ECE 382 Fall 2018

Frequency response

The frequency response of a system is defined as the steady-state response of the system to a sinusoidal input.

The transfer function describing the sinusoidal steady-state behavior is obtained by replacing s with $j\omega$ in the system transfer function, that is,

$$
H(j\omega) = H(s)|_{s=j\omega}
$$

 $H(j\omega)$ is called the sinusoidal transfer function.

The sinusoidal steady-state response

$$
\begin{array}{c|c}\n\text{Input} \\
\hline\nr(t)\n\end{array}\n\qquad\n\begin{array}{c}\n\text{Output} \\
\hline\nc(t)\n\end{array}
$$

The sinusoidal steady-state response of a BIBO stable system to an input $r(t) = X \sin(\omega t)$ is given by

$$
c_{ss} = X|H(j\omega)|\sin(\omega t + \Phi),
$$

where $|H(j\omega)|$ is the magnitude of $H(j\omega)$ and $\Phi = \angle H(j\omega)$ is the argument of $H(j\omega)$.

The system frequency response

The sinusoidal steady-state response of a BIBO stable system to an input $r(t) = X \sin(\omega t)$ is given by

$$
c_{ss} = X|H(j\omega)|\sin(\omega t + \Phi),
$$

where $|H(j\omega)|$ is the magnitude of $H(j\omega)$ and $\Phi = \angle H(j\omega)$ is the argument of $H(j\omega)$

The steady-state output has the same frequency as the input and can be obtained by multiplying the input $r(t) = X \sin(\omega t)$ by $|H(j\omega)|$ and shifting the phase angle by $\angle H(j\omega)$.

The magnitude $|H(j\omega)|$ and the angle $\angle H(j\omega)$ for all ω constitute the system frequency response.

The magnitude and phase responses

The magnitude $|H(j\omega)|$ represents the gain of the system for sinusoidal inputs with frequency ω.

A plot of $|H(j\omega)|$ versus ω is called the magnitude, or amplitude, response.

The angle $\angle H(j\omega)$ represents the **phase** of the system for sinusoidal inputs with frequency ω .

A plot of $\angle H(j\omega)$ versus ω is called the phase response.

Octave and decade

An octave is a frequency band from ω_1 to ω_2 such that $\frac{\omega_2}{\omega_1}$ $\overline{\omega_1}$ $= 2.$

There is an increase in decade from ω_1 to ω_2 when $\frac{\omega_2}{\omega_1}$ $\overline{\omega_1}$ $= 10$.

4

Logarithmic plots

Logarithmic plots of $H(j\omega)$, or Bode diagrams of $H(j\omega)$, are two graphs:

- 1. A plot of $20 \log_{10} |H(j\omega)|$ versus the frequency in log scale, that is, versus $log_{10} \omega$
- 2. The phase angle $\angle H(j\omega)$ versus log₁₀ ω

The standard representation of the logarithmic magnitude of $H(j\omega)$ is

20 log_{10} $|H(j\omega)|$ dB

Historical Comment: Researchers for the telephone company first defined the unit of power gain as a "bel." However, this unit proved to be too large, and hence a decibel, that is, one-tenth of a bell, was selected as the unit, which is, of course, named after Alexander Graham Bell, the founder of the company

Motivation for using $20 \log_{10} |H(j\omega)|$

In communications it is standard to measure power gain in decibels,

$$
|H|_{\rm{dB}}=10\log_{10}\frac{P_2}{P_1}
$$

Since power is the square of voltage, the voltage gain is

$$
|H|_{\rm{dB}} = 20 \log_{10} \frac{V_2}{V_1}
$$

From now on, we will drop the base of the logarithm; it is understood to be 10.

Advantages of working with frequency response in terms of Bode plots

- Multiplication of magnitudes converted into addition
- A much wider range of the behavior of the circuit can be displayed; that is, both low- and high-frequency behavior can be displayed in one plot
- Bode plots can be determined experimentally

Example

$$
H(s) = \frac{1}{1+2s}
$$

Hence,

$$
H(j\omega) = \frac{1}{1 + 2j\omega}
$$

Hence the log magnitude, Lm , is

$$
Lm \frac{1}{1+2j\omega} = 20 \log \left| \frac{1}{1+2j\omega} \right|
$$

= 20 log 1 - 20 log $\sqrt{1 + (2\omega)^2}$
= -20 log $\sqrt{1 + (2\omega)^2}$

=
$$
\begin{cases} \text{for very small values} \\ \text{of } \omega, \text{ that is, } 2\omega \ll 1, \\ Lm = log 1 = 0 \\ \text{for very large values} \\ \text{of } \omega, \text{ that is, } 2\omega \gg 1, \\ Lm = -20 log(2\omega) \end{cases}
$$