ECE 602 Fall 2010
Funwork #1

Solutions

1. (4 pts) Draw a block diagram illustrating the operation of the Watt’s governor.

A block diagram of the Watt’s governor is shown in Figure 1.
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Figure 1: A block diagram of the Watt’s governor system.

2. (4 pts) An example of a closed-loop feedback system is a toilet flushing device con-
nected to a water tank. A toilet system is shown in Figure 2. The control objective is
to maintain the level of water in the tank at a constant level. Draw a block diagram

of the system.
<&

A block diagram of a toilet flushing system is shown in Figure 3.
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Figure 2: Toilet-flushing system for Exercise 2.

3. (4 pts) Compute the transfer function of a discrete-time system whose impulse re-

sponse is

for £<0
for k£>1.

glk] = {

= O

Is this system lumped or distributed?

&

We can use the following commands of MATLAB’s Symbolic Toolbox to find the Z-
transform of the given impulse response,

We obtain

syms z k;symsum(1/k*x(z~(-k)),k,1,inf)

G(z)z—ln(l—%),

which is not a rational function. Therefore, the system with the given impulse response
is distributed.
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Figure 3: A block diagram of the toilet flushing system.

4. (4 pts) Suppose that G(s) € RP*™ is a proper rational matrix such that

G(s) = G(8)sp + G(0),

where
Nr_lsr_l 4+---+Nis+ Ny

d(s)
and d(s) = s" + a,_ 18"t + - -+ + a;5 + ap. Show that the following state-space repre-

G(S)sp =

sentation is a realization of G(s):

[ _ar—lIm _ar—ZIm _ar—SIm _alIm _aOIm ] [ Im
I, o o o o O
z = : : : S A
o o o o o O
0 o) o .. I, o | o)
Yy = [ Nr—l NT_Q Nr_g N1 N(] ] i"‘G(OO)’U,, ))
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We follow the proof of Chen on page 102 with a minor change of notation. Let
Zy
Z,
Z=| . |=(I-A)7'B,
Zr—l

where Z; is an m x m sub-matrix of the rm x m block matrix Z. Then,

C(sI —A)"'B+G(x)=N, 1Zy+ N, 2Z,+--+ NoZ,_, +G(x0).

Pre-multiply both sides of (2) by (sI — A) and represent the result as
sZ =AZ + B.
Applying the above to the given matrices A and B, we obtain
sy =24y, sho=24,, S, =2, o,

and
SZO = —OéoZo — 041Z1 — = ozr_er_l + Im

We have, Z, = %ZO, Zy = %Zl = S%ZO, and in general,
1 :
ZZ':—.Z(), Zzl,...,T—1
Sl

Substituting (7) into (6) and performing simple manipulations gives

sy = —ogdoy—a1dy—-—o,_1d,+ 1,
= —wZo— ﬂZo—"'— a::llzo—i‘Ima
s s
that is,
r— d
<s+a0+ﬂ+-~-+O‘T_f)ZO:gZO:Im.
s s s
Thus
Z, = £I
Using the above and (7) yields
Sr—2
zZ,=——1, o Zyy = I,
YT d(s) YT d(s)



Substituting (8) and (9) into (3), we obtain

C(sI— A 'B+G() — % (N, 18 4+ + Nis + Ny) + G(oc)

= Gls),

which shows that (1) is a realization of G(s).

5. (4 pts) For a proper rational matrix

s+1 1 3s—1
_ (s+2)2  (2s+1)(s+2) s
G(s) = 3 4510 2541 | 7
5+2 25+1 5241

(i) construct its two realizations;

(ii) use MATLAB’s tf2ss command to find a realization of G(s).

We first represent the transfer function G(s) as

G(s) = C_;(S)SP“’G(OO)

s+1 1/2 1
_ (545)2)2 (s+1é2)(s+2) _22 ‘t 3
s+
s+2 T s¥1/2 +2 s241
s+1 1/2 1
_ (s+2)2  (s+1/2)(s+2) s + 003
3 __ 6 2541 0 2 0
s5+2 s+1/2 s2+1
We have
s+12 1/2 1
G(S)Sp = (S—i) (8—1;1/2)6(84_2) 23-51
s+2 s+1/2 s241
= (s4+2)?  (s4+1/2)(s+2) s
s(s+2)2(s +1/2)(s2 +1) | =25 —ﬁ S
1
= N
A5 T 6559 467 1250 )
where

N(s) = N35s° + Nys* + N3s® + Nys? + Nys + Ny,

(10)



and where

N, - {1 0 —1}’ N4:{1.5 0.5 —4.5}’ N3:{1.5 1 —7}’

3 —6 2 75 =24 10 6 —30 16.5
1.5 0.5 —6.5 05 1 —6 0 0 -2
Nz_{m —24 10}’ Nl_[3 —24 2]’ NO—[O 00 0}
To construct the first realization, we use Theorem 1 to obtain
O I o o (0 o [ O
O O I o (0 o o
B O O (0 I o 0 | O
4 = O O o (0 I o , B= o
O O o (0 o I, o
O -21,, —6I,, —6.51, —7I; —4.5I,, | | I3 |

C = [Ny N;, N;, N; N, N;5|. D=G(x).

In the construction of the second realization we use the result of Exercise 4 to obtain

[ —4.5I; —7I; —6.5I; —6I; —2I; O I,
I, (o) [0) (0] O O (0]
S (0] I, (0] (0] O O - | O
A = (0] (0] I, (0] O O |’ B = (0]
(0] (0] (0] I, O O (0]

| O (0] (0] (0] I; O | | O |

C = [N5 N4 N3 N2 N1 No], b:G(OO)

We now use MATLAB’s tf2ss command to find a realization of G(s). We apply the
command tf2ss to each column of G(s) to obtain their realizations. We then combine
the partial realizations into a realization of G(s). We first concern ourselves with the
first column of G(s) that we represent as

(s) = 1 s+ 1
9\ = s 4| 3546

to obtain

We next represent g,(s) as

” 1 1
§) = —— )
9> 252 + 55 + 2 | 452 — 25 — 20
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Applying the command tf2ss gives

—25 -1 1
A2_|: 1 0:|a BQ_|i0:|> C2_

|
| —
|
o O
| o
oS
oo
_
S
|
| —
O O
_

Finally we represent gs(s) as

gs(s) =

1 353 —s2+3s—1
s34+ s 252 + s

Applying the command tf2ss gives

0 -1 0 1
-1 0 -1 3
A3: 1 0 0 ) B3: 0 ) C3:|:2 1 O:|a D3:|i0:|
0 1 0 0

The resulting realization of G(s) is

A, O O B, O O
A=|0 A O|, B=|0 B, O
O O A O O B;

C: [Cl Cg Cg:|, D:[Dl Dng].

Note that we can apply the command tf2ss directly to each column of G(s) rather
than to that of G(s)s,. That is, the command tf2ss does not require that G(s) be
strictly proper.

We can also use the command ss to obtain in one shot a state-space realization of
a given transfer function matrix. We specify the numerator and the denominator of
the transfer function matrix using cell arrays, then invoke the tf and finally the ss
command. In our example, we could proceed as follows:

num={[1 1],1,[3 -1];3,[4 -10],([2 1]}

den={[1 4 4],[2 5 2],[1 O];[1 2],[2 1],[1 O 1]}
G=tf (num,den)

ss(G)

. (4 pts) Compute the impulse response of a dynamic system whose transfer function
is given by

s+1 1 3s—1

_ (s+2)2  (2s+1)(s+2) s
G(s) = 3 4510 2541
5+2 2s+1 s2+1



<&

The LTI system’s impulse response is the inverse Laplace transform of the systems’s

transfer function.

g(t)

So in our example,

= L7HG(s))

s+1 1/2
_ £—1 ( (s+2)2 (s+1/2)(s+2 )

3 6 25+1

5+2 s+1/2 s2+1

-9 -2 j— 1,.-2
_ et —te?t geTz—ge ! o(t)
3e~% —6e77 +24(t) 2 cos( ) + sm(t)

7. (4 pts) Can you construct a state-space model of a linear system whose output is zero

in response to any input?

&

A general example of an LTT continuous system whose transfer function is zero is

Indeed,

A, O ] [ (0 }
p— y B:
{ Ay Ay B,

= [c, O], D=oO.

G(s) = C(sI—A)'B+D
(ool % (2]

X Ay || B,
0]
a [Cl 0][142_2132}
= O,

where X denotes a sub-matrix whose structure is irrelevant in this problem.

8. (4 pts) For the circuit shown in Figure 4 draw a block diagram with the current i(t) as
the system’s input and the voltage v(t) as the system’s output. Then, find the transfer

function, V'(s)/1(s). <&



200

A 10mF |+
(::::) 30 Q J—
v(t)

1(t)

Figure 4: Circuit for Exercise 8.

Let Ry = 30 ©Q and Ry = 20 2. The Laplace transform of the current through R;
is denoted I(s) while the Laplace transform of the current through Ry is denoted as

I5(s). The Laplace transform of the voltage across R; is denoted V;(s). Then we have

V(s) = —=1(s)

sC
and
I(s) = 1(s) — Li(s),
where 1
11(8) = R_<R2]2<S> + V(S>)
1

Combining the above equations and performing simple manipulations gives

V(s) 60

I(s) s+2

A block diagram based on the above equations is shown in Figure 5.

. (4 pts) Find the transfer function V,.:(s)/Vin(s) of the circuit shown in Figure 6 that

contains an ideal operational amplifier.
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Figure 5: Block diagram of the circuit for Exercise 8.

The transfer function V,;(s)/Vin(s) is

Vourls) _ Zy(s)
Vals) ~ Z(s)’

where Z¢(s) is the impedance of the feedback path and Z;(s) is the impedance of the
forward path. We have

s
7 = Ryl||sL =
1(5) = RallsL =
and 1 1
Zl(s): E_'_Rl = g—i-QQ
Hence,
‘/out<5> 32

Vin(s) — (2s+1)(s+1)

(4 pts) The purpose of this Exercise is to show some benefits that the state-space
description can offer in the analysis of control systems. Begin by verifying that the
transfer function Y(s)/R(s) for both systems shown in Figure 7 and 8 is the same.
Obtain the step response for this transfer function.
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Figure 6: Circuit for Exercise 9.
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Figure 7: Cascade compensation for Exercise 10: compensator preceding the plant.

Next obtain state-space realizations of the systems shown in Figure 7 and 8. That is,
construct state-space realizations of G.(s) = % and G,(s) = <% and then construct
the overall state-space model of the cascade systems. The state-space models should of
of second-order. Verify that the transfer functions of the models are the same as in the
part above. Implement the obtained state-space models in SIMULINK. Obtain plots of
the states and the outputs in response to a unit step input. Perform your simulations
for different initial conditions that you can impose on the integrators. Compare the
external, that is, input-output system behavior against the internal behavior. Can you
give an explanation for an unexpected behavior of the state variables even when the

external behavior seems to be acceptable. &

We first consider the configuration shown in Figure 9. To construct a state-space
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Figure 8: Compensator following the plant.
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Figure 9: SIMULINK diagram of the interconnection of G.(s) and G,(s) with the compen-
sator preceding the plant.
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Figure 10: SIMULINK diagram of the implementation of G,(s).
realization of G.(s), we first represent G.(s) as
-1 -3
Gels) = g =

= + 1.
s+2 s+2
A possible state-space realization of G.(s) is

jﬂ'g == —21’2—37"

U = To+T.

In Figure 10, we show a SIMULINK implementation of the above state-space realization

of G.(s).

A possible state-space realization of G)(s) is

l"l = T +tu

Yy = 3371.

In Figure 11, we show a SIMULINK implementation of G,(s). A state-space model of
the overall configuration shown in Figure 9 is obtained by noticing that the input to
the plant is the output of the compensator, that is,

U= Tg + 1.

13
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Figure 11: SIMULINK diagram of the implementation of Gs).

Taking the above into account, we obtain a state-space model of the overall configura-

P P 1 Y

y = [3 0}[“}.

X2

tion,

In the configuration shown in Figure 9, where the compensator precedes the plant the
output diverges for all non-zero initial conditions except when x99 = —3x19, which
can be verified by solving the above system for y(¢). For example, for the case when
the initial conditions are x19 = 1 and x5y = 0, we obtain the output plot shown in
Figure 12. The step response, shown in Figure 13, is obtained by setting zero initial
conditions and applying the unit step input.

We now construct a state-space model of the cascade compensation with the compen-
sator following the plant. We note that now

u = 3s.

14
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Figure 12: A plot of the plant output in the interconnection where the compensator G.(s)
is preceding the plant G,(s) with the initial conditions z;p = 1 and x99 = 0.
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Figure 13: Step response of the interconnection of G.(s) and G,(s) with the compensator
preceding the plant.
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Figure 14: Plot of the output in the interconnection of G,(s) and G.(s) with the compensator
following the plant.

Combining the state-space models of G,(s) and G.(s) above, we obtain
] [-2 -9][m 0
HIR e IR L

y = [1 3}{%}.

X2

The step response is the same as in the previous configuration—see Figure 13.

A plot of the output for the initial conditions x19 = —2 and x99 = 1 is shown in
Figure 14. We can see that the output reaches its correct steady-state. However, the
states are diverging. This is the case for all initial conditions.

A conclusion from the above experiments is that one should not cancel unstable poles
because even if the output behavior is acceptable, the internal behavior may be quite
opposite leading to a possible damage of the overall system.
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