · · N r−2 N r−1

]

x + G(∞)u,











































(42)

where D = G(∞). Note that the matrix A in the above realization is a block matrix; its

blocks are m × m matrices.

To show that the above state-space representation is indeed a realization of G(s), we

define

Z =













Z0

Z1

...

Zr−1













= (sI − A)−1B, (43)

where Zi is an m×m sub-matrix of the rm×m block matrix Z. Then the transfer function

of (42) is

C(sI − A)−1B + G(∞) = N 0Z0 + N 1Z1 + · · ·+ N r−1Zr−1 + G(∞). (44)
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We pre-multiply both sides of (43) by (sI − A) and represent the result as

sZ = AZ + B.

Taking into account the structure of matrices A and B in (42), we obtain

sZ0 = Z1, sZ1 = Z2, sZr−2 = Zr−1, (45)

and

sZr−1 = −α0Z0 − α1Z1 − · · · − αr−1Zr−1 + Im. (46)

Note that Z2 = sZ1 = s2Z0 and in general,

Zi = siZ0, i = 1, . . . , r − 1 (47)

Substituting (47) into the above expression and performing simple manipulations gives

(

sr + αr−1s
r−1 + · · ·+ α1s + α0

)

Z0 = Im,

that is,

Z0 =
1

d(s)
Im. (48)

Using (45) or (47) and the above yields

Z1 =
s

d(s)
Im, . . . Zr−1 =

sr−1

d(s)
Im. (49)

Substituting (48) and (49) into (44), we obtain

C(sI − A)−1B + G(∞) =
1

d(s)

(

N 0 + N 1s + · · ·+ N r−1s
r−1 + G(∞)

)

= G(s), (50)

which shows that (42) is a realization of G(s). The proof of this part of the theorem is

complete.

(=⇒) If the transfer function G(s) is realizable then there exists a quadruple (A, B, C, D)

such that

G(s) = C(sI − A)−1B + D.

Note that C(sI − A)−1B is a strictly proper rational matrix and because D is a constant

matrix, C(sI − A)−1B + D is a proper rational matrix, which completes the proof of this

part of the theorem.

2
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We can obtain another realization of G(s) from (42). We begin by constructing a real-

ization for G(s)⊤ using (42) to obtain

G(s)⊤ = C(sI − A)−1B + D. (51)

We next transpose both sides of (51) to obtain

(

G(s)⊤
)⊤

= G(s)

=
(

C(sI − A)−1B + D
)⊤

= B⊤
(

sI − A⊤
)−1

C⊤ + D⊤.

The resulting realization has the form

˙̃x =

















O O O · · · O −α0Ip

Ip O Im · · · O −α1Ip

...
...

...
. . .

...
...

O O O · · · O −αr−2Ip

O O O · · · Ip −αr−1Im

















x̃ +

















N⊤

0

N⊤

1
...

N⊤

r−2

N⊤

r−1

















u

y =
[

O O O · · · O Ip

]

x̃ + G(∞)u.











































(52)

Note that although the realization (52) is based on the realization (42), their dimensions will

be different if p 6= m.

5 Summary and Notes

Classification linear systems discussed by us in this chapter is shown in Table 1.

A landmark paper on mathematical description of linear dynamic systems from control

point of view is by Kalman [5]. The first chapter of Sontag’s book [10] is a nice, easy to

read, and comprehensive introduction to the subject of mathematical control theory.

Mayr writes on page 109 in [8], “It is still widely believed that the steam-engine governor

is the oldest feedback device, and that James Watt had not only invented but also patented

it. While both errors are easily refuted, we are still not able to reconstruct the history of

this invention in all desired completeness.” Watt did not patent the governor. He did not

invent it either. On page 112 of his book [8], Mayr adds the following: “But the application

of the centrifugal pendulum in a system of speed regulation of steam engines was a new

breakthrough for which the firm of Boulton & Watt, if not James Watt himself, clearly

deserves the credit.”
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Table 1: Table summarizing linear system classification; adapted from Chen [2, p. 37].

System Internal Description External Description

Distributed, linear y(t) =
∫ t

t0
G(t, τ)u(τ)dτ

Lumped, linear
ẋ = A(t)x + B(t)u

y = C(t)x + D(t)u
y(t) =

∫ t

t0
G(t, τ)u(τ)dτ

Distributed, linear,

time-invariant

y(t) =
∫ t

t0
G(t − τ)u(τ)dτ

Y (s) = G(s)U(s),

G(s) irrational

Lumped, linear,

time-invariant

ẋ = Ax + Bu

y = Cx + Du

y(t) =
∫ t

t0
G(t − τ)u(τ)dτ

Y (s) = G(s)U(s),

G(s) rational

6 Exercises

Exercise 1 Draw a block diagram illustrating the operation of the Watt’s governor shown

in Figure 6.

Exercise 2 An example of a closed-loop feedback system is a toilet flushing device connected

to a water tank. A toilet system is shown in Figure 22. The control objective is to maintain

the level of water in the tank at a constant level. Draw a block diagram of the system.

Exercise 3 (based on Chen [2, p. 33])

Compute the transfer function of a discrete-time system whose impulse response is

g[k] =

{

0 for k ≤ 0
1
k

for k > 1.

Is this system lumped or distributed?

Exercise 4 Suppose that G(s) ∈ R
p×m is a proper rational matrix such that

G(s) = G(s)sp + G(∞),

where
N r−1s

r−1 + · · · + N 1s + N 0

d(s)
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Figure 22: Toilet-flushing system for Exercise 2.

and d(s) = sr +αr−1s
r−1 + · · ·+α1s+α0. Show that the following state-space representation

is a realization of G(s):

˙̂x =

















−α0Im −α1Im −α2Im · · · −αr−2Im −αr−1Im

O O O · · · O O
...

...
...

. . .
...

...

O O O · · · O O

Im O O · · · Im O

















x̂ +

















Im

O
...

O

O

















u

y =
[

N r−1 N r−2 N r−3 · · · N 1 N 0

]

x̂ + G(∞)u,











































(53)

Exercise 5 For a proper rational matrix

G(s) =

[

s+1
(s+2)2

1
(2s+1)(s+2)

3s−1
s

3
s+2

4s−10
2s+1

2s+1
s2+1

]

, (54)

(i) construct its two realizations;

(ii) use MATLAB’s tf2ss command to find a realization of G(s).

Exercise 6 Compute the impulse response of a dynamic system whose transfer function is

given by (54).
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Exercise 7 Can you construct a state-space model of a linear system whose output is zero

in response to any input?

Exercise 8 For the circuit shown in Figure 23 draw a block diagram with the current i(t)

as the system’s input and the voltage v(t) as the system’s output. Then, find the transfer

function, V (s)/I(s).

Figure 23: Circuit for Exercise 8.

Exercise 9 Find the transfer function Vout(s)/Vin(s) of the circuit shown in Figure 9 that

conatins an ideal operational amplifier.

Exercise 10 The purpose of this Exercise is to show some benefits that the state-space

description can offer in the analysis of control systems. Begin by verifying that the transfer

function Y (s)/R(s) for both systems shown in Figure 25 and 26 is the same. Obtain the

step response for this transfer function.

Next obtain state-space realizations of the systems shown in Figure 25 and 26. That

is, construct state-space realizations of Gc(s) = s−1
s+2

and Gp(s) = 3
s−1

and then construct

the overall state-space model of the cascade systems. The state-space models should of

of second-order. Verify that the transfer functions of the models are the same as in the

part above. Implement the obtained state-space models in SIMULINK. Obtain plots of the
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Figure 24: Circuit for Exercise 9.

states and the outputs in response to a unit step input. Perform your simulations for different

initial conditions that you can impose on the integrators. Compare the external, that is,

input-output system behavior against the internal behavior. Can you give an explanation

for an unexpected behavior of the state variables even when the external behavior seems to

be acceptable.

s−1
s+2

-r -u 3
s−1

-y

Figure 25: Cascade compensation for Exercise 10: compensator preceding the plant.
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3
s−1

-r - s−1
s+2

-y

Figure 26: Compensator following the plant.
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