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Abstract

The integral action method combined with the synergetic control design approach

are employed to synthesize regulators for a class of nonlinear dynamical systems. The

integral action is commonly used in the design of controllers to track constant or

almost constant reference signals. The proposed method offers a closed-form analytic

solution. An attractive feature of the proposed approach is that the control law is

obtained by solving the first-order differential equation. The stability analysis of the

closed-loop system driven by the proposed regulator is performed and illustrated with

two simulation examples: the regulator design for a wing-rock suppression problem

and a two-link manipulator.
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1 Introduction

An attractive feature of synergetic control is that solving the first-order differential equation

provides a closed-form solution to the regulator problem. For an elementary introduction to

the subject of synergetic control and its applications to power electronics, we recommend

Refs. [1, 2, 3, 4]. In this paper, we combine a synergetic control approach with an integral

action method in the regulator design. The integral action is commonly used in the design

of controllers to track constant or almost constant reference signals [5].

The paper is organized as follows. In the following section, we present elements of syner-

getic control approach that we employ in this paper. Then, we apply the synergetic control

approach to the synthesis of a regulator using the integral action. Stability analysis of the

closed-loop system is performed, and an algorithm for the construction of a stable invariant

manifold, an essential element of synergetic regulator design, is formulated. Finally, we test

the proposed algorithm for the regulator construction to design regulators for a nonlinear

wing-rock suppression problem and a two-link robotic manipulator.

2 Synergetic Control Method

Consider a class of nonlinear dynamical systems modeled as

ẋ = f (x) + B(x)u, (1)

where x is a vector of state variables of dimension n, u is the input vector of dimension m,

f (x) is a state-dependent function of dimension n, B(x) is a state-dependent input function

matrix of dimension n × m and it has full column rank everywhere.

Let σ = s(x) : R
n → R

m be a vector function of dimension m.

The objective of the control problem, discussed in this paper, is to find a control policy

that stabilizes the system (1) by steering the system (1) trajectories to a manifold,

M = {x : σ = 0} (2)
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and force the trajectories to stay on the manifold thereafter.

We further require that, (i) the system (1) confined to the manifold M = {x : σ = 0} is

asymptotically stable to the origin, (ii) σ = s(x) is constructed so that the square m × m

matrix sx(x)B(x) is invertible, where sx is the Jacobian matrix of s(x) with respect to x.

It is shown in Refs. [3], [4] that when these two conditions are satisfied, the solution to the

above control problem is obtained by solving the associated first-order ordinary differential

equation

T σ̇ + σ = 0, (3)

where T ∈ R
m×m is a symmetric positive definite matrix. The control policy is the solution

to the first-order differential equation (3), that is,

u = −(Tsx(x)B(x))−1 (Tsx(x)f (x) + s(x))

= −(sx(x)B(x))−1sx(x)f(x) − (sx(x)B(x))−1T−1s(x). (4)

The use of the control law (4) in the nonlinear dynamical systems (1) makes the invariant

manifold M = {x : σ = 0} attractive. The control law (4) drives closed-loop trajectories

of (1) from any initial condition towards the invariant manifold M. As stated above, σ

is constructed in such a way that all trajectories of (1) confined on M converge to the

origin. Therefore, the stability of the closed-loop trajectories is achieved in two modes: (i)

closed-loop trajectories converging to the manifold M = {x : σ = 0}, and (ii) closed-loop

trajectories moving along the manifold M = {x : σ = 0} towards the origin.

The synergetic control design method employs the following two-step design procedure:

1. Construct an asymptotically stable invariant manifold M = {x : σ = 0}, (i.e. all

trajectories of the system confined to M converge asymptotically to the origin).

2. Construct the controller u using (4).

The synergetic control approach shares similarity with that of the variable structure

sliding mode control (SMC). This relation was discussed in Refs. [1], [2], [3], [4]. It was

observed in Refs. [3], [4] that the first term of the control policy (4) is the so-called “equivalent
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control,” while the second term may be viewed as an “approximation to the discontinuous

control law” of the SMC. Additionally, the method of constructing a stable invariant manifold

proposed in [6] will be directly applied to the construction of the invariant manifold in this

paper.

In the development of the proposed regulator, we adopt the integral tracking method used

in the sliding mode tracking controller design described in Ref. [7]. The resulting controller

drives the closed-loop dynamics so that the integral of the tracking error converges to zero.

This is essentially a regulation problem of the “integral error” for which regulation methods

using synergetic control [3, 4] can be applied.

3 System Description

The class of nonlinear systems that we consider is modeled by

ẋ = f(x) + B(x)u

= A(x)x + B̂ũ. (5)

We assume that the system (5) is transformable into the following “regular form” [8], [7],




ẋ1

ẋ2



 =




A11 A12

A21(x) A22(x)








x1

x2



 +




O

Bu



 ũ, (6)

where the state vector x1 is in R
n−m, the state vector x2 is in R

m, and the control vector u

is in R
m. The matrix O ∈ R

(n−m)×m is a matrix with zero entries. The matrix Bu ∈ R
m×m

is invertible and the matrices Aij, i = 1, 2, j = 1, 2 have appropriate dimensions. Note that

A1j’s, j = 1, 2, are constant matrices, while A2j ’s, j = 1, 2, are state-dependent matrices.

For a constructive algorithm that can be used to transform (5) into the regular form given

by (6), we refer to Ref. [7, p. 66].

An example of physical systems that can be modeled using the above non-linear regular

form are natural Lagrangian systems. A simple example of a natural Lagrangian system

whose model can be represented inn the regular form is a planar two-link robot. Indeed, let
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x1 = [θ1 θ2]
⊤ be the vector of joint angles, τ = [τ1 τ2]

⊤ be the vector of torques applied to

the joints. A detailed modeling of such a robot can be found in [9, p. 396], and its dynamics

are given by

H(x1)ẍ1 + C(x1, ẋ1)ẋ1 + g(x1) = τ , (7)

where H(x1) is the manipulator inertia matrix and C(x1, ẋ1)ẋ1 is the vector of centripetal

and Coriolis torques, and g(x1) =
[

g1(x1) g2(x1)
]⊤

is the vector of gravitational torques.

Because the inertia matrix H(x1) is positive definite over the whole workspace, we know

that H−1(x1) exists and is also positive definite. Let

G(x1) =





g1(x1)
x1

0

0 g2(x1)
x2



 .

Using the above we can represent the term g(x1) as

g(x1) = G(x1)x1. (8)

Taking into account (8), we can rewrite (7) as

ẍ1 = −H−1(x1)C(x1, ẋ1)ẋ1 − H−1(x1)G(x1)x1 + H−1(x1)τ . (9)

Let x2 = ẋ1 and ũ = H−1(x1)τ . Then, the dynamics of the planar two-link robot modeled

by (9) can be represented in the form of (6), that is,




ẋ1

ẋ2



 =




O I2

−H−1(x1)G(x1) −H−1(x1)C(x1, x2)








x1

x2



 +




O

I2



 ũ. (10)

4 Regulator Design

Suppose that the output y ∈ R
p of system (6) has the form,

y =
[

C1 C2

]




x1

x2



 . (11)
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Our objective is to design a regulator so that the output y tracks a constant reference vector

r ∈ R
p. We now introduce the vector variable xr, defined by the following differential

equation,

ẋr = r − y. (12)

The controller should be designed in such a way so that

lim
t→∞

ẋr(t) = 0.

To proceed, we define the augmented state variable vector,

x̃ =




xr

x



 =













xr







x1

x2







︸ ︷︷ ︸

x













∈ R
N , (13)

where N = n + p. The dynamics of the overall augmented system are governed by the state

equation,







ẋr

ẋ1

ẋ2








=








O −C1 −C2

O A11 A12

O A21(x) A22(x)








︸ ︷︷ ︸

˜A








xr

x1

x2








+








I

O

O








︸ ︷︷ ︸

Br

r +








O

O

Bu








︸ ︷︷ ︸

˜B

u. (14)

Note that the matrices in the augmented state equation (14) are labeled as Ã, Br, and B̃,

respectively. Hence, the augmented system model (14) can be represented as

˙̃x = Ãx̃ + Brr + B̃u. (15)

We make the following assumption:

Assumption 1: The pair







O −C1

O A11



 ,




−C2Bu

A12Bu








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is controllable.

An essential element of the synergetic controller design is the construction of an invariant

manifold σ = 0. Let the manifold function σ be defined as

σ = σ(x̃) = σ(xr, x1, x2) = −Srxr + S1x1 + S2x2 =
[

−Sr S1 S2

]

x̃ = S̃x̃. (16)

The negative sign in front of Sr is for the purpose of simplified notation. Proper construction

of σ means that the system modeled by (14) restricted to the manifold M = {x̃ : σ = 0}

is asymptotically stable, that is, the trajectories of the system restricted to the manifold

M converge asymptotically toward the origin. A construction of such S̃ is provided in the

section. We assume that

det
(

S̃B̃
)

= det (S2Bu) 6= 0. (17)

Using (3), we perform manipulations to obtain,

0 = T σ̇ + σ

= T S̃ ˙̃x + S̃x̃

= T S̃(Ãx̃ + Brr + B̃ũ) + S̃x̃

= T S̃Ãx̃ + T S̃Brr + T S̃B̃ũ + S̃x̃. (18)

It follows from (14) that S̃Br = −Sr. Hence, we can re-write (18) as

0 = T S̃Ãx̃ − T S̃rr + T S̃B̃ũ + S̃x̃. (19)

Solving (19) for u yields

ũ = −(S̃B̃)−1(S̃Ãx̃ + T−1S̃x̃ − Srr) (20)

Substituting (20) into (14), we obtain closed-loop system dynamics model,

˙̃x =
(

I − B̃(S̃B̃)−1S̃
)

Ãx̃ − B̃(S̃B̃)−1T−1S̃x̃ + B̃(S̃B̃)−1Srr + Brr. (21)

In the following section, we show that the control law given by (20) forces the above

closed-loop system to track the reference signal r.
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5 Analysis of the Closed-Loop System Behavior

To proceed with our analysis, we need the following lemma, which can be viewed as a

corollary of Theorem 6.2 in [6, p. 333]; see also [10].

Lemma 1 Consider the system model given by (14), where rank (B̃) = m, Assumption 1

is satisfied, and a given set of N − m complex numbers, {λ1, . . . , λN−m} is such that any λi

whose imaginary part is nonzero appears in the above set in a conjugate pair. Then, there

exist full-rank matrices W ∈ R
N×(N−m) and W g ∈ R

(N−m)×N such that

W gW = IN−m, W gB̃ = O,

and the eigenvalues of W gAW are

eig(W gÃW ) = {λ1, . . . , λN−m}.

Proof: We begin our proof by defining an N × (N − m) real matrix of the form,

V =




IN−m

O



 . (22)

Therefore,

[

V B̃

]−1

=




IN−m O

O Bu





−1

=




IN−m O

O B−1
u



 =




V g

B̃
g



 .

Hence, 


V g

B̃
g





[

V B̃

]

=




V gV V gB̃

B̃
g
V B̃

g
B̃



 =




IN−m O

O Im



 = IN .

Note that

V gV = IN−m and V gB̃ = O. (23)

By Assumptions 1, the pair

(

V gÃV , V gÃB̃
)

=








O −C1

O A11



 ,




−C2Bu

A12Bu








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is controllable. Therefore, for any set of complex numbers,

{λ1, λ2, . . . , λN−m}

symmetric with respect to the real axis, we can always find a matrix F such that

{λ1, λ2, . . . , λN−m} = eigenvalues
(

V gÃV − V gÃB̃F
)

.

The matrix F can be determined using any available method for pole placement. We proceed

by performing the following manipulations,

V gÃV − V gÃB̃F = V gÃ
(

V − B̃F
)

= W gÃW , (24)

where W g = V g and W = V − B̃F . Note that by (23),

W gW = V g
(

V − B̃F
)

= V gV = IN−m. (25)

We also have, V gB̃ = W gB̃ = O, which completes the proof of the lemma.

2

Theorem 2 Suppose that the assumptions of Lemma 1 are satisfied. Then there exists the

invariant manifold matrix S̃ ∈ R
m×N such that S̃B̃ = Im and the closed-loop system (21)

tracks the reference signal r, that is, y(∞) = r.

Proof: Consider the matrix,
[

W B̃

]

. Note that

[

W B̃

]

=




IN−m O

F Im








V g

B̃
g



 .

Thus the matrix
[

W B̃

]

is invertible and its inverse has the form

[

W B̃

]−1

=




W g

B̃
g

+ FV g



 .

Let

S̃ = B̃
g

+ FV g =
[

F B−1
u

]

.
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Note that by (23),

S̃B̃ =
(

B̃
g

+ FV g
)

B̃ = Im.

Consider the following state-space transformation,

z =




z1

z2



 =




W g

S̃



 x̃ =




V g

S̃



 x̃.

Note that z2 = S̃x̃ = σ. We also have



W g

S̃





[

W B̃

]

=




W gW W gB̃

S̃W S̃B̃



 =




IN−m O

O Im



 , (26)

where IN−m is the identity matrix of dimension (N −m)× (N −m). Therefore, the matrices

in (26) satisfy the following relations,

W gW = IN−m,

S̃W = O ∈ R
m×(N−m),

W gB̃ = O ∈ R
(N−m)×m,

S̃B̃ = Im.






(27)

Using matrix relations shown in (27), we represent the closed-loop dynamics in the z coor-

dinates as



ż1

ż2



 =




W g

S̃



 (Ã − B̃(S̃B̃)−1S̃Ã − B̃(S̃B̃)−1T−1S̃)
[

W B̃

]




z1

z2





−




W g

S̃



 B̃(S̃B̃)−1S̃Brr +




W g

S̃



Brr

=




W gÃW W gÃB̃

O −T −1








z1

z2



 +




W g

S̃





(

−B̃(S̃B̃)−1S̃Br + Br

)

r

=




W gÃW W gÃB̃

O −T −1








z1

z2



 +




O + W gBr

−S̃Br + S̃Br



 r

=




W gÃW W gÃB̃

O −T −1








z1

z2



 +




W gBr

O



 r. (28)

Observe that W gB̃(S̃B̃)−1S̃Br = O because W gB̃ = O. Since T is positive definite, the

eigenvalues of −T −1 are all in the open left-hand complex plane. This implies that the
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dynamics of z2 = σ are asymptotically stable, that is, the invariant manifold, {σ = 0}, is

asymptotically attractive. By (24), the matrix W can be chosen so that the eigenvalues of

the constant matrix W gÃW are in the open left-hand complex plane. In the steady-state

the overall system trajectories converge to the point on the manifold, {z2 = σ = 0}, given

by

0 = W gÃWz1 + W gBrr. (29)

We partition F as

F =
[

F 1 F 2

]

, (30)

where F 1 ∈ R
m×p and F 2 ∈ R

m×(n−m). We have,

W = V − B̃F =








Ip O

O In−m

−BuF 1 −BuF 1








and W gBr =




Ip

O(n−m)×p



 . (31)

Recall that W g = V g. Using the above and the fact that

z1 = W gx̃ =




xr

x1



 ,

we express (29) in the form,

0 = V g








O −C1 −C2

O A11 A12

O A21(x) A22(x)








Wz1 +




Ip

O



 r

=




C2BuF 1 −C1 + C2BuF 2

−A12BuF 1 A11 − A12BuF 2



W gx̃ +




Ip

O



 r

=




C2BuF 1 −C1 + C2BuF 2

−A12BuF 1 A11 − A12BuF 2








xr

x1



 +




Ip

O



 r,

or, equivalently,

0 = C2BuF 1xr − (C1 − C2BuF 2) x1 + r, (32)

0 = −A12BuF 1xr + (A11 − A12BuF 2) x1. (33)
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In the steady-state, z2 = 0, that is,

S̃x̃ =
[

−Sr S1 S2

]








xr

x1

x2








= 0.

Hence,

Srxr = S1x1 + S2x2. (34)

Substituting S2 = B−1
u and (34) into (32), we obtain

0 = −C2BuSrxr − C1x1 + C2BuS1x1 + r

= C2Bu(−S1x1 − S2x2) − C1x1 + C2BuS1x1 + r

= −C2x2 − C1x1 + r

= −y + r,

that is, y(∞) = r, which completes the proof of the theorem.

2

We summarize the above considerations in the form of an algorithm for constructing a

matrix S̃ of the invariant manifold.

Algorithm for the Construction of an Invariant Manifold

1. Find a matrix V such that
[

V B̃

]

is invertible.

2. The first (N − m) rows of
[

V B̃

]−1

form the matrix V g, that is,

[

V B̃

]−1

=




V g

B̃
g



 .

3. Check if the pair
(

V gÃV , V gÃB̃
)

is controllable. If yes, construct a gain matrix F

such that the eigenvalues of the matrix

V gÃV − V gÃB̃F

are in desired locations.
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4. Construct the matrix S̃ using the relation,

S̃ = B̃
g

+ FV g =
[

F B−1
u

]

.

—————————————————————–

6 Examples

6.1 Roll-trajectory following in wing-rock suppression system

To illustrate the use of the integral synergetic control for trajectory tracking, we consider

the following nonlinear wing-rock dynamics [11],

φ̈ = α1φ + α2φ̇ + α3φ̇
2 + α4φ

2φ̇ + α5φ̇
2φ + bu, (35)

where φ is the aircraft roll-angle, in degrees, and u is the control input. The parameters for

this system are: α1 = −0.0148927, α2 = 0.0415424, α3 = 0.01668756, α4 = −0.06578382,

α5 = 0.08578836, and b = 0.100. The control objective is to suppress sustained limit-cycle

oscillations induced by the wing-rock. We construct a synergetic controller so that the angle

φ follows a piecewise constant reference signal profile. Let x1 = φ, x2 = φ̇, and let ẋr = r−x1,

where r = φr is the reference, y = x1 is the output. Using the above notation, we combine

the plant model and the reference dynamics to obtain the following augmented model,








ẋr

ẋ1

ẋ2








=








0 −1 0

0 0 1

0 α1 + α5x
2
2 α2 + α3x2 + α4x

2
1








︸ ︷︷ ︸

˜A








xr

x1

x2








︸ ︷︷ ︸

x̃

+








1

0

0








r +








0

0

b








︸ ︷︷ ︸

˜B

u. (36)

It is easy to verify that

˙̃x =








r − x1

x2

α1x1 + α5x
2
2x1 + α2x2 + α3x

2
2 + α4x

2
1x2 + bu








.

13



We then employ the algorithm described above to construct an attractive invariant manifold.

We begin by selecting

V =








1 0

0 1

0 0








and F =
[

−0.75 2.00
]

to place the eigenvalues of V gÃV −V gÃB̃F at −0.5 and −1.5. Performing manipulations

described in the algorithm, we obtain the manifold

σ =
[

− 1
2b

3
2b

1
b

]

x̃ = S̃x̃ = 0. (37)

The synergetic control law has the form,

u(x̃) = −(S̃B̃)−1
(

S̃Ãx̃ + S̃Brr + T−1S̃
)

x̃. (38)

The resulting closed loop dynamics are described by




ż1

ż2



 =








0 −1 0

0.5 −1.5 b

0 0 −T −1











z1

z2



 +








1

0

0








r,

where z1 =
[

xr x1

]⊤

, z2 = σ. Note that the eigenvalues of the closed loop dynamics are

−0.5, −1.5, and −T −1, which guarantee that the tracking error converges to zero, that is,

at steady-state, x1 = r. In this example, we use T = 1. To see this, at steady-state, we have



0

0



 =




0 −1

0.5 −1.5








xr

x1



 +




1

0



 r.

Solving the above matrix equation for xr and x1, we obtain xr = 3r and x1 = r. Therefore,

at steady-state x1 = r.

We present simulation results illustrating the performance of integral synergetic controller

in Figures 1 and 2. We show in Figure 1 trajectories of (36) driven by the control strategy (38)

where solid lines represent x1(t), dotted lines represent x2(t), and dashed-lines represent

φr(t). We can see that as the transient become negligible, x1(t) closely tracks φr(t).
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different initial conditions.
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Figure 2: Phase trajectories of the closed-loop system driven by the integral synergetic

controller originating from several initial conditions: (a) general view, (b) magnified view.
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In Figure 2, we show phase portraits of nonlinear wing-rock dynamics. In Figure 2(a), dot-

ted lines indicate sustained limit-cycle oscillations of the uncompensated closed-loop system.

Thick solid lines denote the closed-loop phase trajectories emanating from different initial

conditions of the closed-loop system driven by the synergetic controller. In Figure 2(b), we

show a magnified portion of the phase portrait in the neighborhood of the origin from Fig-

ure 2(a). The solid line indicates transitions from several constant reference values, denoted

by the sequence of symbols: △, ♦, ∇, 2 (see these values from Fig. 1) towards the ultimate

destination: the origin, denoted by the symbol
⊙

.

6.2 Two-link robotic manipulator

We now synthesize a regulator for the two-link robotic manipulator depicted in Figure 3.

We first concern ourselves with constructing a mathematical model. The Lagrangian has

the form,

L =
1

2
m1l

2
1ω

2
1 +

1

2
m2

(
l21ω

2
1 + l22ω

2
2 + 2l1l2 cos (θ2 − θ1) ω1ω2

)

+m1gl1 cos(θ1) + m2g (l1 cos(θ1) + l2 cos(θ2)) ,

where ωi = θ̇i, i = 1, 2, are the angular velocities of the links, and mi and li are the

link masses and their lengths, respectively. We assume that the input torques, τ1 and τ2

are applied at each joint. The parameter values are given in Table 1. We next write the

Table 1: Parameter numerical values of the two-link robotic manipulator.

m1 = m2 1 kg

l1 = l2 0.5 m

g 9.81 m/sec2
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Figure 3: A two-link robotic manipulator.

17



Lagrange equations of motion for the system,




(m1 + m2)l21 m2l1l2 cos(θ2 − θ1)

m2l1l2 cos(θ2 − θ1) m2l
2
2








θ̈1

θ̈2





=




τ1 − τ2 + m2l1l2θ̇

2
2 sin(θ2 − θ1) − (m1 + m2)gl1 sin(θ1)

τ2 − m2l1l2θ̇
2
1 sin(θ2 − θ1) − m2gl2 sin(θ2)



 . (39)

Note that the manipulator inertia matrix, H , on the left-hand side of the above equation is

symmetric and positive definite, and its determinant is

det H = (m1 + m2)m2l
2
1l

2
2 − m2

2l
2
1l

2
2 cos2(θ2 − θ1) > 0.

We represent the above model in state-space format, where the state variables are defined

as, x1 = θ1, x2 = θ2, x3 = θ̇1, and x4 = θ̇2. First, using the above notation, we represent (39)

as

H(x1)ẍ1 = −C(x1, ẋ1)ẋ1 − g(x1) + Buτ ,

where

Bu =




1 −1

0 1



 ,

and

g(x1) = G(x1)x1 =




−(m1 + m2)gl1

sin(x1)
x1

0

0 −m2gl2
sin(x2)

x2



x1.

With the above notation in place we represent as in (10), where

ũ = H−1Buτ .

We select

T = 0.05I2,

and

{λ1, λ2, λ3, λ4} = {−3,−3.5,−4,−4.5}.
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Figure 4: A plot of θ1 and its reference versus time.

Applying the design algorithm, we obtain

S̃ =




−18. 0 8.5 0 1 0

0 −10.5 0 6.5 0 1



 .

With the above data, we construct the synergetic regulator (20). In our simulations, we

select the initial conditions to be,

xr(0) = 0 and x(0)⊤ =
[

−3/4π π 0 0
]

.

The components of the reference signal vector r are plotted in Figures 4 and 5, where we

show plots of link angles θ1 and θ2 versus time. In Figures 6 and 7, we show plots of

the time history of the x and y coordinates, respectively, of the end effector of the robotic

manipulator. In Figure 8, we plot the path of the end effector in the (x, y) plane. As can

be seen from the Figures the reference signal is tracked as predicted by the theory.

7 Conclusions

We presented a regulator design algorithm for nonlinear dynamical systems using integral

synergetic control. The solution to the above nonlinear regulator problem is derived for a
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Figure 5: A plot of θ2 and its reference versus time.
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Figure 6: A plot of the x-coordinate of the end effector versus time.
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Figure 7: A plot of the y-coordinate of the end effector versus time.

Figure 8: A plot of the path of the end effector in the (x, y)-plane.
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class of nonlinear systems in the“regular form” with nonlinearities satisfying the matching

condition using a synergetic control approach.

The proposed synergetic regulator design methodology incorporates an additional state

vector representing the integral of the tracking error. The construction of an asymptotically

stable invariant manifold uses the augmented state vector in order to drive the integral of

the tracking error to zero. Using the augmented state vector, we convert the initial tracking

problem into the equivalent regulation problem for which we can readily apply the synergetic

control design methodology.

This design methodology consists of two steps: the manifold design and the control law

design. An algorithm is presented for the construction of an asymptotically stable invariant

manifold in such a way that all trajectories confined to the manifold converge to the origin.

Once a manifold is constructed, the synergetic control strategy can be easily obtained by

solving the first-order differential equation of regulated variables. Finally, the proposed

design procedure is illustrated on a nonlinear wing-rock suppression problem and a two-link

robotic manipulator. Simulations show that integral synergetic regulator yields an excellent

tracking performance.
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