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Abstract

The integral action method combined with the synergetic control design approach
are employed to synthesize regulators for a class of nonlinear dynamical systems. The
integral action is commonly used in the design of controllers to track constant or
almost constant reference signals. The proposed method offers a closed-form analytic
solution. An attractive feature of the proposed approach is that the control law is
obtained by solving the first-order differential equation. The stability analysis of the
closed-loop system driven by the proposed regulator is performed and illustrated with
two simulation examples: the regulator design for a wing-rock suppression problem

and a two-link manipulator.
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1 Introduction

An attractive feature of synergetic control is that solving the first-order differential equation
provides a closed-form solution to the regulator problem. For an elementary introduction to
the subject of synergetic control and its applications to power electronics, we recommend
Refs. [1, 2, 3, 4]. In this paper, we combine a synergetic control approach with an integral
action method in the regulator design. The integral action is commonly used in the design
of controllers to track constant or almost constant reference signals [5].

The paper is organized as follows. In the following section, we present elements of syner-
getic control approach that we employ in this paper. Then, we apply the synergetic control
approach to the synthesis of a regulator using the integral action. Stability analysis of the
closed-loop system is performed, and an algorithm for the construction of a stable invariant
manifold, an essential element of synergetic regulator design, is formulated. Finally, we test
the proposed algorithm for the regulator construction to design regulators for a nonlinear

wing-rock suppression problem and a two-link robotic manipulator.

2 Synergetic Control Method

Consider a class of nonlinear dynamical systems modeled as
& — (@) + Bl@)u, (1)

where @ is a vector of state variables of dimension n, u is the input vector of dimension m,
f () is a state-dependent function of dimension n, B(x) is a state-dependent input function
matrix of dimension n x m and it has full column rank everywhere.

Let o = s(x) : R” — R™ be a vector function of dimension m.

The objective of the control problem, discussed in this paper, is to find a control policy

that stabilizes the system (1) by steering the system (1) trajectories to a manifold,

M={z:0=0} (2)



and force the trajectories to stay on the manifold thereafter.

We further require that, (i) the system (1) confined to the manifold M = {x : 0 = 0} is
asymptotically stable to the origin, (ii) & = s(x) is constructed so that the square m x m
matrix sg(x)B(x) is invertible, where sg is the Jacobian matrix of s(x) with respect to .
It is shown in Refs. [3], [4] that when these two conditions are satisfied, the solution to the
above control problem is obtained by solving the associated first-order ordinary differential
equation

Té + o =0, (3)

where T' € R™*™ is a symmetric positive definite matrix. The control policy is the solution

to the first-order differential equation (3), that is,

u = —(Tsg(z)B(x)) " (Tsz(z)f(z)+ s(z))

= —(sz(x)B(z)) 'sz(z)f(x) - (sz(z)B(x))"'T 's(z). (4)

The use of the control law (4) in the nonlinear dynamical systems (1) makes the invariant
manifold M = {x : o = 0} attractive. The control law (4) drives closed-loop trajectories
of (1) from any initial condition towards the invariant manifold M. As stated above, o
is constructed in such a way that all trajectories of (1) confined on M converge to the
origin. Therefore, the stability of the closed-loop trajectories is achieved in two modes: (i)
closed-loop trajectories converging to the manifold M = {x : & = 0}, and (ii) closed-loop
trajectories moving along the manifold M = {x : & = 0} towards the origin.

The synergetic control design method employs the following two-step design procedure:

1. Construct an asymptotically stable invariant manifold M = {x : ¢ = 0}, (i.e. all

trajectories of the system confined to M converge asymptotically to the origin).
2. Construct the controller w using (4).

The synergetic control approach shares similarity with that of the variable structure
sliding mode control (SMC). This relation was discussed in Refs. [1], [2], [3], [4]. It was
observed in Refs. [3], [4] that the first term of the control policy (4) is the so-called “equivalent
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control,” while the second term may be viewed as an “approximation to the discontinuous
control law” of the SMC. Additionally, the method of constructing a stable invariant manifold
proposed in [6] will be directly applied to the construction of the invariant manifold in this
paper.

In the development of the proposed regulator, we adopt the integral tracking method used
in the sliding mode tracking controller design described in Ref. [7]. The resulting controller
drives the closed-loop dynamics so that the integral of the tracking error converges to zero.
This is essentially a regulation problem of the “integral error” for which regulation methods

using synergetic control [3, 4] can be applied.

3 System Description

The class of nonlinear systems that we consider is modeled by

z = f(x)+ B(z)u
— A(z)x + Ba. (5)

We assume that the system (5) is transformable into the following “regular form” [8], [7],

T Ap A Ty 0
= + u, (6)
@2 A21 (CC) AQQ(CC) Lo Bu

where the state vector &, is in R”™™, the state vector x, is in R™, and the control vector u
is in R”™. The matrix O € RM®=™>" ig 4 matrix with zero entries. The matrix B, € R™*™
is invertible and the matrices A;;, @ = 1,2, j = 1,2 have appropriate dimensions. Note that
Ayj’s, j = 1,2, are constant matrices, while Ay;’s, j = 1,2, are state-dependent matrices.
For a constructive algorithm that can be used to transform (5) into the regular form given
by (6), we refer to Ref. [7, p. 66].

An example of physical systems that can be modeled using the above non-linear regular
form are natural Lagrangian systems. A simple example of a natural Lagrangian system

whose model can be represented inn the regular form is a planar two-link robot. Indeed, let
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x1 = [0h GQ]T be the vector of joint angles, 7 = [, 3] be the vector of torques applied to
the joints. A detailed modeling of such a robot can be found in [9, p. 396], and its dynamics
are given by

H(x1)2& + C(x1, 1)1 + g(x1) = T, (7)

where H (a1) is the manipulator inertia matrix and C(xy, &), is the vector of centripetal
T

and Coriolis torques, and g(x1) = | gy(x1) go(x;) | is the vector of gravitational torques.

Because the inertia matrix H (@) is positive definite over the whole workspace, we know

that H~'(x) exists and is also positive definite. Let

gl(wl) O
_ z1
G(x) = 0 o1

2

Using the above we can represent the term g(x;) as
g(x1) = G(x1)x:. (8)
Taking into account (8), we can rewrite (7) as
&= —H 'x))C(xy, &)z, — H ()G (x1)x, + H ()7 9)

Let @5 = @, and @ = H *(x,)7. Then, the dynamics of the planar two-link robot modeled

by (9) can be represented in the form of (6), that is,
¢1 0 I2 Irq 0

Cbg —H_l(.’El)G(w1> —H_l(wl)C(ml,wg) Lo I2

4 Regulator Design

Suppose that the output y € RP? of system (6) has the form,

y:[cl C2] - . (11)
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Our objective is to design a regulator so that the output y tracks a constant reference vector

r € RP. We now introduce the vector variable x,, defined by the following differential

equation,

T, =Tr—1Y.

The controller should be designed in such a way so that

lim &, (t) = 0.

t—o0

To proceed, we define the augmented state variable vector,

Ty
Ty
~ o N
£
)
N——
L X i

(12)

(13)

where N = n + p. The dynamics of the overall augmented system are governed by the state

equation,
@r (0 —Cl —Cz €T, I (0
@1 = O All A12 T + O T+ (0
ig O A21 (CC) AQQ(CE) Lo O Bu
‘f g — M
A B, B

Note that the matrices in the augmented state equation (14) are labeled as A, B,, and B ,

respectively. Hence, the augmented system model (14) can be represented as
fczAiﬁLB,r—l—Eu.

We make the following assumption:

Assumption 1: The pair

0o -C, -CyB,
O A11 ’ A12Bu

(15)



is controllable.
An essential element of the synergetic controller design is the construction of an invariant

manifold o = 0. Let the manifold function o be defined as
oc=0(x)=0(x,x,x) = —S,x, + S1x1 + Soxy = [ -S, S S, |z= Sz. (16)

The negative sign in front of S, is for the purpose of simplified notation. Proper construction
of & means that the system modeled by (14) restricted to the manifold M = {z : & = 0}
is asymptotically stable, that is, the trajectories of the system restricted to the manifold
M converge asymptotically toward the origin. A construction of such S is provided in the

section. We assume that

det (SB) — det (SuB,) # 0. (17)

Using (3), we perform manipulations to obtain,

0 = To+o
= TSz + Sz
— TS(Az + B,r + Bu) + Sz
— TSA%+TSB,r +TSBu+ Si. (18)
It follows from (14) that SB, = —8,. Hence, we can re-write (18) as
0=TSAz —TS,r+TSBu+ Sz. (19)

Solving (19) for u yields

w=—(SB)"YSAz +T 'Sz — S,r) (20)

Substituting (20) into (14), we obtain closed-loop system dynamics model,
G = (I - B(SB>—1S) Az — B(S8B)"'T"'Sz + B(SB)"'S,r + B,r. (1)

In the following section, we show that the control law given by (20) forces the above

closed-loop system to track the reference signal r.
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5 Analysis of the Closed-Loop System Behavior

To proceed with our analysis, we need the following lemma, which can be viewed as a

corollary of Theorem 6.2 in [6, p. 333]; see also [10].

Lemma 1 Consider the system model given by (14), where rank (B) = m, Assumption 1
is satisfied, and a given set of N —m complex numbers, {\1,..., Ay_m} s such that any \;
whose imaginary part is nonzero appears in the above set in a conjugate pair. Then, there

exist full-rank matrices W € RN*WN=") gnd W9 € RIN=mxN gych, that
WIW =In_, WIB =0,

and the eigenvalues of WIAW are
eig(WIAW) = {A1, ..., Avem}-

Proof: We begin our proof by defining an N x (N — m) real matrix of the form,

Iy
v=|2 (22)
(0
Therefore,
-1
_ 11 Iy, O Iy, O \%
el : |
O B, O B B
Hence,
Vv 5 VIV VIB Iy, O
_ [V B}Z _ - | = =1Iy
B B’V BB o 1,
Note that
VIV =Iy_,, and VB =0. (23)
By Assumptions 1, the pair
- - o -C, -Cy,B,
(VgAV, VgAB) - ,
O Ay ApB,
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is controllable. Therefore, for any set of complex numbers,
{A, A2, ANom )
symmetric with respect to the real axis, we can always find a matrix F' such that
{1, A2y ..., AN} = eigenvalues (VQAV — VQABF> )

The matrix F' can be determined using any available method for pole placement. We proceed

by performing the following manipulations,
VIAV — VIABF = VIA (V - BF) — WIAW, (24)
where W9 = V9 and W = V — BF. Note that by (23),
WIW = V9 (V - BF) — VIV = Iy . (25)

We also have, VIYB = WYB = O, which completes the proof of the lemma.
O

Theorem 2 Suppose that the assumptions of Lemma 1 are satisfied. Then there exists the
invariant manifold matriz S € R™N such that SB = I, and the closed-loop system (21)

tracks the reference signal v, that is, y(oco) = r.

Proof: Consider the matrix, [ W B } Note that

~ ] IN—m 0 Vg
F 1, B’

Thus the matrix [ W B ] is invertible and its inverse has the form

Let



Note that by (23),
SB = (Bg n FV9> B-1,.

Consider the following state-space transformation,

zZ1 w9 _ \ %4 ~
z = = ~ T = ~ x.
zZ9 S S
Note that z9 = Sz = o. We also have
WY N WW WYB Iy, O
| wB]=]". T = , (26)
S SW SB o 1,

where Iy _,, is the identity matrix of dimension (N —m) x (N —m). Therefore, the matrices

in (26) satisfy the following relations,

WIW = In_p, WIB = O e RW-mxm

: - (27)
SW = 0O eRm*N-m) SB = 1I,,.

Using matrix relations shown in (27), we represent the closed-loop dynamics in the z coor-

dinates as
1 we y RQR)V-14 A RQR\-1p-1& - 1
- | 7 | (A-B(3B)'5A-B(5B)'T'8) | w B
22 S Z2
WY 5 g
—| . | B(SB)'SB,r + B,r
S S
WIAW WYIAB | | z W .
_ T (—B(SB)— SB, + Br) r
O —1-'_1 zZ9 S
WIAW WYIAB 2|, O+ W'B,
— ~ R r
o) —T 2 -8B, + SB,
WIAW WYIAB 2z WB,
(0 —T'_1 zZ9 o

Observe that WYB(SB) 'SB, = O because WYB = O. Since T is positive definite, the

eigenvalues of —T ' are all in the open left-hand complex plane. This implies that the
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dynamics of zo = o are asymptotically stable, that is, the invariant manifold, {o- = 0}, is

asymptotically attractive. By (24), the matrix W can be chosen so that the eigenvalues of

the constant matrix WIAW are in the open left-hand complex plane. In the steady-state

the overall system trajectories converge to the point on the manifold, {z; = o = 0}, given

by
0=WIAWz, + WIB,r.

We partition F' as
F — [ F1 F2 ] )

where F'; € R™? and Fy € R™*("~™) We have,

I, 0
W=V-BF=| 0 I and WYB, =
-B,F, —B,F,

Recall that W9 = V9. Using the above and the fact that

~ w?”
z1 =Wz = ,
I

we express (29) in the form,

~
i

0 =V']l0 A, A Wz, +
O A(x) Axp(x)
c,B,F, -C,+C3;B,F,
—ApB,F, Ay — ApB,F,
c,B,F, -C,+Cy;B,F, T,
—ApB,F, Ay — ApB,F, T

or, equivalently,

0 = CgBuFlwr — (Cl — CQBUFQ) Irq + T,
0 = —AlgBuFl-’ET + (AH — AlgBqu) XLq.

11
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I,
(31)
O(n—M)Xp
I,
0 )
(32)
(33)



In the steady-state, zo = 0, that is,

Ly
Sz = -5, S 52] x; | =0.
U )
Hence,
S,x, = S|z, + Srx,. (34)

Substituting S, = B! and (34) into (32), we obtain
o = -C,B,S,z, —C,x; +Cy;B,S1x¢; +r
= CyB,(-Six; — Syxy) — C1xy + CoB, Sz + 7
= —Coxy—Cix1+T
= —y+r,

that is, y(oco) = 7, which completes the proof of the theorem.
O

We summarize the above considerations in the form of an algorithm for constructing a

matrix S of the invariant manifold.

Algorithm for the Construction of an Invariant Manifold

1. Find a matrix V such that [ VvV ‘ B } is invertible.

-1
2. The first (N —m) rows of [ | % ‘ B } form the matrix V¥, that is,

_ 9
~]1 |4

3. Check if the pair <V9AV, \ %4 AB) is controllable. If yes, construct a gain matrix F

such that the eigenvalues of the matrix
VYAV —~VYABF
are in desired locations.
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4. Construct the matrix S using the relation,

S:BQ+FV9:[F Bgl].

6 Examples

6.1 Roll-trajectory following in wing-rock suppression system

To illustrate the use of the integral synergetic control for trajectory tracking, we consider

the following nonlinear wing-rock dynamics [11],

¢ = 19+ g + azd? + d’d + asd’e + bu, (35)

where ¢ is the aircraft roll-angle, in degrees, and u is the control input. The parameters for
this system are: a; = —0.0148927, as = 0.0415424, a3 = 0.01668756, oy = —0.06578382,
as = 0.08578836, and b = 0.100. The control objective is to suppress sustained limit-cycle
oscillations induced by the wing-rock. We construct a synergetic controller so that the angle
¢ follows a piecewise constant reference signal profile. Let 1 = ¢, xo = b, and let &, = r—uy,
where r = ¢, is the reference, y = z; is the output. Using the above notation, we combine

the plant model and the reference dynamics to obtain the following augmented model,

Ty 0 —1 0 Ty 1 0
i | =10 0 1 | FlO0]|r+]0|u (36)
To 0 i+ asr? ag+ azwy + agr? T9 0 b

A z B

It is easy to verify that

r—=I

S
Il

T2

Q171 + Q5TAT) + Qoo + 373 + Ty + bu
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We then employ the algorithm described above to construct an attractive invariant manifold.

We begin by selecting
V=101 and F = [ —0.75 2.00

to place the eigenvalues of VIAV — VIABF at —0.5 and —1.5. Performing manipulations

described in the algorithm, we obtain the manifold
o-:[_i 3 H@:s.fiz:o. (37)
The synergetic control law has the form,
w(@) = —(8B)~! (SA:;: + 8B, + T‘15*> Z. (38)

The resulting closed loop dynamics are described by

0 —1 0 1
Z1 Z1
=105 —1.5 b + 10 [m
Z9 zZ2
0 0 T 0

-
where z; = [ T, T } , zo = o. Note that the eigenvalues of the closed loop dynamics are
—0.5, —1.5, and —T ', which guarantee that the tracking error converges to zero, that is,

at steady-state, 1 = r. In this example, we use T' = 1. To see this, at steady-state, we have

0 0 -1 Ty 1
= + T
0 0.5 —1.5 T 0

Solving the above matrix equation for x, and x;, we obtain x, = 3r and x; = r. Therefore,
at steady-state r; = r.

We present simulation results illustrating the performance of integral synergetic controller
in Figures 1 and 2. We show in Figure 1 trajectories of (36) driven by the control strategy (38)
where solid lines represent x;(t), dotted lines represent z5(t), and dashed-lines represent

¢-(t). We can see that as the transient become negligible, z(t) closely tracks ¢, ().
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0 10 20 30 40 50 60 70 80 90 100

t - [sec]

Figure 1: The roll angle ¢(t), denoted x;(t), tracking reference angle ¢,(t): several plots for

different initial conditions.

@

Limit-cycle of - B 0.5
open-loop wing-rock
dynamics

Transition sequence:

0l 1a2¢38gy4nb5o

0.3

0.2

Closed-loop
trajectories

Figure 2: Phase trajectories of the closed-loop system driven by the integral synergetic

controller originating from several initial conditions: (a) general view, (b) magnified view.
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In Figure 2, we show phase portraits of nonlinear wing-rock dynamics. In Figure 2(a), dot-
ted lines indicate sustained limit-cycle oscillations of the uncompensated closed-loop system.
Thick solid lines denote the closed-loop phase trajectories emanating from different initial
conditions of the closed-loop system driven by the synergetic controller. In Figure 2(b), we
show a magnified portion of the phase portrait in the neighborhood of the origin from Fig-
ure 2(a). The solid line indicates transitions from several constant reference values, denoted
by the sequence of symbols: A, <, V, O (see these values from Fig. 1) towards the ultimate
destination: the origin, denoted by the symbol ().

6.2 Two-link robotic manipulator

We now synthesize a regulator for the two-link robotic manipulator depicted in Figure 3.

We first concern ourselves with constructing a mathematical model. The Lagrangian has

the form,
1 1
L = §mll%wf + ng (l%wf + l%w% + 21112 COS (92 — ‘91) w1w2)
+magly cos(01) + mag (13 cos(0y) + Iz cos(6s)) ,
where w; = 6;, i = 1,2, are the angular velocities of the links, and m; and [; are the

link masses and their lengths, respectively. We assume that the input torques, 71 and 7

are applied at each joint. The parameter values are given in Table 1. We next write the

Table 1: Parameter numerical values of the two-link robotic manipulator.

m; =my 1Kkg
ll = 12 0.5 m
g 9.81 m/sec?
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Figure 3: A two-link robotic manipulator.
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Lagrange equations of motion for the system,
(m1 + m2)l% mglllg COS(HQ — 91) él
m2l1l2 008(92 — ‘91) mgl% 92

_ T — T + mglllgég Siﬂ(eg — ‘91) — (m1 -+ m2)gl1 sin(ﬁl) (39)
Ty — m2l1129% sin(92 — 91) — mgglg Siﬂ(eg) ‘

Note that the manipulator inertia matrix, H, on the left-hand side of the above equation is

symmetric and positive definite, and its determinant is
det H = (my + my)mal3l; — m3lils cos® (0 — 61) > 0.

We represent the above model in state-space format, where the state variables are defined

as, r1 = 01, 19 = 0y, x3 = 91, and x4 = 92. First, using the above notation, we represent (39)

as
H(wl):il = —C(.’El, $1>C'C1 — g(wl) + BUT,
where
1 -1
Bu = )
0 1
and
—(m1 + mg)gh% 0
g(x) = G(z1)x, = ' .
: magly e

With the above notation in place we represent as in (10), where
@=H 'B,t.

We select
T = 0.051,,

and

{A, A2, A3, A} = {3, 3.5, -4, —4.5}.
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6

- - —reference

91 (rad)

8 10 12 14 16
Time (sec)

Figure 4: A plot of #; and its reference versus time.

Applying the design algorithm, we obtain

g —18. 0 85 0 1 0
0 —-105 0 65 0 1

With the above data, we construct the synergetic regulator (20). In our simulations, we

select the initial conditions to be,
x,(0)=0 and =(0)' = [ —3/4r 7 0 0 |.

The components of the reference signal vector r are plotted in Figures 4 and 5, where we
show plots of link angles ¢; and #y versus time. In Figures 6 and 7, we show plots of
the time history of the x and y coordinates, respectively, of the end effector of the robotic
manipulator. In Figure 8, we plot the path of the end effector in the (z,y) plane. As can

be seen from the Figures the reference signal is tracked as predicted by the theory.

7 Conclusions

We presented a regulator design algorithm for nonlinear dynamical systems using integral

synergetic control. The solution to the above nonlinear regulator problem is derived for a
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Figure 5: A plot of 6, and its reference versus time.

=

© o 9
> o

o
)

x coordinate of tip (m)
o

6 8 10 12 14 16
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Figure 6: A plot of the z-coordinate of the end effector versus time.
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0.8

0.6

0.4r

0.2

y coordinate of tip (m)

0 5 10 15 20
Time (sec)

Figure 7: A plot of the y-coordinate of the end effector versus time.

Figure 8: A plot of the path of the end effector in the (z,y)-plane.
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class of nonlinear systems in the“regular form” with nonlinearities satisfying the matching
condition using a synergetic control approach.

The proposed synergetic regulator design methodology incorporates an additional state
vector representing the integral of the tracking error. The construction of an asymptotically
stable invariant manifold uses the augmented state vector in order to drive the integral of
the tracking error to zero. Using the augmented state vector, we convert the initial tracking
problem into the equivalent regulation problem for which we can readily apply the synergetic
control design methodology.

This design methodology consists of two steps: the manifold design and the control law
design. An algorithm is presented for the construction of an asymptotically stable invariant
manifold in such a way that all trajectories confined to the manifold converge to the origin.
Once a manifold is constructed, the synergetic control strategy can be easily obtained by
solving the first-order differential equation of regulated variables. Finally, the proposed
design procedure is illustrated on a nonlinear wing-rock suppression problem and a two-link
robotic manipulator. Simulations show that integral synergetic regulator yields an excellent

tracking performance.

References

[1] E. Santi, A. Monti, D. Li, K. Proddutur, and R. Dougal, “Synergetic control for DC-
DC boost converter: Implementation options,” IEEE Transactions on Industry Appli-

cations, vol. 39, no. 6, pp. 1803-1813, November/December 2003.

[2] ——, “Synergetic Control for Power Electronics Applications: A Comparison with the
Sliding Mode Approach,” Journal of Circuits, Systems, and Computers, vol. 13, no. 4,
pp. 737-760, 2004.

[3] Nusawardhana and S. H. Zak, “Optimality of synergetic controllers,” in Proceedings of
2006 ASME International Mechanical Engineering Congress and Fzxposition, American
Society of Mechanical Engineers. Chicago, IL: ASME, November 5-10 2006.

22



[4]

8]

[10]

[11]

Nusawardhana, S. H. Zak, and W. A. Crossley, “Nonlinear synergetic optimal control,”
AIAA Journal of Guidance, Control, and Dynamics, vol. Vol. 30, no. No. 4, pp. 1134—
1147, JulyAugust 2007.

A. B. Agikmege and M. Corless, “Robust Output Tracking for Uncertain/Nonlinear
Systems Subject to Almost Constant Disturbances,” Automatica, vol. 38, pp. 1919
1926, 2002.

S. H. Zak, Systems and Control. New York: Oxford University Press, 2003.

C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applications. Taylor
& Francis, 1998.

V. Utkin, Sliding Modes in Control and Optimization. Heidelberg: Springer-Verlag
Berlin, 1992.

J. Slotine and W. Li, Applied Nonlinear Control. FEnglewood Cliffs, NJ: Prentice Hall,
Inc., 1991.

S. H. Zak and S. Hui, “On variable structure output feedback controllers of uncertan
dynamic systems,” IEEE Transactions on Automatic Control, vol. 38, no. 10, pp. 1509—
1512, October 1993.

K. Passino, Biomimicry for Optimization, Control, and Automation. London, UK:

Springer-Verlag, 2005.

23



