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Early amplifiers were made of crude materials that tended to disinte-
grate over use, causing the amp to “run away.” Not only would an aging
relay amplify the phone signal, it would mistakenly compound any tiny
deviation from the range it expected until the mushrooming error filled
and killed the system. What was needed was Heron’s regula, a counter
signal to rein in the chief signal, to dampen the effect of the perpetual
recycling. Black came up with a negative feedback loop, which was
designated negative in contrast to the snowballing positive loop of the
amplifier. Conceptually, the electrical negative feedback loop is a toilet
flusher or thermostat. This braking circuit keeps the amplifier honed
in on a steady amplification in the same way a thermostat hones in on
a steady temperature. But instead of metallic levers, a weak train of
electrons talks to itself. [6, page 116]

1 What Is a System?

A system is a collection of interacting components. An electric motor, an airplane, as well as
a biological unit such as the human arm are examples of systems. A system is characterized
by two properties. They are:

1. the interrelations between the components that are contained within the system,

2. the system boundaries that separate the components within the system from the com-
ponents outside.

The system boundaries can be real or imagined. They are elastic in the sense that we
may choose, at any stage of the system analysis, to consider only a part of the original system
as a system on its own. We call it a subsystem of the original system. On the other hand,
we may decide to expand the boundaries of the original system to include new components.
In Figure 1, we represent system’s boundaries using a box.

The interactions between the system components may be governed, for example, by
physical, biological, or economical laws. In dealing with systems, we are interested in the
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Figure 1: Representation of a system.

effects of external quantities upon the behavior of the system quantities. We refer to the
external quantities acting on the system as the inputs to the system. The output of the system
is its response to the input. The outputs are internal quantities available for measurement.

A system is a continuous-time system if it accepts continuous-time signals as its inputs
and produces continuous-time signals as its outputs. We use the lowercase italic u(t) to
denote the input of the continuous-time single-input system, where the time t is assumed
to range from —oo to oo. For the multi-input continuous-time system, we use the boldface
italic u(t) to denote its input, where w(t) is an m x 1 column vector, that is,

ul(t)

u(t) = us(t)

U (t)

Similarly, the output of the single-output continuous-time system will be denoted as y(t),
while the output of the multi-output continuous-time system will be denoted as

yi(t)
v = | 27

yp@)

that is, the output y(t) is a column vector composed of p components.

A system is a discrete-time system if it accepts discrete-time signals as its inputs and
produces discrete-time signals as its outputs. An example of a discrete-time signal is shown
in Figure 2.

A discrete-time signal can be viewed as a sequence of points obtained from measurements
at successive times. Thus a discrete-time sinal has a natural temporal ordering. We consider
only the case where all discrete-time signals have the same sampling period denoted h.

We use the lowercase italic u[k] to denote the input of the discrete-time single-input
system, where k denotes discrete time instant and is assumed to range from —oo to oc.
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Figure 2: An example of a discrete-time signal with the sampling period h = 0.2 sec.

Thus,
ulk] == u(kh),

where the symbol “:=” denotes arithmetic assignment. Thus the statement “u[k] := u(kh)”
should be interpreted to mean “ulk] becomes w(kh).” For the multi-input discrete-time
system, we use the boldface italic u[k] to denote its input, where u[k] := w(kh) is an m x 1

vector, that is,
u[k]
Us|k
ap = | 2"

Similarly, the output of the single-output discrete-time system will be denoted as y[k], where
ylk] := y(kh). The output of the multi-output discrete-time system will be denoted as

Y1 (K]
ol = | M

yp[k]

that is, the output y[k] is a column vector composed of p components.



1.1 Memoryless, Causal, and Lumped Systems

A system is a memoryless system if its output at time tq depends only on the input applied at
to and is independent of the input applied before %y, that is, current output of a memoryless
system depends only on its current input; it is independent of past inputs. An example of
memoryless system is a circuit consisting of only resistors.

In a causal or non-anticipatory system its current output may depend on current and
past inputs but not on future inputs. In a non-causal system, its current output depends
on future input. Such a system can predict or anticipate what inputs will be applied in the
future. Physical systems have no such capability, that is, physical systems are causal.

To proceed, we consider, following Kailath [4, p. 63], a simple system consisting of a
capacitor and a voltage source as shown in Figure 3. The input u is a current through the

o+

u (1) v

Figure 3: A circuit where the the past input from —oo up to t affects the current output at

time ¢.

capacitor and the output y is a voltage x across the capacitor. The relation between voltage
and current for a capacitor has the form,

It follows from the above that the system output is affected by its past input from —oo
to time t. Tracking the past inputs may be impractical if not impossible. To alleviate the
problem, the concept of state is introduced that we discuss next.

The condition or the state of the system are described by the state variables denoted x;.
The state variables provide the information that together with the knowledge of the system
inputs enable us to determine the future state of the system. In other words, “A dynamical
system consists of a set of possible states, together with a rule that determines the present
state in terms of past states” [1, page 1].



Definition 1 [2, p. 6] The state x(ty) of a system at time to is the information at ty that,
together with the input w(t), for t > ty, determines uniquely the output y(t) for all t > ty.

Returning to the example above, we select the voltage across the capacitor as the system
state, which is also its output. Then, we write

y(t) = =(t) t

_ é/_oou(T)dT

_ é/_iu(f)dwé/t:u(f)df
= [L’(to)—l—é/t:u(T)dT.

Thus, if we know the initial state x(¢p) and the current input w(t), then the past input is
irrelevant in the process of calculating the output y(¢) for ¢ > ¢y because the initial state
“summarizes” the past input.

A system is a lumped system if the number of state variables is finite, that is, the state
vector @ is composed of finite number of components. A simple example of lumped system
is the circuit shown in Figure 3. More examples of lumped systems are given in Section ?7?.

A system is distributed if its state consists of infinitely many components. We now give
an example of a distributed system.

Example 1 [2, p. 7] Consider the unit-time delay system model of the form,

y(t) =u(t —1).

In this example, the output is the input delayed by one time unit. To determine y(t) for
t > to, we need the information about u(t) on the time interval [ty — 1, to]. Thus the initial
state of this time-delay system is the set of points, {u(t) : t € [to — 1, to]}. However, there
are infinitely many points u(t) on this interval. Thus, the above time-delay system is a
distributed system because its state is infinitely dimensional.

In practice it is often not possible or too expensive to measure or determine the values
of all of the state variables. Instead, only their subset or combination can be measured.
The system quantities whose behavior can be measured or observed constitute the system’s
outputs.



1.2 Formulation of the Control Problem

In engineering applications, when dealing with dynamic systems, we are interested in speci-
fying the system inputs that force the system states or outputs to behave with time in some
pre-specified manner. That is, we are interested in controlling the system states or outputs.
This is accomplished by means of a controller whose task is to produce the required system’s
inputs that in turn result in the desired system’s outputs. An interconnection of the system
and a controller is called a control system. In Figure 4 and 5, we show two different types of
control systems that we discuss in the next section. Constructing a controller is a part of the
control problem. The essential elements of the control problem, as described by Owens [9,
page 181], are:

1. a dynamic system to be controlled,
2. a specified objective for the system,
3. a set of admissible controllers, and

4. a means of measuring the performance of any given control strategy to evaluate its
effectiveness.

We now examine these elements one by one. The first step in the controller design
procedure is the construction of a truth model of the dynamics of the process to be controlled.
The truth model is a simulation model that includes all the relevant characteristics of the
process. The truth model is too complicated for use in the controller design. Thus, we need to
develop a simplified model that can be used to design a controller. Such a simplified model is
labeled by Friedland [3] as the design model. The design model should capture the essential
feature of the process. During the modeling process, properties of the system, physical
constraints, and technical requirements should be taken into account. We discuss in more
detail the process of constructing mathematical models of physical systems in sections 77
and 77.

The objective of a control system is to complete some specified task. This can be ex-
pressed as a combination of constraints on the output or state variables and limits on the
time available to complete the control objective. For example, the objective of a controller
might be to force the output, of a single output system, to settle within a certain percentage
of the given value after pre-specified time.

Control input signals are obtained from physical devices capable of providing only a
limited amount of energy. We term the class of controllers that can be considered for the
given control design problem as the set of admissible controllers.



We can evaluate the performance of any given control law by visual inspection of the tran-
sient characteristics of the controlled system after the design is complete. But this method
of assessment of the effectiveness of the given control strategy is highly inaccurate. We
therefore try to quantify the means of evaluating performance in the form of a performance
index or cost functional at the beginning of the design process. We construct a numerical
index of performance whose value reflects the quality of any admissible controller in accom-
plishing the system objective. This performance index is assumed to have the property that
its numerical value decreases as the quality of the controller increases. This is the reason
why we sometimes refer to the performance index as the penalty functional. The “best”
controller then is the one that produces the smallest value of the performance index. We call
an admissible controller that simultaneously ensures the completion of the system objective
and the minimization of the performance index an optimal controller for the system.

1.3 Open-Loop Versus Closed-Loop

We distinguish between two types of control systems. They are:
e open-loop control systems, and
e closed-loop control systems.

An open-loop control system usually contains:
1. A process to be controlled, labeled plant,
2. The controlling variable of the plant, called the plant input, or just input for short,
3. The controlled variable of the plant, called the plant output, or just output for short,
4. A reference input, which dictates the desired value of the output,

5. A controller that acts upon the reference input in order to form the system input which
would force the behavior of the output in accordance with the reference signal.

Note that the plant and controller themselves can be considered as systems on their own.
A schematic representation of an open-loop system is depicted in Figure 4. In an open-loop
control system the output has no influence on the input or reference signal. The controller
operates without taking into account the output. Thus, the plant input is formed with no
influence of the output. A household appliance such as an iron is a simple example of an
open-loop control system. In this example, we consider the iron itself as the plant or process
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Figure 4: Open-loop control system.
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Figure 5: Closed-loop control system.

to be controlled. Here we set the temperature control mechanism for the desired temperature.
This setting, for example very hot, is the reference input. We can view the potentiometer,
inside the iron, as a controller, or a control actuator. It regulates the temperature of the
iron by allowing the necessary amount of resistance to produce the desired temperature. The
plant’s output is the temperature of the heated iron.

Not every control system is an open-loop system. Another type of a control system is
a closed-loop system. We can convert an open-loop system into a closed-loop system by
adding, to an open-loop system, the following components:

6. The feedback loop where the output signal is measured with a sensor and then the
measured signal is fed back to the summing junction,

7. The summing junction, where the measured output signal is subtracted from the ref-
erence, command, input signal in order to generate an error signal, also labeled as an
actuating signal.

A schematic of a closed-loop control system, or feedback system, is shown in Figure 5. In
a closed-loop system the error signal causes an appropriate action of the controller, which
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Figure 6: A simplified schematic of the flyball governor.

in turn “instructs” the plant to behave in a certain way in order to approach the desired
output, as specified by the reference input signal. Thus, in the closed-loop system, output
information is fed back to the controller, and the controller then appropriately modifies the
plant output behavior. A controller, also called a compensator, can be placed either in the
forward loop, or in the feedback loop. Thus, a central component of the closed-loop system
is feedback. Norbert Wiener defined feedback in 1954 as follows: “Feedback is a method of
controlling a system by reinserting into it the results of its past performance.” [6, p. 439].

If the goal of the controller is to maintain the output at a constant value, then we
have a regulator control system. A “centrifugal speed regulator”, or the “flyball governor,”
commonly known as Watt’s governor, is an example of a regulator in a closed-loop system.
A schematic of Watt’s governor is shown in Figure 6.

The task of the centrifugal speed regulator is to control setting of a throttle valve auto-
matically to maintain the desired engine speed. The nominal speed is set by adjusting the
valve in the throttle. As the engine speeds up the weights are thrown outwards, the throttle



partially closes and the engine slows down. As the engine slows down below its nominal
speed, the throttle is opened up and the engine gains its speed. The operation of an engine
equipped with a centrifugal speed regulator can be represented using the block diagram of
Figure 5. The reference input to the closed-loop system is the desired engine speed. The
desired engine speed is obtained by appropriately setting the valve. The system output is
the actual engine speed. The flyball governor is our controller, while the engine represents
the plant. The control signal generated by the controller is the setting of the throttle valve.

We mention at this juncture that Watt’s application of the centrifugal speed governor in
1788, to regulate the speed of the steam engine, marks the starting point for the development
of automatic control, and in particular feedback control, as a science [7]. Before 1788,
steam engines were controlled manually using the throttle valve. The flyball governor spread
widely and quickly. It has been estimated that by 1868 there were about 75,000 flyball
governors working in England alone [7]. The flyball governor is credited for the hatching of
the industrial revolution. We devise a mathematical model of this revolutionary invention
in Subsection 77, and in Section 7?7 we perform a quantitative analysis of its dynamical
behavior.

If the goal of the controller is to force the output to follow a desired trajectory, then
we have a servomechanism or tracking control system. As we mentioned before, to de-
sign a controller, we need first to analyze the plant quantitatively. The analysis requires
a mathematical or linguistic description of the interrelations between the system quantities
themselves as well as the interrelations between system quantities and system inputs.

2 Linearity

It follows from Definition 1 that a system accepts the input, w(t), and the initial state, x(to),
to produce its output, y(t). We thus can view a system as an operator that acts on two
inputs, w(t) and x(ty) to produce an output, y(t). We use the symbol L to represent a
system. Then its operation can be described as

L(u(t), z(to)) = y(1)-

A system L is said to possess an additivity property if for any to and any x;(to) and w,(t),
t >ty if
L(u(t), x;(to)) = y;(t), i=1,2,
then
Luy(t) + ua(t), 1 (o) + @a(to)) =y, (t) + yo(0).

10
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Figure 7: Illustration of the additivity property.

We illustrate the above property in Figure 7.
A system L is said to possess a homogeneity property if for any tq and any x(ty) and w(t),
t>to, if
L(u(t), z(to)) = y(1),
then
L(cu(t), cx(ty)) = cy(t),

where c is real or complex constant. We illustrate the above property in Figure 8.

l cixi(to)

ciug(t) L(-,") ciy;(t)

System

Figure 8: Illustration of the homogeneity property.

A system L is said to possess a superposition property if for any t, and any x;(ts) and
w;(t), t > to, if
L(u;(t), zi(to)) = y;(t), i=12,
then
L(ciuy(t) 4+ coua(t), cryi(to) + caxa(to)) = 1y, (t) + c2ys(t).
We illustrate the above property in Figure 9.

Note that the superposition property is a combination of the additivity and homogeneity
properties.

11
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Figure 9: Illustration of the superposition property.

Definition 2 A system is said to be linear if it possesses the superposition property.
A system is said to be nonlinear if it does not have the superposition property.

For an informative discussion on some subtleties in the definition of linearity, we recom-
mend Kailath [4, Section 1.1].

If u(t) = 0 for t > 0, then the system’s output will be produced exclusively by the initial
condition x(tp). We call such an output the zero-input response and denote it as y,;.

If, on the other hand, the initial state x(ty) = 0, then the output will be produced
exclusively by the input. This output is called the zero-state response and is denoted vy, ..

If the system is linear, then the additivity property implies that the total response, y(t)
is the sum of the zero-input and zero-state responses, that is,

y(t) = y.u(t) +y.,(t), t=to.

For linear systems the superposition property holds for zero-state and zero-input re-
sponses separately as well. In our discussion here, for the sake of simplicity, we do not
display the second argument in the operator L when we set zero initial state or zero input.

Now, if we set the initial state to zero, x(ty) = 0 and if

L(U’](t)) = yzs,j(t)a ] =1, 27
then
L(ciuy (t) + coua(t)) = c19,51(t) + 2y 5(1).
Similarly, if we set w(t) = 0 for t > ¢, and if
L(w](t(])) = yzi,j(t>7 .] = 1727
then
L(cizi(to) + c2x2(to)) = 19,:1(t) + oy, 0(t).

12



3 Input-Output Description of Linear Systems

In this Section, we develop a mathematical description of the zero-state response of linear
systems. We assume that the initial state is zero and so the system’s output is exclusively
due to the system input.

Definition 3 We say that the system s relaxed at ty if its initial condition at ty is zero,
that is, x(tg) = 0.

To proceed, we need certain facts about the impulse function, 4(¢), that we now review.

3.1 The Impulse Function and Its Properties

The impulse function, denoted 0(t), also called the Dirac function, is a signal of infinite
amplitude, zero duration, and unity area. We can construct an impulse function as the limit

of pulse functions )
Pe(t) = — (1(t) = 1(t — &)

i

as £; — 0, where 1(¢) is the unit step function defined as

1 if t>
1(t) = =0
0 if t<0.

The pulse p., is illustrated in Figure 10. Note that the pulse functions have the following

features as ¢; — 0:
1. the amplitude approaches infinity,
2. the duration of the pulses approaches zero,
3. the area under each pulse is constant; in our example the area equals unity.

The unit impulse function is defined as

/ o(t)dt =1 and §(t) =0 for ¢t #0.
The above definition states that the area under the impulse function is constant. The area
represents the strength of the impulse function. The impulse function of strength K is
denoted K§(t). Its graphical representation is depicted in Figure 11. The strength of the
impulse is shown next to the arrow’s head. The shifted impulse function of strength K is
also shown in Figure 11. The unit impulse function can be thought of as a derivative of the

13
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Figure 10: Generating the unit impulse function as the limit of the pulse functions.

unit step function, that is,
o) = dl—(t)

dt
The function shown in Figure 12 approaches the unit step function as € — 0. The function
shown in Figure 13, which is the derivative of the function from Figure 12, approaches the
unit impulse function as ¢ — 0.

The impulse function has the sifting property,

/_ " F8(t — a)dt = f(a)

where f(t) is a continuous function of time. It follows from the above that the impulse
function sifts out everything except the value of f at t = a—hence the name of the property.
To verify the validity of the sifting property, we note that §(t — a) is zero everywhere except

at t = a. Hence, we can write,

/_ T 00 — a)dt = / iﬁ F(H8(t — a)dt.

By assumption, f is continuous at a. Therefore, it must take the value of f(a) as t — a.
Thus,

/ " s - e = fa) / "o ayit = f(a),

€

which was to be demonstrated.

14
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Figure 11: Graphical representation of the impulse Kd(¢) and Ké(t — a).

Figure 12: The function 1. approaches the unit step as ¢ — 0.
We now discuss another important property of the impulse function—the sampling prop-
erty. Since 0(t — a) =0 for t # a,
f()o(t—a)=0 for t#a
as is
fla)é(t —a) =0 for t+#a.
However, when ¢t = a, we have
f@)o(t—a)= f(a)d(t—a) for t=a

provided that f(a) exists. Therefore,

f(t)o(t —a) = f(a)d(t —a) for all ¢

The above property is called the sampling property of the impulse function.
Examples

15
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Figure 13: The derivative of 1.(¢) shown in Figure 12. As e — 0, .(t) approches d(t).

(i) (cos3t)d(t —m) = (cos3m)d(t — m) = —=6(t — 7);
(ii) e 25(t) = e 2O06§(t) = 4(¢);

(i) (1— e ) d(t) = (1 — ) 5(t) = 05(t) = 0.

3.2 Zero-State Response Description of Continuous-Time, Relaxed,

Causal Systems

Suppose that the system under consideration is a single-input single-output (SISO) linear
system. Let da(t —t;) be the pulse depicted in Figure 14. The pulse has width A and height
1/A.

We can use the pulse da(t — t1) to approximate an input signal u(t) as illustrated in
Figure 15. That is, we can approximate the control signal u(t) as

u(t) ~ Zu(ti)éA(t —1;)A. (1)

Let y(t) = ga(t, t;) be the system output at time ¢ produced by the pulse u(t) = da(t—1t;)
applied at time ¢;. Then by the homogeneity property, the input u(t) = 0a(t — t;)u(t;)A
would produce the output, y(t) = ga(t, t;)u(t;)A. Applying the additivity property, we
conclude that the input given by (1) will produce the output

y(t) =~ ZQA(tu ti)u(t:)A. (2)

Now if A — 0, then
Sa(t —t;) — 8(t — t;)

16
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Figure 14: The pulse 0a(t —t1) at t = t;.
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Figure 15: Approximating the control signal u(t).
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and the corresponding output of the system is denoted g(¢,t;). Next, as A — 0 the ap-
proximation in (2) becomes an equality, the summation an integration, the discrete time ¢;
becomes a continuum that we denote using the symbol 7, while A will be represented as dr.
Taking the above into account, (2) takes the form,
o) = [ gttryutrydr ©

We note that g(t,7) is a function of two variables. The first variable denotes the time ¢ at
which the output is observed, while the second variable, 7, denotes the time at which the
impulse input is applied.

We call g(t,7) the impulse response because it is the system’s output when excited with
the impulse input.

For the causal system, the output cannot appear before the input is applied. Therefore,
for the causal systems,

g(t,7)=0 for t<rT

and we can replace the upper integration limit in (3) with ¢ to obtain

y@=/ o(t, 7)u(r)dr. (4)

For the relaxed system at tg, its initial state, x(t;) = 0. Hence, the system output is
produced exclusively by the input w(t) for ¢t > to. Thus we can replace the lower integration
limit in (4) with ¢y, and we obtain for the linear, relaxed at t(, causal system the following
expression for its impulse response;

y@zlmmwww. (5)

0
For the multi-input multi-output (MIMO) linear, relaxed at ty, casual system with p
output components and m inputs, the above expression generalizes to

mwzlemﬂwmm

where
gu(t,7) gi2(t,T) - Gim(t, T)
t, T t,7T) - mlt, T
Gln= | 27 9] = ot
9p1 (tv T) 9p2 (tv T) e gpm(t7 T)

In the above, g;;(t, 7) is the impulse response at time ¢ at the i-th output due to an impulse
applied at time 7 at the j-th input, with other inputs set to zero.
We refer to the matrix G as the impulse response matriz.

18



3.3 Input-Output Description of Continuous Time-Invariant Sys-

tems

Suppose that we have a system with the initial state & (¢o), the input w(¢) applied from ¢, that
produced the output y(t) for t > t;. We compactly describe the above mental experiment as

L(u(t), z(ty)) = y(t), for t>t,.

The above system is said to be time-invariant if for any 7', if the initial state is shifted
to time ty + T, the same input is applied from ¢y + T rather than at ¢y, then the output is
the same except that now it starts to appear at ty + 7', that is,

Lu(t—T),x(te+T1)) =yt —-T), for t>ty+T.

Therefore, the impulse response of a linear, relaxed at ¢y, causal, time invariant system can
be described as
gt, 7)=gt+T,7+T)=g(t—T,0), (6)

which we compactly denote as g(t — 7). Note that the impulse response of an LTT system,
g(t — ), is a function of one variable, where g(t) = g(t — 0) is the system output at time ¢
to an impulse applied at 7 = 0. The LTI system is causal if g(t) = 0 for ¢t < 0.

Taking into account (6), we represent the expression for the output (5) of a linear, relaxed
at to, causal, LTI system as

y@zAﬂFﬂWWﬂ (7)

where, without loss of generality, we replaced ¢y with 0. The integration in (7) is known as
the convolution integral. The above integral relation is also written in a shorthand notation
as

y(t) = g(t) * u(t),

where the asterisk signifies the integral relation between ¢(t) and u(t). The integral relation
g(t) xu(t) is read as “g(t) is convolved with wu(t).”
Note that the convolution is a commutative operation, that is,

yw:Agw4wmmzlaﬂw—ﬂm (8)

which can be represented as



A very useful tool in the analysis and design of LTI dynamic systems is the Laplace
transform. Applying the Laplace transform to (7) gives

Y(s) = Ly))

_ / h ( / :0 ot — T)u(f)df) el dt.

For causal systems, g(t) = 0 for ¢ < 07; equivalently, g(t — 7) = 0 for 7 > t~. This means
that we can replace the upper integration limit ¢ in the above with oo, and performing some

simple manipulations, we obtain

Y(s) = / N ( / : ot — T)u(T)dT) et
_ / h < / : ot — T)u(f)df) oS =T) T gt
_ / h < / : gt — T)e_s(t_T)dt> u(r)e > dr

= / g(t—T)e_s(t_T)dt/ u(r)e”*Tdr

- 7=0

= G(s)U(s), (9)

where G(s) is called the transfer function of the system and U(s) is the Laplace transform
of the input signal.

The Laplace transform of the convolution of two functions of time is equal to the products
of their Laplace transforms, that is,

L(g(t) * u(t)) = L(g(1))L(u(t)) = G(s)U(s).

That is, to the product in the s-domain there corresponds the the convolution in the time
domain.
If a linear time-invariant system is lumped, its transfer function, G(s), is a rational

function of s, that is,
N(s)

G(s) = oy

where N(s) and D(s) are polynomials in s.
For the MIMO LTI dynamic system, (9) takes the form,

[ Yi(s) | [ Guls) Guals) - Gun(s) | | Ui(s) |
Ya(s) _ Ga(s) Gaa(s) -+ Gam(s) Us(s)
| Yo(s) | | Gals) Gha(s) o Gun(s) | | Unls) |
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We represent the above in a vector-matrix notation as

where G(s) is called the transfer function matriz.

Example 2 If we apply the impulse input in the unit-time delay system of Example 1, then
the output is §(¢ — 1). Hence the impulse response of this system is

g(t) =9(t —1). (10)
The transfer function of the unit-time delay system of Example 1 is

G(s) = e=*. (11)

Example 3 The integrator can be described as

y(t) = k;/ u(T)dr, (12)

—00

where k; is the gain. We can equivalently describe the integrator as

dy(t)
2 = kyu(t) (13)

The impulse response of the integrator is the unit step function also known as the Heaviside
step function.

The transfer function of the integrator described by (12) or by (13) is
ki

S

G(s) =

Example 4 The ideal differentiator is described as

du(t)
dt ’

y(t) =kp
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where kp is the differentiator’s gain. Its impulse response is

L di)
g(t) = kDT
0 for t#0
= +oo for t=0" (14)

—oo for t=07,

The transfer function of the ideal differentiator is

G(s) = kps.

3.4 State-Space Description of Continuous Time-Invariant Sys-

tems

Every linear time-invariant (LTI) lumped causal system can be described by a set of equations

of the form,
z(t) = Axz(t)+ Bu(t), x(0)=x (15)
y(t) = Cx(t)+ Du(t), (16)
where
T (t)
2y = | ™
T (1)

is the state vector. The matrices A, B, C, and D are constant real matrices. A block
diagram representation of the state-space description given by (15) and (16) is depicted in
Figure 16.

Taking the Laplace transform of (15) and (16) gives

sX(s)—x(07) = AX(s)+ BU(s) (17)
Y(s) = CX(s)+ DU(s). (18)

We compute X (s) from (17),
X (s) = (sI, — A) " 2(07) + (sI, — A)"" BU(s)
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Figure 16: Block diagram representation of the state-space description given by (15) and (16).

Substituting the above into (18) yields
Y (s)=C(sI,—A) ' x(07)+C (sI,— A" BU(s) + DU (s).

If the initial condition is zero, then we obtain the expression for the transfer function matrix,
G(s)=C(sI,— A "'B+D. (19)

3.5 Input-Output Description of Discrete Time-Invariant Systems

Recall that a discrete-time system accepts discrete-time signals and produces discrete-time
signals as its output.

As in with a continuous-time system, a discrete-time system is linear if it possesses the
superposition property.

The response of a discrete-time linear system is the sum of the zero-state and zero-input
responses. Both the zero-state and zero-input responses possess the superposition property.

A discrete-time system is causal if its current output depends on the current and past
inputs.

The discrete system state, x[ko|, is the information at time ko that together with w[k]
for k > ko uniquely determines the system output y[k| for k > k.

If the number of the components in the state vector « is finite, then this discrete system
is lumped; otherwise it is distributed. If there is a time delay in a continuous-time system,
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D=0 Ok = mJu[m]| Linear | me_oo 9[k, mlulm]
Discrete
System

Y

Y

Figure 17: Output of linear discrete-time system in response to the input sequence (20).

then this system is distributed. On the other hand, if in a discrete-time system the time
delay is an integer multiple of the sampling period h, then such a system is a lumped system.
To proceed, we define the impulse sequence denoted 6k — m] as

1 if k=m
S[k —m] =
[k = m] {o it k£m,

where both k£ and m are integers that denote sampling instances.
Suppose now that we have an input sequence denoted ulk]. We express this input se-

quence as
oo

ulk] = > ulk]é[k — m] (20)

Let now g[k, m] denote the discrete-time system output at time k when excited with the
impulse sequence, §[k—m], at the time instant m. Because by assumption the discrete system
under consideration is linear, hence by the homogeneity property the input [k — m]u[m]
will yield the output, g[k, m]u[m]|. Combining the above with the additivity property, we
conclude that the input, >~ d[k — m]u[m] will yield the output, >~ _ g[k, mJu[m].
We illustrate the above in Figure 17.

In a causal discrete-time linear system, no output can appear before an input is applied.
Hence,

glk,m] =0 for k<m.

If, in addition, the system is relaxed at kg, then the output will take the form,
k

ylk = Y glk,mlu[m].

m=ko

Note that for time-invariant linear causal system we can always set ky = 0 to obtain

ylk) = 3" glk — mlulm]. (21)



The above is referred to as a discrete convolution. It is easy to check that the discrete
convolution possesses the commutativity property, that is,

k k

ikl = 37 gl = mjum] = 3 glmlulk — m).

Applying the z-transform to (21) gives

Y(z) = Z(ylk])

= Z <Z glk — m]u[m]) 2k,

k=0 \m=0

Taking into account the causality assumption, we can replace the upper integration limit &
with co. Then performing simple manipulations, we obtain

Y(z) = ) (Z glk — m]u[m]> 7= (kmm) 5mm

> <Z gl - m]z-“f-m)) ufm)z"
- (o) (St
= GEUE)

where we interchanged the order of summations, introduced the new variable [ = k —m and
took into account the fact that g[l] = 0 for [ < 0.

The z-transform of the impulse response, denoted G(z), is called the discrete transfer
function. Note that the transfer functions describe only the zero-state responses.

Example 5 [2, p. 33] Consider the unit-sampling-time delay system model of the form,
ylk] = u[k —1].

The impulse response of the above system is
glk] = o[k —1].

The discrete transfer function is obtained by taking the z-transform of the impulse response.
We obtain

G(z) = 115(5%—1])
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Figure 18: Block diagram representation of the state-space description given by (22) and (23).

The above transfer function is a rational function of z. Thus the above system is a lumped
system. Note that in the continuous-time case, systems involving time delays are distributed
system. As the above example shows, this is not necessarily the case in discrete-time systems.

3.6 State-Space Description of Discrete Time-Invariant Systems

Every discrete linear time-invariant (LTT) lumped causal system can be described by a set
of equations of the form,

xlk+1] = Axz[k]|+ Bulk], 0] == (22)
yk] = Cxlk] + Dulk], (23)
where
1 [K]
zlk] = |

is the state vector. The matrices A, B, C, and D are constant real matrices. A block
diagram representation of the state-space description given by (22) and (23) is depicted in
Figure 18.
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Let X (z) denote the z-transform of x[k], that is,

Then, the z-transform of x|k + 1] is
Z(xlk+1]) = > ak+1]"
k=0

= 2z Z x[k 4 1]z~ ¢+

00
k

Il
o

Applying the z-transform to (22) and (23) and taking into account (24) gives

2X(z) —zx[0) = AX(2)+BU(z), x[0]=x
Y(z) = CX(z)+DU(z).

We calculate X (z) from (25) to obtain
X(2) = (21, — A) " zz[0] + (21, — A)"' BU(z).

Substituting the above into (26) yields

Y (2) =C (20, — A" 20| + C (21, — A)"' BU(z) + DU(=z).

If set the initial condition to zero, that is, [0] = 0, then we have

Y(2) = (C(2I,— A" ' B+D)U(z).

Thus the transfer function of the discrete time-invariant system described by (22) and (23)

is
G(z)=C(2I,— A "'B+D.

Note that the above is the discrete equivalent of (19).

(27)

We add that to a model represented in a state-space format, there corresponds a unique

transfer function matrix. On the hand, there are infinitely many state-space representations

that have the same transfer function matrix.
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4 From Transfer Function to State-Space Description

If the Laplace variable s is replaced in (19) with the z-transform variable z then we ob-
tain (27), and vice versa. Thus a method of converting a transfer function into a state-space
representation for continuous linear time-invariant lumped systems is applicable also for
discrete linear time-invariant lumped systems.

We say that a transfer function G(s) is realizable if there exists a quadruple of constant
matrices (A, B, C, D) such that G(s) = C (sI,, — A)"' B+ D. We call such a quadruple
(A, B,C, D) a realization of G(s).

We begin our discussion with a single-input single-output (SISO) system modeled by a
transfer function,

Y(s)
U(s)

= G(s)

N(s)

D(s)

b S™ + by 1™ 4 -+ bys + by
S" 4 ap_1S" - ars + ag

that is a proper rational function, which means that
deg, N(s) < deg, D(s).

Note that in (28) the highest coefficient of the denominator polynomial is unity. If this was
not the case, we would divide the numerator and the denominator by the highest coefficient
of the denominator thus forcing a,, = 1.

If G(s) is proper but not strictly, that is, deg, N(s) = deg, D(s), equivalently, m = n,
then we divide the numerator N(s) by the denominator D(s) to obtain

G(s) = G(s)sp + G(0), (29)

where G(s)sp denotes the strictly proper part of G(s) and G(00) = by,.
Our goal is to find a realization of G(s), that is, a quadruple, (A, b, ¢, d) such that

G(s) =c(sI — A)~'b+d. (30)

Note that ¢(sI — A)7'b is a strictly proper rational function and d is a scalar. Therefore, in
our construction of a realization of G(s), we first extract the strictly proper part as in (29).
We then find a triple (A, b, ¢) such that

G(s)sy = c(sI — A) b, (31)
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Ul(s) . C(s) Y (s)

» m
s Fap_18" " 14-Fag > bms —I— e _I_ bO ,

Figure 19: Decomposition of G(s) to construct its state-space realization.

A realization of G(s) will have the form (A, b, ¢, G(c0)), that is, d = G(o0).

To proceed, we assume for simplicity that G(s) = G(s)sp. We split our procedure of
finding a triple (A, b, ¢) such that (31) holds into two steps. In the first step, we introduce
an intermediate Laplace variable, C'(s), such that

Y(s) Y(s) C(s)
Us) — C(9)U(s)
- S 4 a1 8" le -t a1s+ ag (bmsm +bmo1s™ T s+ bO) - (32)

We illustrate the operation given by (32) in Figure 19. We first concern ourselves with the

transfer function
Y(s) 1

C(s)  s"+ap 18" t+--+ag
Performing cross-multiplication gives

(8" 4+ an_1s" '+ +ag) Y(s) = C(s).

Taking the inverse Laplace transform and assuming zero initial conditions yields
U™ a1y ™D 4 agg + agy = c.

We define the state variables:

Ty =Y
Z2 = y=1
(33)
Ty = Yy =i,
T = y V=g, )
Note that
&, = y(N)
= —agy —my— - — a1y +c
= —QyT] — 1Ty — *+* — Ap_1Ty + C. (34)
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Figure 20: Implementation of (35).

We represent (33) and (34) in the matrix-vector format as

&4 ] [ o 1 0o -+ 0 0 [ = ] [o]

o o 0 1 - 0 0 o 0

o= : . : oL+ e (39)
Fn1 o 0 0 - 0 1 Tno1 0
| T | —ap —a1 —ay - —Qp2 —Auo1 | | T | 1]

The above set of n first-order ordinary differential equations can be simulated using a circuit
shown in Figure 20.
We next concern ourselves with the transfer function

Y(s)

—— L = S+ b1 8™ 4+ bys + by,
Cs) s+ 1S + -+ 015+ bg

which we represent as
Y (8) = bps™C(8) + by18™ 1C(8) + - -+ + by1sC(5) + byC(s).
Taking the inverse Laplace transform, we obtain

Y = by ™ 4 b1 ™Y p o byé A+ by (36)
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Note that

cC = I
¢ = Lt'l = X9
C(m_l) = Typo1 =Ty

= Ty = Tyma1-
Hence, we can represent y in terms of the state variables,

Y =bnTmi1 + bm_1Tm + -+ -+ b1za + by,
or, equivalently, as

€
X2

Tn—1

Tn

Combining (35) and (37), we obtain a realization of a strictly proper transfer function (28).
This state-space realization has the form,

0 1 0 0 0
0 0 0 0 0
x = : : : x+ | | u (38)
0 0 0 1
| —ap —ar - —Gp2 —Ap1 | |1
y = [bo N N ) (39)

We depict the above realization in Figure 21.

The above realization is only one of the infinitely possible realization of a given rational
function G(s). Using (39) and (39), we can easily obtain another realization of G(s). First
note that G(s) can be viewed as an 1 x 1 matrix; therefore, its transpose equals itself, that

is,
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Figure 21: Implementation of (21).

Applying the transposition operation to both sides of (30) and using the property of the
transpose of a product of matrices, we obtain

G(s) = G(s)'
— (e(sT—A)"'b+d)’
= b ((sT—A)) e +d"
— b (sT-AT) ¢ +d.

Thus, we have another realization of G(s) of the form

[ 0O --- 0 —Qo ] [ bo ]
10 --- 0 —ay bl
T = : : : T+ : u (40)
00 0 —Qp—2 bn_g
L 00 ---1 —Anp—1 ] | bn—l i
y = [00 -~ 00 - 1]|2+G(c0). (41)

We now summarize and generalize the above discussion for multi-input multi-output
transfer functions in the form of the following theorem.

Theorem 1 A transfer function G(s) is realizable if and only if G(s) is a proper rational

matrix.
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Proof (<) We first prove that for a given a rational proper transfer function G(s) €
RP*™(s) there is a realization. The proof is constructive. We begin by decomposing G(s) as

G(s) = G(5)sp + G(0),
where G(s)s, denotes the strictly proper part of G(s). Let
d(s) =s"+a,_18" -+ a5+ ag

be the least common denominator of all rational function components of G(s)sp. Note that
the highest coefficient of d(s) is unity. We can always make «,. = 1 by dividing, if necessary,
the corresponding numerator polynomials and d(s) by a,. We then express G(s)s, as

N (s)

d(s)

Nr_lsr—l + "'—I—le—l—NQ
d(s) ’

G(S>Sp

where each IN; is an p X m constant matrix. We now show that the following state-space
representation yields a realization of G(s):

e I, o - 0] o | [ O ]
6] 0] I, - 6] 0] 6]
& = : : : : : x4+ | 1 |u
0] o) o - o I, o ¢ (42)
| —aol,, —andy, —aoly, o —ap ol —ae 1y, | | Lo |
y = [Ny Ny Ny o Ny Ny |2+ Gloou, J

where D = G(oc0). Note that the matrix A in the above realization is a block matrix; its
blocks are m x m matrices.
To show that the above state-space representation is indeed a realization of G(s), we

define
Z,

Z, .
Z = ] =(sI — A" B, (43)
Zr’—l
where Z,; is an m X m sub-matrix of the rm x m block matrix Z. Then the transfer function
of (42) is

C(sT—A)"'B+G(0) = NoZo+ N1Z, + -+ N,_1Z,_1 + G(0). (44)
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We pre-multiply both sides of (43) by (sI — A) and represent the result as
sZ =AZ + B.
Taking into account the structure of matrices A and B in (42), we obtain
so=24,, SZ1=2Zy, SL, o=2L,_1, (45)

and
s4,_1=—apdo—oly— - —ap_1 L+ 1, (46)

Note that Zy = sZ; = s*Z, and in general,
Z,=5sZy, i=1,...,r—1 (47)
Substituting (47) into the above expression and performing simple manipulations gives

(sr +opsTT s+ ao) Zy=1,,

that is,
1
Zo=——1,,. 4
T (48)
Using (45) or (47) and the above yields
s s"1
Z, =1, .. Z_,=>_1, 4
') ) )
Substituting (48) and (49) into (44), we obtain
1
C(sI — A)'B+G(x0) = 0 (No+ Nis+--+ N,_15"" + G(0))
s
= G(s), (50)

which shows that (42) is a realization of G(s). The proof of this part of the theorem is
complete.
(=) If the transfer function G(s) is realizable then there exists a quadruple (A, B, C, D)
such that

G(s)=C(sI —A)"'B+D.

Note that C(sI — A)"'B is a strictly proper rational matrix and because D is a constant
matrix, C(sI — A)™'B + D is a proper rational matrix, which completes the proof of this
part of the theorem.

O
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We can obtain another realization of G(s) from (42). We begin by constructing a real-
ization for G(s)" using (42) to obtain

G(s)' =C(sI — A)'B + D. (51)
We next transpose both sides of (51) to obtain

(G(s)T) =Gls)
— (C(sI-A)"'B+D)’
— BT (sI-AT)'CT+D".

The resulting realization has the form

(0O O O --- O —ol, | [ N/ ] )
I, O 1, -+ O -al, N/
T o= | : e+ | i |u
O O O - O —a,.,I, N/, (52)
| O O O - I, —a,1I,, | N,
y = |0 O O O I, |z+G(co)u. )

Note that although the realization (52) is based on the realization (42), their dimensions will
be different if p # m.

5 Summary and Notes

Classification linear systems discussed by us in this chapter is shown in Table 1.

A landmark paper on mathematical description of linear dynamic systems from control
point of view is by Kalman [5]. The first chapter of Sontag’s book [10] is a nice, easy to
read, and comprehensive introduction to the subject of mathematical control theory.

Mayr writes on page 109 in [8], “It is still widely believed that the steam-engine governor
is the oldest feedback device, and that James Watt had not only invented but also patented
it. While both errors are easily refuted, we are still not able to reconstruct the history of
this invention in all desired completeness.” Watt did not patent the governor. He did not
invent it either. On page 112 of his book [8], Mayr adds the following: “But the application
of the centrifugal pendulum in a system of speed regulation of steam engines was a new
breakthrough for which the firm of Boulton & Watt, if not James Watt himself, clearly
deserves the credit.”
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Table 1: Table summarizing linear system classification; adapted from Chen [2, p. 37].

System Internal Description | External Description
Distributed, linear y(t) = ftz G(t,7)u(r)dr

y(t) = [, G(t,7)u(r)dr

y(t) = [ G(t—r)u(r)dr
Y(s) = G(s)U(s),
G (s) irrational
= [ G(t—T)u(r)dr
Y(s) = G(s)U(s),
G (s) rational

Lumped, linear

Distributed, linear,

time-invariant

Lumped, linear, x = Ax+ Bu
time-invariant y = Cx+ Du

6 Exercises

Exercise 1 Draw a block diagram illustrating the operation of the Watt’s governor shown
in Figure 6.

Exercise 2 An example of a closed-loop feedback system is a toilet flushing device connected
to a water tank. A toilet system is shown in Figure 22. The control objective is to maintain
the level of water in the tank at a constant level. Draw a block diagram of the system.

Exercise 3 (based on Chen [2, p. 33])
Compute the transfer function of a discrete-time system whose impulse response is

glk] = {

Is this system lumped or distributed?

for <0
for k> 1.

= O

Exercise 4 Suppose that G(s) € RP*™ is a proper rational matrix such that
G(s) = G(8)sp + G(0),
where

NT_18T_1+"'+N18+N0
d(s)
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Figure 22: Toilet-flushing system for Exercise 2.

and d(s) = " +a,_18" '+ - -+ a5+ ag. Show that the following state-space representation

is a realization of G(s):

[ —aol,, —aidl,, —asl, —oy_od —ay_1I,, |
(0 o (0 o
r = : : " : : T+
o o (0 (0
I, O (0] e I, O |
y = | Noo1 Noo Npg -+ Ny No}f’?JFG(OO)Ua

Exercise 5 For a proper rational matrix

s+1 1 3s—1
— (s+2)2  (2s+1)(s+2) s
(;(S) 3 4s5—10 2541 )
5+2 25+1 5241

(i) construct its two realizations;

(ii) use MATLAB’s tf2ss command to find a realization of G(s).

(54)

Exercise 6 Compute the impulse response of a dynamic system whose transfer function is

given by (54).
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Exercise 7 Can you construct a state-space model of a linear system whose output is zero
in response to any input?

Exercise 8 For the circuit shown in Figure 23 draw a block diagram with the current i(¢)
as the system’s input and the voltage v(t) as the system’s output. Then, find the transfer
function, V'(s)/1(s).

20Q

" 10mF |+
C) 30 Q JE—
v(t)

i(t)

Figure 23: Circuit for Exercise 8.

Exercise 9 Find the transfer function V,,.(s)/Vin(s) of the circuit shown in Figure 9 that

conatins an ideal operational amplifier.

Exercise 10 The purpose of this Exercise is to show some benefits that the state-space
description can offer in the analysis of control systems. Begin by verifying that the transfer
function Y(s)/R(s) for both systems shown in Figure 25 and 26 is the same. Obtain the
step response for this transfer function.

Next obtain state-space realizations of the systems shown in Figure 25 and 26. That
is, construct state-space realizations of G.(s) = % and G,(s) = -%; and then construct
the overall state-space model of the cascade systems. The state-space models should of
of second-order. Verify that the transfer functions of the models are the same as in the

part above. Implement the obtained state-space models in SIMULINK. Obtain plots of the
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R,=1Q

L=1H

C=IF  R=20

Vin

Figure 24: Circuit for Exercise 9.

states and the outputs in response to a unit step input. Perform your simulations for different
initial conditions that you can impose on the integrators. Compare the external, that is,
input-output system behavior against the internal behavior. Can you give an explanation
for an unexpected behavior of the state variables even when the external behavior seems to
be acceptable.

Y
Y

s+2 s—1

Figure 25: Cascade compensation for Exercise 10: compensator preceding the plant.
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s—1 g s+2

Figure 26: Compensator following the plant.
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