
ECE 602 Fall 2010

Funwork #1
Solutions

1. (4 pts) Draw a block diagram illustrating the operation of the Watt’s governor.

3

A block diagram of the Watt’s governor is shown in Figure 1.

Figure 1: A block diagram of the Watt’s governor system.

2. (4 pts) An example of a closed-loop feedback system is a toilet flushing device con-

nected to a water tank. A toilet system is shown in Figure 2. The control objective is

to maintain the level of water in the tank at a constant level. Draw a block diagram

of the system.

3

A block diagram of a toilet flushing system is shown in Figure 3.
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Figure 2: Toilet-flushing system for Exercise 2.

3. (4 pts) Compute the transfer function of a discrete-time system whose impulse re-

sponse is

g[k] =

{

0 for k ≤ 0
1
k

for k ≥ 1.

Is this system lumped or distributed? 3

We can use the following commands of MATLAB’s Symbolic Toolbox to find the Z-

transform of the given impulse response,

syms z k;symsum(1/k*(z^(-k)),k,1,inf)

We obtain

G(z) = − ln

(

1 −
1

z

)

,

which is not a rational function. Therefore, the system with the given impulse response

is distributed.
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Figure 3: A block diagram of the toilet flushing system.

4. (4 pts) Suppose that G(s) ∈ R
p×m is a proper rational matrix such that

G(s) = G(s)sp + G(∞),

where

G(s)sp =
N r−1s

r−1 + · · ·+ N 1s + N 0

d(s)

and d(s) = sr + αr−1s
r−1 + · · ·+ α1s + α0. Show that the following state-space repre-

sentation is a realization of G(s):

˙̂x =















−αr−1Im −αr−2Im −αr−3Im · · · −α1Im −α0Im

Im O O · · · O O
...

...
...

. . .
...

...

O O O · · · O O

O O O · · · Im O















x̂ +















Im

O
...

O

O















u

y =
[

N r−1 N r−2 N r−3 · · · N 1 N 0

]

x̂ + G(∞)u,







































(1)
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3

We follow the proof of Chen on page 102 with a minor change of notation. Let

Z =











Z0

Z1

...

Zr−1











= (sI − A)−1B, (2)

where Zi is an m × m sub-matrix of the rm × m block matrix Z. Then,

C(sI − A)−1B + G(∞) = N r−1Z0 + N r−2Z1 + · · ·+ N 0Zr−1 + G(∞). (3)

Pre-multiply both sides of (2) by (sI − A) and represent the result as

sZ = AZ + B. (4)

Applying the above to the given matrices A and B, we obtain

sZ1 = Z0, sZ2 = Z1, sZr−1 = Zr−2, (5)

and

sZ0 = −α0Z0 − α1Z1 − · · · − αr−1Zr−1 + Im. (6)

We have, Z1 = 1
s
Z0, Z2 = 1

s
Z1 = 1

s2 Z0, and in general,

Zi =
1

si
Z0, i = 1, . . . , r − 1 (7)

Substituting (7) into (6) and performing simple manipulations gives

sZ0 = −α0Z0 − α1Z1 − · · · − αr−1Zr−1 + Im

= −α0Z0 −
α1

s
Z0 − · · · −

αr−1

sr−1
Z0 + Im,

that is,
(

s + α0 +
α1

s
+ · · · +

αr−1

sr−1

)

Z0 =
d(s)

sr−1
Z0 = Im.

Thus

Z0 =
sr−1

d(s)
Im. (8)

Using the above and (7) yields

Z1 =
sr−2

d(s)
Im . . . Zr−1 =

1

d(s)
Im. (9)
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Substituting (8) and (9) into (3), we obtain

C(sI − A)−1B + G(∞) =
1

d(s)

(

N r−1s
r−1 + · · · + N 1s + N 0

)

+ G(∞)

= G(s),

which shows that (1) is a realization of G(s).

5. (4 pts) For a proper rational matrix

G(s) =

[

s+1
(s+2)2

1
(2s+1)(s+2)

3s−1
s

3
s+2

4s−10
2s+1

2s+1
s2+1

]

, (10)

(i) construct its two realizations;

(ii) use MATLAB’s tf2ss command to find a realization of G(s).

3

We first represent the transfer function G(s) as

G(s) = G(s)sp + G(∞)

=

[

s+1
(s+2)2

1/2
(s+1/2)(s+2)

−1
s

+ 3
3

s+2
− 6

s+1/2
+ 2 2s+1

s2+1

]

=

[

s+1
(s+2)2

1/2
(s+1/2)(s+2)

−1
s

3
s+2

− 6
s+1/2

2s+1
s2+1

]

+

[

0 0 3

0 2 0

]

.

We have

G(s)sp =

[

s+1
(s+2)2

1/2
(s+1/2)(s+2)

−1
s

3
s+2

− 6
s+1/2

2s+1
s2+1

]

=
1

s(s + 2)2(s + 1/2)(s2 + 1)

[

s+1
(s+2)2

1/2
(s+1/2)(s+2)

−1
s

3
s+2

− 6
s+1/2

2s+1
s2+1

]

=
1

s6 + 4.5 s5 + 7 s4 + 6.5 s3 + 6 s2 + 2 s
N(s),

where

N(s) = N 5s
5 + N 4s

4 + N 3s
3 + N 2s

2 + N 1s + N 0,
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and where

N 5 =

[

1 0 −1

3 −6 2

]

, N 4 =

[

1.5 0.5 −4.5

7.5 −24 10

]

, N 3 =

[

1.5 1 −7

6 −30 16.5

]

,

N 2 =

[

1.5 0.5 −6.5

7.5 −24 10

]

, N 1 =

[

0.5 1 −6

3 −24 2

]

, N 0 =

[

0 0 −2

0 00 0

]

.

To construct the first realization, we use Theorem 1 to obtain

A =



















O I3 O O O O

O O I3 O O O

O O O I3 O O

O O O O I3 O

O O O O O Im

O −2Im −6Im −6.5Im −7I3 −4.5Im



















, B =



















O

O

O

O

O

I3



















C =
[

N 0 N 1 N 2 N 3 N 4 N 5

]

, D = G(∞).

In the construction of the second realization we use the result of Exercise 4 to obtain

Ã =



















−4.5I3 −7I3 −6.5I3 −6I3 −2I3 O

I3 O O O O O

O I3 O O O O

O O I3 O O O

O O O I3 O O

O O O O I3 O



















, B̃ =



















I3

O

O

O

O

O



















C̃ =
[

N 5 N 4 N 3 N 2 N 1 N 0

]

, D̃ = G(∞).

We now use MATLAB’s tf2ss command to find a realization of G(s). We apply the

command tf2ss to each column of G(s) to obtain their realizations. We then combine

the partial realizations into a realization of G(s). We first concern ourselves with the

first column of G(s) that we represent as

g1(s) =
1

s2 + 4s + 4

[

s + 1

3s + 6

]

to obtain

A1 =

[

−4 −4

1 0

]

, B1 =

[

1

0

]

, C1 =

[

1 1

3 6

]

, D1 =

[

0

0

]

.

We next represent g2(s) as

g2(s) =
1

2s2 + 5s + 2

[

1

4s2 − 2s − 20

]

.

6



Applying the command tf2ss gives

A2 =

[

−2.5 −1

1 0

]

, B2 =

[

1

0

]

, C2 =

[

0 0.5

−6 −12

]

, D2 =

[

0

2

]

.

Finally we represent g3(s) as

g3(s) =
1

s3 + s

[

3s3 − s2 + 3s − 1

2s2 + s

]

Applying the command tf2ss gives

A3 =





0 −1 0

1 0 0

0 1 0



 , B3 =





1

0

0



 , C3 =

[

−1 0 −1

2 1 0

]

, D3 =

[

3

0

]

.

The resulting realization of G(s) is

A =





A1 O O

O A2 O

O O A3



 , B =





B1 O O

O B2 O

O O B3





C =
[

C1 C2 C3

]

, D =
[

D1 D2D3

]

.

Note that we can apply the command tf2ss directly to each column of G(s) rather

than to that of G(s)sp. That is, the command tf2ss does not require that G(s) be

strictly proper.

We can also use the command ss to obtain in one shot a state-space realization of

a given transfer function matrix. We specify the numerator and the denominator of

the transfer function matrix using cell arrays, then invoke the tf and finally the ss

command. In our example, we could proceed as follows:

num={[1 1],1,[3 -1];3,[4 -10],[2 1]}

den={[1 4 4],[2 5 2],[1 0];[1 2],[2 1],[1 0 1]}

G=tf(num,den)

ss(G)

6. (4 pts) Compute the impulse response of a dynamic system whose transfer function

is given by

G(s) =

[

s+1
(s+2)2

1
(2s+1)(s+2)

3s−1
s

3
s+2

4s−10
2s+1

2s+1
s2+1

]

.
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3

The LTI system’s impulse response is the inverse Laplace transform of the systems’s

transfer function. So in our example,

g(t) = L−1(G(s))

= L−1

([

s+1
(s+2)2

1/2
(s+1/2)(s+2)

−1
s

+ 3
3

s+2
− 6

s+1/2
+ 2 2s+1

s2+1

])

=

[

e−2 t − te−2 t 1
3
e−

t

2 − 1
3
e−2 t 3 δ(t) − 1

3e−2t −6e−
t

2 + 2 δ(t) 2 cos(t) + sin(t)

]

.

7. (4 pts) Can you construct a state-space model of a linear system whose output is zero

in response to any input? 3

A general example of an LTI continuous system whose transfer function is zero is

A =

[

A11 O

A21 A22

]

, B =

[

O

B2

]

C =
[

C1 O
]

, D = O.

Indeed,

G(s) = C (sI − A)−1
B + D

=
[

C1 O
]

[

A−1
11 O

X A−1
22

] [

O

B2

]

=
[

C1 O
]

[

O

A−1
22 B2

]

= O,

where X denotes a sub-matrix whose structure is irrelevant in this problem.

8. (4 pts) For the circuit shown in Figure 4 draw a block diagram with the current i(t) as

the system’s input and the voltage v(t) as the system’s output. Then, find the transfer

function, V (s)/I(s). 3
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Figure 4: Circuit for Exercise 8.

Let R1 = 30 Ω and R2 = 20 Ω. The Laplace transform of the current through R1

is denoted I1(s) while the Laplace transform of the current through R2 is denoted as

I2(s). The Laplace transform of the voltage across R1 is denoted V1(s). Then we have

V (s) =
1

sC
I2(s)

and

I2(s) = I(s) − I1(s),

where

I1(s) =
1

R1
(R2I2(s) + V (s)).

Combining the above equations and performing simple manipulations gives

V (s)

I(s)
=

60

s + 2

A block diagram based on the above equations is shown in Figure 5.

9. (4 pts) Find the transfer function Vout(s)/Vin(s) of the circuit shown in Figure 6 that

contains an ideal operational amplifier.
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Figure 5: Block diagram of the circuit for Exercise 8.

3

The transfer function Vout(s)/Vin(s) is

Vout(s)

Vin(s)
= −

Zf (s)

Z1(s)
,

where Zf(s) is the impedance of the feedback path and Z1(s) is the impedance of the

forward path. We have

Zf (s) = R2‖sL =
s

s + 1
Ω

and

Z1(s) =
1

sC
+ R1 =

1

s
+ 2 Ω

Hence,

Vout(s)

Vin(s)
= −

s2

(2s + 1)(s + 1)

10. (4 pts) The purpose of this Exercise is to show some benefits that the state-space

description can offer in the analysis of control systems. Begin by verifying that the

transfer function Y (s)/R(s) for both systems shown in Figure 7 and 8 is the same.

Obtain the step response for this transfer function.
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Figure 6: Circuit for Exercise 9.

s−1
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-

u 3
s−1
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y

Figure 7: Cascade compensation for Exercise 10: compensator preceding the plant.

Next obtain state-space realizations of the systems shown in Figure 7 and 8. That is,

construct state-space realizations of Gc(s) = s−1
s+2

and Gp(s) = 3
s−1

and then construct

the overall state-space model of the cascade systems. The state-space models should of

of second-order. Verify that the transfer functions of the models are the same as in the

part above. Implement the obtained state-space models in SIMULINK. Obtain plots of

the states and the outputs in response to a unit step input. Perform your simulations

for different initial conditions that you can impose on the integrators. Compare the

external, that is, input-output system behavior against the internal behavior. Can you

give an explanation for an unexpected behavior of the state variables even when the

external behavior seems to be acceptable. 3

We first consider the configuration shown in Figure 9. To construct a state-space
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3
s−1

-

r
-

s−1
s+2

-

y

Figure 8: Compensator following the plant.

Figure 9: SIMULINK diagram of the interconnection of Gc(s) and Gp(s) with the compen-

sator preceding the plant.
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Figure 10: SIMULINK diagram of the implementation of Gc(s).

realization of Gc(s), we first represent Gc(s) as

Gc(s) =
s − 1

s + 2
=

−3

s + 2
+ 1.

A possible state-space realization of Gc(s) is

ẋ2 = −2x2 − 3r

u = x2 + r.

In Figure 10, we show a SIMULINK implementation of the above state-space realization

of Gc(s).

A possible state-space realization of Gp(s) is

ẋ1 = x1 + u

y = 3x1.

In Figure 11, we show a SIMULINK implementation of Gp(s). A state-space model of

the overall configuration shown in Figure 9 is obtained by noticing that the input to

the plant is the output of the compensator, that is,

u = x2 + r.
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Figure 11: SIMULINK diagram of the implementation of G(s).

Taking the above into account, we obtain a state-space model of the overall configura-

tion,

[

ẋ1

ẋ2

]

=

[

1 1

0 −2

] [

x1

x2

]

+

[

1

−3

]

r

y =
[

3 0
]

[

x1

x2

]

.

In the configuration shown in Figure 9, where the compensator precedes the plant the

output diverges for all non-zero initial conditions except when x20 = −3x10, which

can be verified by solving the above system for y(t). For example, for the case when

the initial conditions are x10 = 1 and x20 = 0, we obtain the output plot shown in

Figure 12. The step response, shown in Figure 13, is obtained by setting zero initial

conditions and applying the unit step input.

We now construct a state-space model of the cascade compensation with the compen-

sator following the plant. We note that now

u = 3x2.
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Figure 12: A plot of the plant output in the interconnection where the compensator Gc(s)

is preceding the plant Gp(s) with the initial conditions x10 = 1 and x20 = 0.
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Figure 13: Step response of the interconnection of Gc(s) and Gp(s) with the compensator

preceding the plant.
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Figure 14: Plot of the output in the interconnection of Gp(s) and Gc(s) with the compensator

following the plant.

Combining the state-space models of Gp(s) and Gc(s) above, we obtain

[

ẋ1

ẋ2

]

=

[

−2 −9

0 1

] [

x1

x2

]

+

[

0

1

]

r

y =
[

1 3
]

[

x1

x2

]

.

The step response is the same as in the previous configuration—see Figure 13.

A plot of the output for the initial conditions x10 = −2 and x20 = 1 is shown in

Figure 14. We can see that the output reaches its correct steady-state. However, the

states are diverging. This is the case for all initial conditions.

A conclusion from the above experiments is that one should not cancel unstable poles

because even if the output behavior is acceptable, the internal behavior may be quite

opposite leading to a possible damage of the overall system.
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