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1 Introduction

Ordinary differential equations (ODEs) and delay differential equations (DDEs)
are used to describe many phenomena of physical interest. While ODEs con-
tain derivatives which depend on the solution at the present value of the
independent variable (“time”), DDEs contain in addition derivatives which
depend on the solution at previous times. DDEs arise in models throughout
the sciences [1]. Despite the obvious similarities between ODEs and DDEs,
solutions of DDE problems can differ from solutions for ODE problems in
several striking, and significant, ways [2] [20]. This accounts in part for the
lack of much general-purpose software for solving DDEs.
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We consider here only systems of delay differential equations of the form

y′(t) = f(t, y(t), y(t− τ1), y(t− τ2), . . . , y(t− τk)) (1)

that are solved on a ≤ t ≤ b with given history y(t) = S(t) for t ≤ a. The
constant delays are such that τ = min(τ1, . . . , τk) > 0. Although DDEs with
delays (lags) of more general form are important, this is a large and useful
class of DDEs. Indeed, Baker, Paul, and Willé [2] write that “The lag func-
tions that arise most frequently in the modelling literature are constants.”

Although the effective solution of DDEs has benefited a great deal from
the advances made in ODE technology during the past several years, the
state-of-the-art for DDE software is not at the level of ODE software. The
few FORTRAN codes for solving DDEs are considerably more difficult to use
than the popular ODE codes. We have developed a Matlab [11] program
dde23 [20] with the goal of making it as easy as possible to solve the wide
range of DDEs with constant delays encountered in practice.

This tutorial shows how to solve DDEs with dde23. It is organized as
follows. Important differences between DDEs and ODEs are discussed briefly
in §2. In §3 there is a brief discussion of how numerical methods for ODEs
can be extended to solve DDEs. The most important part of this tutorial is
the collection of examples in §4. As the first few show, anyone familiar with
solving ODEs using ode23 [18] will find it easy to solve routine DDEs with
dde23. Several examples then illustrate the powerful capabilities of dde23

for solving DDEs that are far from routine. Most of the examples have an
exercise that provides some practice with the techniques illustrated by the
example. The tutorial ends with some problems that serve as practice for
solving DDEs with constant delays in general. The complete solutions for
all examples, exercises, and problems that accompany the tutorial can be
used as templates. They show that interesting delay differential equation
problems can be solved easily in Matlab with dde23.

2 Delay Differential Equations

In this section we describe briefly some important differences between DDEs
and ODEs. More detailed discussions of the various issues are found in [20].

The most obvious difference between ODEs and DDEs is the initial data.
The solution of an ODE is determined by its value at the initial point t = a.
In evaluating the DDEs (1) for a ≤ t ≤ b, a term like y(t− τj) may represent
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values of the solution at points prior to the initial point. For example, at
t = a we must have the solution at a − τj . It is easy to see that if T is
the longest delay, the equations generally require us to provide the solution
S(t) for a − T ≤ t ≤ a. For DDEs we must provide not just the value of
the solution at the initial point, but also the “history”, the solution at times
prior to the initial point.

Because numerical methods for both ODEs and DDEs are intended for
problems with solutions that have several continuous derivatives, discontinu-
ities in low-order derivatives require special attention. This is a much more
serious matter for DDEs. For one thing, such discontinuities are not unusual
for ODEs, but they are almost always present for DDEs: Generally there is
a discontinuity in the first derivative of the solution at the initial point be-
cause generally S ′(a−) �= y′(a+) = f(a, S(a− τ1), . . . , S(a− τk)). There can
also be discontinuities at times both before and after the initial point. Some
problems have histories with discontinuities in low-order derivatives. Some
models involve equations that change when the solution satisfies a given re-
lation, e.g., when a solution component has a given value. These changes
often cause discontinuities in low-order derivatives of the solution.

Another reason why discontinuities are much more serious for DDEs is
that they propagate. If the solution has a discontinuity in a derivative some-
where, there are discontinuities in the rest of the interval at a spacing given
by the delays. In reasonably general circumstances, the propagated disconti-
nuities are smoothed: If there is a discontinuity at t∗ of order k, i.e., there is
a jump in y(k) at t∗, then the discontinuity at t∗ + τj is of order at least k+1,
the discontinuity at t∗ + 2τj is of order at least k+ 2, and so on. This is very
important for numerical solution of the DDE because once the orders are
high enough, the discontinuities will not interfere with the numerical method
and we can stop tracking them.

To see how discontinuities propagate and smooth out, let us solve

y′(t) = y(t− 1) (2)

for 0 ≤ t with history S(t) = 1 for t ≤ 0. With this history, the problem
reduces on the interval 0 ≤ t ≤ 1 to the ODE y′(t) = 1 with initial value
y(0) = 1. Solving this problem we find that y(t) = t+1 for 0 ≤ t ≤ 1. Notice
that the solution has a discontinuity in its first derivative at t = 0. In the
same way we find that y(t) = (t2 + 1)/2 for 1 ≤ t ≤ 2. The first derivative is
continuous at t = 1, but there is a discontinuity in the second derivative. In
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general the solution on the interval [k, k + 1] is a polynomial of degree k + 1
and there is a discontinuity of order k + 1 at t = k.

3 Numerical Methods for DDEs

In this section we discuss a few aspects of the numerical solution of DDEs.
A detailed discussion of the methods used by dde23 can be found in [20].

A popular approach to solving DDEs is to extend one of the methods
used to solve ODEs. Most of the codes are based on explicit Runge-Kutta
methods. dde23 takes this approach by extending the method of the Matlab
ODE solver ode23. The idea is the same as the so-called “method of steps”
for solving DDEs that was used to solve an example in the last section. To
be concrete, we describe the idea as applied to this example. In solving (2)
for 0 ≤ t ≤ 1, the DDE reduces to an initial value problem for an ODE with
y(t − 1) equal to the given history S(t − 1) and initial value y(0) = 1. We
can solve this ODE numerically using any of the popular methods for the
purpose. Analytical solution of the DDE on the next interval 1 ≤ t ≤ 2
is handled the same way as the first interval, but the numerical solution is
somewhat complicated, and the complications are present for each of the
subsequent intervals. The first complication is that we must keep track of
how the discontinuity at the initial point propagates because of the delays.
Another is that at each discontinuity we start the solution of an initial value
problem for an ODE. Runge-Kutta methods are attractive because they are
much easier to start than other popular numerical methods for ODEs. Still
another issue is the term y(t− 1) that is in principle known because we have
already found y(t) for 0 ≤ t ≤ 1. This has been a serious obstacle to applying
Runge-Kutta methods to DDEs, so we need to discuss the matter more fully.

Runge-Kutta methods, like all discrete variable methods for ODEs, pro-
duce approximations yn to y(xn) on a mesh {xn} in the interval of interest,
here [0, 1]. They do this by starting with the given initial value, y0 = y(a) at
x0 = a, and stepping from yn ≈ y(xn) a distance of hn to yn+1 ≈ y(xn+1) at
xn+1 = xn +hn. The step size hn is chosen as small as necessary to get an ac-
curate approximation. It is chosen as big as possible so as to reach the end of
the interval in as few steps as possible, which is to say, as cheaply as possible.
In the case of solving (2) on the interval [1, 2], we have values of the solution
only on a mesh in [0, 1]. So, where do the values y(t−1) come from? In their
original form Runge-Kutta methods produce answers only at mesh points,
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but it is now known how to obtain “continuous extensions” that yield an ap-
proximate solution between mesh points. The trick is to get values between
mesh points that are just as accurate and to do this cheaply. In some cases
the continuous extensions can be viewed as interpolants. As an example,
the first widely available FORTRAN DDE solver, DMRODE [12], is based
on a standard Runge-Kutta formula and Hermite interpolants of various or-
ders. The BS(2,3) Runge-Kutta method used by ode23 was derived along
with a continuous extension based on cubic Hermite interpolation. Besides
the other good qualities of this method, cubic Hermite interpolation between
mesh points provides a numerical solution just as accurate as the solution at
mesh points. Furthermore, the data needed for the interpolation is available
as a byproduct of the step itself. With such a method, when we solve (2) on
[0, 1] we obtain y(t) everywhere in the interval, not just mesh points. In this
way we obtain inexpensively the accurate values for y(t − 1) needed when
integrating the ODE on [1, 2], and similarly for all the subsequent intervals.

The Runge-Kutta methods mentioned are all explicit recipes for comput-
ing yn+1 given yn and the ability to evaluate the equation. For reasons of
efficiency, a solver tries to use the biggest step size hn that will yield the
specified accuracy, but what if it is bigger than the shortest delay τ? In
taking a step to xn +hn, we would then need values of the solution at points
in the span of the step, but we are trying to compute the solution at the end
of the step and do not yet know these values. A good many solvers restrict
the step size to avoid this issue. Some solvers, including dde23, use whatever
step size appears appropriate and iterate to evaluate the implicit formula
that arises in this way.

4 Examples

In this section we use problems from the literature to show how to solve
DDEs with dde23. Solving a DDE with dde23 is much like solving an ODE
with ode23, but there are some notable differences. Examples 1 through 3
show how to solve typical problems. They should be read in order. dde23 has
a powerful event location capability that is quite similar to that of ode23.
Example 4 illustrates the capability by finding local maxima of the solution.
ODE and DDE solvers are intended for problems with solutions that have
several continuous derivatives. However, it is not unusual for equations to
have different forms in different circumstances, which leads to discontinuities
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in low-order derivatives of the solution when the circumstances change. This
matter is more serious for DDEs because discontinuities propagate and dis-
continuities can occur in the history. Examples 5 through 8 show how to deal
with discontinuities in low-order derivatives, including jumps in the solution
itself. They consider situations in order of difficulty and some require famil-
iarity with a previous example. dde23 is limited to problems with constant
delays, but the examples/exercises/problems of this section show that for
this class of problems, it is both easy to use and powerful.

Complete solutions are provided for all the examples that can be used
as templates. Some of the examples have exercises that are solved in a
similar way. It is worth trying them for practice. Complete solutions are
provided as a check and as further templates. This tutorial ends with some
additional problems that serve as exercises for all the examples. Again,
complete solutions are provided as a check and as further templates.

A naming convention is used throughout this section. For example,
exam1.m is the M–file for solving the problem of Example 1. The equa-
tions of this problem are evaluated in the M–file exam1f.m. Some problems
involve additional files, specifically a history function and/or an event func-
tion. The corresponding M–files have the names exam1h.m and exam1e.m,
respectively. The M–files for the exercises follow the same convention with
exam replaced by exer. Finally, the M–files for the additional problems are
similarly named with exam replaced by prob.

Example 1

We illustrate the straightforward solution of a DDE by computing and plot-
ting the solution of Example 3 of [23]. The equations

y′1(t) = y1(t− 1)

y′2(t) = y1(t− 1) + y2(t− 0.2)

y′3(t) = y2(t)

are to be solved on [0, 5] with history y1(t) = 1, y2(t) = 1, y3(t) = 1 for t ≤ 0.
A typical invocation of dde23 has the form

sol = dde23(ddefile,lags,history,tspan);

The input argument tspan is the interval of integration, here [0, 5]. The
history argument is the name of a function that evaluates the solution at
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the input value of t and returns it as a column vector. Here exam1h.m can
be coded as

function v = exam1h(t)

v = ones(3,1);

Quite often the history is a constant vector. A simpler way to provide the
history then is to supply the vector itself as the history argument. The
delays are provided as a vector lags, here [1, 0.2]. ddefile is the name
of a function for evaluating the DDEs. Here exam1f.m can be coded as

function v = exam1f(t,y,Z)

ylag1 = Z(:,1);

ylag2 = Z(:,2);

v = zeros(3,1);

v(1) = ylag1(1);

v(2) = ylag1(1) + ylag2(2);

v(3) = y(2);

The input t is the current t and y, an approximation to y(t). The input
array Z contains approximations to the solution at all the delayed arguments.
Specifically, Z(:,j) approximates y(t− τj) for τj given as lags(j). It is not
necessary to define local vectors ylag1, ylag2 as we have done here, but
often this makes the coding of the DDEs clearer. The ddefile must return
a column vector.

This is perhaps a good place to point out that dde23 does not assume
that terms like y(t − τj) actually appear in the equations. Because of this,
you can use dde23 to solve ODEs. If you do, it is best to input an empty
array, [], for lags because any delay specified affects the computation even
when it does not appear in the equations.

The input arguments of dde23 are much like those of ode23, but the
output differs formally in that it is one structure, here called sol, rather
than several arrays

[t,y,...] = ode23(...

The field sol.x corresponds to the array t of values of the independent
variable returned by ode23 and the field sol.y, to the array y of solution
values. So, one way to plot the solution is
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plot(sol.x,sol.y);

After defining the equations in exam1f.m, the complete program exam1.m

to compute and plot the solution is

sol = dde23(’exam1f’,[1, 0.2],ones(3,1),[0, 5]);

plot(sol.x,sol.y);

title(’Figure 1. Example 3 of Wille’’ and Baker.’)

xlabel(’time t’);

ylabel(’y(t)’);

Note that we must supply the name of the ddefile to the solver, i.e., the
string ’exam1f’ rather than exam1f. Also, we have taken advantage of the
easy way to specify a constant history.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

180

200
Figure 1. Example 3 of Wille’ and Baker.

time t

y(
t)

Exercise 1

To gain experience with dde23, compute and plot the solution of the following
problem from [12]. Solve

y′1(t) = y5(t− 1) + y3(t− 1)
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y′2(t) = y1(t− 1) + y2(t− 0.5)

y′3(t) = y3(t− 1) + y1(t− 0.5)

y′4(t) = y5(t− 1)y4(t− 1)

y′5(t) = y1(t− 1)

on [0, 1] with history y1(t) = exp (t + 1), y2(t) = exp (t + 0.5), y3(t) = sin(t+
1), y4(t) = y1(t), y5(t) = y1(t) for t ≤ 0.

In this you will have to evaluate the history in a function and supply
its name, say ’exer1h’, as the history argument of dde23. Remember that
both the ddefile and the history function must return column vectors. In
[12] this problem is used to show how to prepare a class of DDEs for solution
with DMRODE. You might find it interesting to compare this preparation
to what you had to do.

Example 2

We show how to get output at specific points with Example 5 of [23], a scalar
equation that exhibits chaotic behavior. We solve the equation

y′(t) =
2 y(t− 2)

1 + y(t− 2)9.65
− y(t) (3)

on [0, 100] with history y(t) = 0.5 for t ≤ 0.
Output from dde23 is not just formally different from that of ode23.

dde23 computes an approximate solution S(t) valid throughout tspan and
places in sol the information necessary to evaluate it. This evaluation is
done with ddeval. All you have to do is supply the solution structure and
an array t of points where you want the values of S(t) and optionally S ′(t):

[S,Sp] = ddeval(sol,t);

With this form of output, you can solve a DDE just once and then obtain
inexpensively as many solution values as you like, anywhere you like. The
numerical solution itself is continuous and has a continuous derivative, so
you can always get a smooth graph by evaluating it at enough points with
ddeval.

The example of [23] plots y(t− 2) against y(t). This is quite a common
task in nonlinear dynamics, but we cannot proceed as in Example 1. That is
because the entries of sol.x are not equally spaced: If t∗ appears in sol.x, we
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have an approximation to y(t∗) in sol.y, but generally t∗−2 does not appear
in sol.x, so we do not have an approximation to y(t∗ − 2). ddeval makes
such plots easy. In exam2.m we first define an array t of 1000 equally spaced
points in [2, 100] and obtain solution values at these points with ddeval.
We then use ddeval a second time to evaluate the solution at the entries
of t-2. In this way we obtain values approximating both y(t) and y(t − 2)
for the same t. This might seem like a lot of plot points, but ddeval is just
evaluating a piecewise-polynomial function and is coded to take advantage of
fast builtin functions and vectorization, so this is not expensive and results
in a smooth graph.

Because Matlab does not distinguish scalars and vectors of one compo-
nent, the single DDE can be coded as

function v = exam2f(t,y,Z)

v = 2*Z/(1 + Z^9.65) - y;

The complete program exam2.m to compute and plot y(t− 2) against y(t) is

sol = dde23(’exam2f’,2,0.5,[0, 100]);

t = linspace(2,100,1000);

y = ddeval(sol,t);

ylag = ddeval(sol,t - 2);

plot(y,ylag);

title(’Figure 2. Example 5 of Wille’’ and Baker.’)

xlabel(’y(t)’);

ylabel(’y(t-2)’);

axis([0 1.5 0 1.5])
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Figure 2. Example 5 of Wille’ and Baker.
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Exercise 2

Farmer [5] gives plots of various Poincaré sections for the Mackey–Glass
equation, a scalar DDE that exhibits chaotic behavior. Reproduce Fig. 2a
of the paper by solving

y′(t) =
0.2 y(t− 14)

1 + y(t− 14)10
− 0.1y(t) (4)

on [0, 300] with history y(t) = 0.5 for t ≤ 0 and plotting y(t − 14) against
y(t). The figure begins with t = 50 to allow an initial transient time to
settle down. To reproduce it, form an array of 1000 equally spaced points in
[50, 300], evaluate y(t) at these points, and then evaluate y(t− 14).

Example 3

We show how to set options and deal with parameters by solving Example
4.2 of [14]. The equation

y′(t) = −λy(t− 1) (1 + y(t)) (5)

is solved on [0, 20] with history y(t) = t for t ≤ 0 for four values of the
parameter λ, namely 1.5, 2, 2.5, and 3.
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Often default error tolerances are perfectly satisfactory, but here more
stringent tolerances are needed for the larger values of λ. Options are set
with ddeset exactly as they are set for ode23 with odeset. When options
are used, a call to dde23 has the form

sol = dde23(ddefile,lags,history,tspan,options);

Options like relative and absolute error tolerances are the same in the two
solvers. In particular, both have a default relative error tolerance of 10−3

and default absolute error tolerance of 10−6. The tolerances imposed for the
larger λ in exam3.m are relatively stringent for this solver, but this is a price
that must be paid to obtain a satisfactory solution. To see this for yourself,
try solving the problem with λ = 3 and default tolerances.

Parameters can always be communicated as global variables, but as is
common with Matlab solvers, they can also be passed through dde23 as
arguments following the options argument. For two values of λ we use
default tolerances, so must use an empty array, [], as a placeholder for the
options argument. When parameters are passed through dde23, they must
appear as arguments of the ddefile and if present, the history function, even
if they are not used. Accordingly, exam3f.m can be coded as

function v = exam3f(t,y,Z,lambda)

v = -lambda*Z*(1 + y);

and exam3h.m as

function v = exam3h(t,lambda)

v = t;

After defining the equation in exam3f.m and the history in exam3h.m, the
complete program exam3.m to compute and plot the four solutions as in [14]
is

sol1 = dde23(’exam3f’,1,’exam3h’,[0, 20],[],1.5);

sol2 = dde23(’exam3f’,1,’exam3h’,[0, 20],[],2);

opts = ddeset(’RelTol’,1e-5,’AbsTol’,1e-8);

sol3 = dde23(’exam3f’,1,’exam3h’,[0, 20],opts,2.5);
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opts = ddeset(’RelTol’,1e-6,’AbsTol’,1e-10);

sol4 = dde23(’exam3f’,1,’exam3h’,[0, 20],opts,3);

plot(sol1.x,sol1.y,sol2.x,sol2.y,...

sol3.x,sol3.y,sol4.x,sol4.y);

legend(’\lambda = 1.5’,’\lambda = 2.0’,...

’\lambda = 2.5’,’\lambda = 3.0’)

title(’Figure 3. Example 4.2 of Oberle and Pesch.’)

This has been coded in a very straightforward manner to make clear that we
are solving four problems and using different tolerances.

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7
Figure 3. Example 4.2 of Oberle and Pesch.

λ = 1.5
λ = 2.0
λ = 2.5
λ = 3.0

Exercise 3

Wheldon’s model of chronic granuloctic leukemia [8] has the form

y′1(t) =
α

1 + β y1(t− τ )γ
− λ y1(t)

1 + µ y2(t)
δ

y′2(t) =
λ y1(t)

1 + µ y2(t)δ
− ω y2(t)

Code the equations for general values of the parameters to make it easy to
experiment with the model. Remember that if you do not set any options, you
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must use a placeholder of [] for the options argument. Solve the problem on
[0, 200] with history y1(t) = 100, y2(t) = 100 for t ≤ 0 and parameter values
α = 1.1 × 1010, β = 10−12, γ = 1.25, δ = 1, λ = 10, µ = 4 × 10−8, ω = 2.43
that you set in the main program. Compare the solutions you obtain with
τ = 7 and τ = 20. You could code this as

for tau = [7, 20]

sol = dde23(’exer3f’,tau,...

...

end

You should find that the solution is oscillatory in both cases. In the first,
the oscillations are damped quickly and in the second, they are not.

Example 4

It is often necessary to find when a solution satisfies a certain relation, e.g.,
when a component has a specific value. An event is said to occur when a
function of the solution, g(t, y(t), y(t − τ1), . . . , y(t − τk)), vanishes. Some
problems involve many of these “event functions”. This example shows how
to use the powerful event location capability of dde23.

Figure 15.6 of [6] displays the solution of an infectious disease model. The
equations

y′1(x) = −y1(x)y2(x− 1) + y2(x− 10)

y′2(x) = y1(x)y2(x− 1) − y2(x)

y′3(x) = y2(x) − y2(x− 10)

are solved on [0, 40] with history y1(x) = 5, y2(x) = 0.1, y3(x) = 1 for x ≤ 0.
To illustrate event location, we compute the local maxima of all three solution
components.

We compute the maxima by finding where the first derivatives vanish.
The three event functions come from the DDEs: y′1(x) = −y1(x)y2(x −
1) + y2(x − 10), and so forth. All event functions are evaluated in a single
Matlab function that returns the values as a column vector. The name of
this function is passed to the solver as the value of the ’Events’ option. For
this example we evaluate the three functions in exam4e by a call to exam4f.
Because event location is used for a variety of purposes, we have to tell dde23
more about what we want to do. Sometimes we just want to know that an
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event has occurred and other times we want to terminate the integration
then. We tell the solver about this by returning a vector isterminal from
exam4e. To terminate the integration when event function k vanishes, we
set component k of isterminal to 1 (true), and otherwise to 0 (false). For
this example none of the events is terminal. There is an annoying matter of
some importance: Sometimes we want to start an integration with an event
function that vanishes at the initial point. Imagine, for example, that we fire
a model rocket into the air and we want to know when it hits the ground. It
is natural to use the height of the rocket as a terminal event function, but it
vanishes at the initial time as well as the final time. dde23 treats an event
at the initial point in a special way. The solver locates such an event and
reports it, but does not treat it as terminal, no matter how isterminal is set.
The example shows that how an event function vanishes may be important:
To distinguish maxima from minima, we want the solver to report that a
derivative vanished only when it changes from positive to negative values.
This is done using direction. If we are interested only in events for which
event function k is increasing through 0, we set component k of direction

to +1. Correspondingly, we set it to −1 if we are interested only in those
events for which the event function is decreasing, and 0 if we are interested
in all events. Once we understand what information must be provided, it is
easy to code the event functions of this example as

function [value,isterminal,direction] = exam4e(x,y,Z)

value = exam4f(x,y,Z);

isterminal = zeros(3,1);

direction = -ones(3,1);

Now that we have discussed how to tell the solver what we want it to do,
we have to discuss how it reports what happened. The locations of events
are returned as the field sol.xe and the values of the solution at these points
are returned as the field sol.ye. If there are no events, sol.xe = []. The
field sol.ie reports which event occurred. A value of k indicates that event
function k vanished at the corresponding entry of sol.xe.

It is straightforward to code the equations as

function v = exam4f(x,y,Z)

ylag1 = Z(:,1);

ylag2 = Z(:,2);

v = zeros(3,1);
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v(1) = -y(1)*ylag1(2) + ylag2(2);

v(2) = y(1)*ylag1(2) - y(2);

v(3) = y(2) - ylag2(2);

With exam4e.m and exam4f, it is also straightforward to code the solution
of the problem as the first two lines of the complete solution exam4.m that
follows:

options = ddeset(’Events’,’exam4e’);

sol = dde23(’exam4f’,[1, 10],[5; 0.1; 1],[0, 40],options);

xe = sol.xe;

ye = sol.ye;

ie = sol.ie;

n1 = find(ie == 1);

x1 = xe(n1);

y1 = ye(1,n1);

n2 = find(ie == 2);

x2 = xe(n2);

y2 = ye(2,n2);

n3 = find(ie == 3);

x3 = xe(n3);

y3 = ye(3,n3);

plot(sol.x,sol.y,’k’,x1,y1,’rs’,x2,y2,’rs’,x3,y3,’rs’)

title(’Figure 4. Infectious disease model from Hairer et al.’)

xlabel(’Maxima are indicated by red squares.’)

The only complication in this program is separating the various kinds of
events. It is not necessary, but perhaps clearer, to introduce local variables
for the fields that return the results of the event location. The command n1

= find(ie == 1) finds the indices corresponding to the first event function.
These indices allow us to extract the information that y1(x) has its maxima
at xe(n1) and its values there are ye(1,n1). The second and third event
functions are handled in the same way and then all the results are plotted.
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Figure 4. Infectious disease model from Hairer et al.

Maxima are indicated by red squares.

Exercise 4

To gain some experience with event location, try two experiments:

• Terminate the integration when y1(x) has its first maximum.

• Compute local minima instead of maxima.

Each can be done by changing only one line in exam4e.m.

Example 5

ODE and DDE solvers are intended for problems with solutions that have
several continuous derivatives. It is not unusual for equations to have dif-
ferent forms in different circumstances, which leads to discontinuities in low-
order derivatives of the solution, or even in the solution itself, when the
circumstances change. Although a robust solver may be able to produce an
acceptable solution, it is better practice to account for the changes and it
can be necessary. There are two issues: Do we know in advance where the
changes occur? Is the solution itself continuous? In this example we show
how to solve problems that have a continuous solution with discontinuities
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in a low-order derivative at points known in advance. The history is the
solution prior to the initial point and its discontinuities must also be taken
into account because they propagate into the interval of integration. Discon-
tinuities in the history are handled in the same way, but are a little simpler
because discontinuities in the history itself are permitted.

Example 4.4 of [14] is an infection model due to Hoppensteadt and Walt-
man. The equation

y′(t) =




−r y(t) 0.4 (1 − t) if 0 ≤ t ≤ 1 − c,
−r y(t) (0.4(1 − t) + 10 − eµy(t)) if 1 − c < t ≤ 1,
−r y(t) (10 − eµy(t)) if 1 < t ≤ 2 − c,
−r eµ y(t) (y(t− 1) − y(t)) if 2 − c < t.

is solved on [0, 10] with history y(t) = 10 for t ≤ 0. Here c = 1/
√

2 and
µ = r/10. Oberle and Pesch solve this problem for several values of the
parameter r, but we solve it only for r = 0.5. The different phases of the
spread of the disease are described by different equations. In this example the
phases change at times known in advance. The model requires the solution
to be continuous, but the changes in the equation lead to jumps in low order
derivatives. In addition to y(t), an approximation to I(t) = −y′(t)/(r y(t))
is required.

dde23 deals easily with problems that have a continuous solution and
discontinuities in low-order derivatives at known points. All you have to do
is tell the solver where the discontinuities are by providing them as the value
of the ’Jumps’ option. However, you need to keep in mind that the history
is the solution prior to the initial point, so you must also account for its
discontinuities. For instance, the Marchuk immunology model discussed in
[6, pp. 297–298] has the history max(0, t+ 10−6) for t ≤ 0. Its solution has a
jump in the first derivative at t = −10−6 which propagates into the interval
of integration. Discontinuities in the history are handled like discontinuities
at known points during the integration. In one respect they are simpler; a
jump in the history itself is treated the same as a jump in one of its low
order derivatives. Low-order discontinuities in the history have an effect in
the interval of integration because of the delays. If the initial point is a and
the longest delay is T , discontinuities that occur before a− T have no effect
on the integration, so there is no need to include them in ’Jumps’.

Having discussed how to deal with the discontinuities, it is straightforward
to solve the problem. We compute an approximation to y(10) and compare
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it to an accurate value reported in [14]. This illustrates the computation
of an approximation at a specific point and confirms the accuracy of the
computation. We compute and plot I(t) at the points of sol.x using the
fields sol.y and sol.yp. If we should want values at other t or should want a
smoother graph, we would compute the necessary values with ddeval. If we
treat r as a parameter, the equation can be coded as

function v = exam5f(t,y,Z,r)

c = 1/sqrt(2);

mu = r/10;

if t <= 1 - c

v = -r*y*0.4*(1 - t);

elseif t <= 1

v = -r*y*(0.4*(1 - t) + 10 - exp(mu)*y);

elseif t <= 2 - c

v = -r*y*(10 - exp(mu)*y);

else

v = -r*exp(mu)*y*(Z - y);

end

The complete program exam5.m is then

r = 0.5;

c = 1/sqrt(2);

opts = ddeset(’Jumps’,[(1-c), 1, (2-c)],...

’RelTol’,1e-5,’AbsTol’,1e-8);

sol = dde23(’exam5f’,1,10,[0, 10],opts,r);

y10 = ddeval(sol,10);

fprintf(’DDE23 computed y(10) =%15.11f.\n’,y10);

fprintf(’Reference solution y(10) =%15.11f.\n’,0.06302089869);

plot(sol.x,sol.y)

title([’Figure 5a. Hoppensteadt-Waltman model with r = ’,...

num2str(r),’.’])

xlabel(’time t’)

ylabel(’y(t)’)

Ioft = -(1/r)*(sol.yp ./ sol.y);
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figure

plot(sol.x,Ioft)

title([’Figure 5b. Hoppensteadt-Waltman model with r = ’,...

num2str(r),’.’])

xlabel(’time t’)

ylabel(’I(t)’)

This program results in the output

DDE23 computed y(10) = 0.06301980845.

Reference solution y(10) = 0.06302089869.

and the two figures displayed. The accuracy of the computed result is what
we might expect for the specified error tolerances.
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Figure 5a. Hoppensteadt−Waltman model with r = 0.5.
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Figure 5b. Hoppensteadt−Waltman model with r = 0.5.

time t

I(
t)

Exercise 5

Example 4 of [23] solves the equation

y′(t) = y(t− 1)

on [0, 1] with history y(t) = (−1)[−5t] for t ≤ 0. For s > 0, the function [s] is
floor(s) in Matlab. The history has jump discontinuities prior to t = 0
that must be set in ’Jumps’. With a delay of 1, only jumps that occur at
t ≥ −1 can have an effect in [0, 1].

Example 6

Discontinuities in the solution itself complicate matters. If nothing else, we
must specify the jumps. In this example we show how to deal with the special
case of a jump in the solution at the initial point. We also show how to plot
the solution in a phase plane.

We solve a model of the infamous four year life cycle of a population of
lemmings [22]. The equation

y′(t) = ry(t)

(
1 − y(t− 0.74)

m

)
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is solved on [0, 40] with history y(t) = 19 for t < 0. The parameters r and m
have the values 3.5 and 19, respectively. Notice that with these values, the
equation has a constant (steady-state) solution, y(t) = 19. Tavernini uses
this solution as history and perturbs the initial value to y(0) = 19.00001 so
that y(t) will move away from the steady state. Here we use y(0) = 19.001
so as to see the cyclic behavior sooner.

Because the solution settles into a cyclic behavior, it is interesting to
plot y′(t) against y(t). This is easily done because in addition to sol.y,
dde23 also returns a field sol.yp with values of the first derivative. For this
example, these values provide an acceptable graph, but if they did not, we
could get one by using ddeval to obtain more values for both y(t) and y′(t).

Most DDE problems have solutions that are continuous at the initial
point, so there is no need to supply the solver with an initial value in addition
to a history function. However, if you should want to use a different initial
value, all you have to do is provide it as the value of the ’InitialY’ option.
The solver deals automatically with the discontinuity in the first derivative
that is ordinarily present at the initial point, so you need act only if the
solution itself is discontinuous. Here the solution has a small jump at the
initial point, indeed small enough that we must use error tolerances smaller
than the default values so that the solver “sees” the jump.

Using the capability of passing parameters through dde23, exam6f.m can
be coded as

function v = exam6f(t,y,Z,r,m)

v = r*y*(1 - Z/m);

The complete program exam6.m to compute and plot the solution is then

r = 3.5;

m = 19;

options = ddeset(’RelTol’,1e-4,’AbsTol’,1e-7,...

’InitialY’,19.001);

sol = dde23(’exam6f’,0.74,19,[0 40],options,r,m);

plot(sol.x,sol.y);

title(’Figure 6a. Population of Lemmings--Time Series’)

xlabel(’time t’);

ylabel(’y(t)’);

figure
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plot(sol.y,sol.yp);

title(’Figure 6b. Population of Lemmings--Phase Plane’)

xlabel(’y(t)’);

ylabel(’y’’(t)’);
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Figure 6a. Population of Lemmings−−Time Series

time t

y(
t)

Clearly the normalized population gets quite small, but how small? A
reasonably accurate answer is obtained easily: The smallest value of y(t) is
approximately min(sol.y), namely 0.0116. If we wanted a better answer,
we could obtain it by introducing event functions as in the last example.
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Exercise 6

The ARCHI manual [17] provides a sample program for solving

y′1(t) = y1(t− 1) y2(t− 2)

y′2(t) = −y1(t) y2(t− 2)

on [0, 4] with history y1(t) = cos(t), y2(t) = sin(t) for t < 0 and initial values
y1(0) = 0, y2(0) = 0. Notice that y1(t) is discontinuous at the initial point.
For practice, compute and plot the solution. The sample program specifies
a pure absolute error of 10−9. dde23 does not permit a pure absolute error,
but for practice with options, use the default relative error tolerance and set
’AbsTol’ to 1e-9. You might find it interesting to compare your program
to the sample in [17].

Example 7

For some problems the changes in the equations occur at times that are not
known in advance. The event location capability is used to determine when
there is a change and the integration is terminated. It is then restarted with
the new definition of the equation. The role of the history and the possibility
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of a jump discontinuity in the solution itself complicate this, but dde23 was
designed to make it as painless as possible. This example and the next show
how to proceed.

Marriott and DeLisle [10] solve a DDE that involves a step function of
the history term. With ∆ = y(t− 12) − xb, the equation is

y′(t) =
(
−y(t) + π

(
a + ε sign(∆) − u sin2(∆)

))
/τ.

It is solved on [0, 120] with history y(t) = 0.6 for t ≤ 0 and parameter values
xb = −0.427, a = 0.16, ε = 0.02, u = 0.5, τ = 1.

The term sign(∆) is an idealization of a sharp change that we do not
expect to resolve in detail. dde23 is sufficiently robust that it can solve this
problem in a straightforward way. However, ignoring discontinuities can get
you into trouble even when solving an ODE [19], much less a DDE. You can
be much more confident of your numerical results if you arrange that the
solver is always integrating an equation with smooth coefficients. This can
be done here by letting the parameter state be the value the solver is to
use for sign(∆). With the given history, it is initialized to +1. We integrate
until the event function y(t−12)−xb vanishes. The ’Events’ option is used
to locate this event and terminate the integration then. The sign of state

is changed and the integration restarted. This continues until the end of the
interval is reached. It is straightforward to code the event location as

function [value,isterminal,direction] = exam7e(t,y,Z,state)

xb = -0.427;

value = Z - xb;

isterminal = 1;

direction = 0;

and with state defined in exam7.m as described, the evaluation of the DDE
is coded as

function v = exam7f(t,y,Z,state)

xb = -0.427;

a = 0.16;

epsilon = 0.02;

u = 0.5;

tau = 1;

Delta = Z - xb;

v = (-y + pi * (a + epsilon*state - u*sin(Delta)^2)) / tau;
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The event location capability deals with the issue of finding when the
equations change, but there is a matter special to DDEs on restarting, the
history. On a restart, dde23 accepts the previously computed solution struc-
ture as history. dde23 updates the information in the solution structure each
time it is called, so the solution returned is always valid from the initial to the
last point reached in the integration, namely sol.x(end). It is convenient to
compare this point to the end of the interval of integration and perform the
restarts in a while loop. In this loop the solution structure of one integration
is used as the history for the next until the run is completed.

With exam7e.m and exam7f.m, the complete program exam7.m to com-
pute and plot the solution is

state = +1;

opts = ddeset(’Events’,’exam7e’);

sol = dde23(’exam7f’,12,0.6,[0, 120],opts,state);

while sol.x(end) < 120

fprintf(’Restart at %5.1f.\n’,sol.x(end));

state = - state;

sol = dde23(’exam7f’,12,sol,[sol.x(end), 120],opts,state);

end

plot(sol.x,sol.y);

title(’Figure 7. Marriott-DeLisle Controller Problem’)

xlabel(’Restart each time y(t - 12) = -0.427.’);

The program prints out a message about restarts and where they occur. The
resulting output is

Restart at 14.0.

Restart at 24.9.

Restart at 68.1.

Restart at 75.7.

Restart at 118.9.
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Figure 7. Marriott−DeLisle Controller Problem

Restart each time y(t − 12) = −0.427.

Exercise 7

The equations of the Marchuk immunology model discussed in [6] are

y′1(t) = (h1 − h2y3(t)) y1(t)

y′2(t) = ξ(y4)h3 y3(t− τ )y1(t− τ ) − h5(y2(t) − 1)

y′3(t) = h4(y2(t) − y3(t)) − h8y3(t)y1(t)

y′4(t) = h6y1(t) − h7 y4(t)

Here the coefficient

ξ(y4) =

{
1 if y4 ≤ 0.1
(1 − y4) 10/9 if 0.1 < y4 ≤ 1

is continuous, but has a jump in its first derivative when y4(t) = 0.1, which
leads to a jump in a low order derivative of y2(t). The value of the delay
is τ = 0.5. The problem is solved on [0, 60] with history y1(t) = max(0, t +
10−6), y2(t) = 1, y3(t) = 1, y4(t) = 0 for t ≤ 0 . As was noted in Example
5, y1(t) has a jump in its first derivative at t = −10−6 that propagates into
the interval of integration. Figure 15.8 of [6] presents plots for h1 = 2, h2 =
0.8, h3 = 104, h4 = 0.17, h5 = 0.5, h7 = 0.12, h8 = 8 and two values of h6,
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namely 10 and 300. Treat h6 as a parameter in your program and try to
reproduce the figure for h6 = 300. For this you will have to plot the scaled
components 104y1, y2/2, y3, 10y4 with axis([0 60 -1 15.5]) . An array
yplot of scaled values for plotting can be formed easily by

yplot = sol.y;

yplot(1,:) = 1e4*yplot(1,:);

and so forth. To solve this problem accurately over the whole interval, you
will need to reduce the tolerances to, say, a relative tolerance of 10−5 and an
absolute tolerance of 10−8.

dde23 is sufficiently robust that it can solve this problem in a straight-
forward way. However, you can be much more confident of the results if you
ensure that the solver is always working with equations that have smooth
coefficients. There are two kinds of discontinuities in this problem. As in
Example 5, use the ’Jumps’ option to tell the solver about the discontinu-
ity at t = −10−6. As in Example 7, terminate the integration when the
event function y4(t) − 0.1 vanishes. Use a parameter state with value +1 if
y4(t) ≤ 0.1 and −1 otherwise. The problem is to be solved with y4(0) = 0,
so initialize state to +1. Thereafter, each time that the solver returns,
check whether you have reached the end of the interval. If sol.x(end) <

60, change the sign of state and call dde23 again with the previous solution
as history. In the function for evaluating the DDEs, set ξ(y4) = 1 if state

is +1 and ξ(y4) = (1 − y4) 10/9 otherwise.

Example 8

This example is much like Example 7 except that the solution itself is dis-
continuous. We restart at discontinuities, so the jump in the solution occurs
at the initial point of an integration and can be handled as in Example 6.

A two-wheeled suitcase may begin to rock from side to side as it is pulled.
When this happens, the person pulling it attempts to return it to the vertical
by applying a restoring moment to the handle. There is a delay in this
response that can affect significantly the stability of the motion. This is
modeled by Suherman et alia [21] with the DDE

θ′′(t) + sign(θ(t))γ cos(θ(t)) − sin(θ(t)) + βθ(t− τ ) = A sin(Ωt + η)

The equation is solved on [0, 12] as a pair of first order equations with y1(t) =
θ(t), y2(t) = θ′(t). Figure 3 of [21] shows a plot of y1(t) against t and a plot

28



of y2(t) against y1(t) when γ = 2.48, β = 1, τ = 0.1, A = 0.75,Ω = 1.37, η =
arcsin(γ/A) and the initial history is the constant vector zero.

A wheel hits the ground (the suitcase is vertical) when y1(t) = 0 and the
suitcase has fallen over when |y1(t)| = π/2. The events are terminal and all
are to be reported. The event function can be coded as

function [value,isterminal,direction] = exam8e(t,y,Z,state)

value = [y(1); abs(y(1))-pi/2];

isterminal = [1; 1];

direction = [0; 0];

As in Example 7, the parameter state seen in the event function is used
in exam8.m to evaluate properly the discontinuous coefficient sign(y1(t)) in
the DDE. We initialize it to +1 and change its sign when dde23 returns
because y1(t) vanished. However, there are two event functions, so we must
check the last entry in sol.ie to see if we should change the sign of state.
With this, the DDEs can be coded as

function v = exam8f(t,y,Z,state)

ylag = Z(:,1);

v = zeros(2,1);

gamma = 0.248;

beta = 1;

A = 0.75;

omega = 1.37;

eta = asin(gamma/A);

v(1) = y(2);

v(2) = sin(y(1)) - state*gamma*cos(y(1)) - beta*ylag(1) ...

+ A*sin(omega*t + eta);

When a wheel hits the ground, the integration is to be restarted with
y1(t) = 0 and y2(t) multiplied by the coefficient of restitution 0.913. The
’InitialY’ option is used for this purpose. The solution at all the mesh
points is available as the field sol.y and in particular, the solution at the
time of the event is the last column of this array, sol.y(:,end). If the
suitcase falls over, the run is terminated, so again we must check which event
occurred. With exam8e.m and exam8f.m, the complete program exam8.m to
solve the problem and plot the solution in the phase plane is
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state = +1;

opts = ddeset(’RelTol’,1e-5,’AbsTol’,1e-5,’Events’,’exam8e’);

sol = dde23(’exam8f’,0.1,[0; 0],[0 12],opts,state);

% Reference values for event locations:

ref = [4.516757065, 9.751053145, 11.670393497];

fprintf(’\nKind of Event: dde23 reference\n’);

event = 0;

while sol.x(end) < 12

event = event + 1;

if sol.ie(end) == 1

fprintf(’A wheel hit the ground. %10.4f %10.6f\n’,...

sol.x(end),ref(event));

state = - state;

opts = ddeset(opts,’InitialY’,[ 0; 0.913*sol.y(2,end)]);

sol = dde23(’exam8f’,0.1,sol,[sol.x(end) 12],opts,state);

else

fprintf(’The suitcase fell over. %10.4f %10.6f\n’,...

sol.x(end),ref(event));

break;

end

end

plot(sol.y(1,:),sol.y(2,:))

title(’Figure 8. Suitcase problem.’)

xlabel(’\theta(t)’)

ylabel(’\theta’’(t)’)

Note that ddeset can be used to change the value of an option or add an
option, just as with odeset. The program reproduces the phase plane plot
of Figure 3 in [21]. It also reports what kind of event occurred and the
location of the event. Reference values were computed with the FORTRAN
77 code DKLAG5 [13] used in [21] and verified with its successor DKLAG6
[4]. Having written the three solvers, we can fairly say that it is very much
easier to solve this problem in Matlab with dde23. The program results in
the output

Kind of Event: dde23 reference

A wheel hit the ground. 4.5168 4.516757

A wheel hit the ground. 9.7511 9.751053

30



The suitcase fell over. 11.6704 11.670393

The accuracy of the computed results is what we might expect for the spec-
ified error tolerances.
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Figure 8.  Suitcase problem.
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After running this program, sol.xe is

0.0000 4.5168 4.5168 9.7511 9.7511 11.6704

This does not seem to agree with the event locations reported by the program.
For instance, why is there an event at 0? That is because one of the event
functions is y1 and this component of the solution has initial value 0. As
explained in Example 4, dde23 locates this event, but does not terminate
the integration because the terminal event occurs at the initial point. The
first integration terminates at the first point after the initial point where
y1(t

∗) = 0, namely t∗ = 4.5168. The second appearance of 4.5168 in sol.xe

is the same event at the initial point of the second integration. The same
thing happens at 9.7511 and finally the event at 11.6704 tells us that the
suitcase fell over and we are finished.

5 Additional Problems

This section presents a few problems for practice. They are taken from the
literature and some are quite recent. A familiarity with the examples of
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the previous section is assumed. Some hints are given and some output is
provided both as a check and to show how the solutions behave. Complete
solutions are provided as additional templates. These problems and their
solutions show that interesting problems can be solved easily in Matlab
with dde23.

Problem 1

Hale [7] cites predator–prey models obtained by introducing a resource lim-
itation on the prey and assuming the birth rate of predators responds to
changes in the magnitude of the population y1 of prey and the population
y2 of predators only after a time delay τ . Starting with the system of ODEs
[15]

y′1(t) = a y1(t) + b y1(t) y2(t)

y′2(t) = c y2(t) + d y1(t) y2(t)

we arrive in this way at a system of DDEs

y′1(t) = a y1(t)

(
1 − y1(t)

m

)
+ b y1(t) y2(t)

y′2(t) = c y2(t) + d y1(t− τ ) y2(t− τ )

It is interesting to explore the effect of the delay, so let us solve both systems
on [0, 100] with initial value y1(0) = 80, y2(0) = 30 for the ODEs and the
same vector as constant history for the DDEs. Suppose that the parameters
a = 0.25, b = −0.01, c = −1.00, d = 0.01, and m = 200.

Recall that you solve ODEs with dde23 by setting lags to []. When
this is done, the argument Z that dde23 supplies to the functions it calls is
the empty array. You can use this to code the evaluation of both sets of
equations in the same function by testing isempty(Z) to find out which set
to evaluate. A more straightforward approach is to use two functions for the
two sets of equations. Solve the DDE with τ = 1. Plot in one figure y2(t)
against y1(t) for the two solutions. This phase plane plot of the solution of
the ODEs should be a closed curve corresponding to a limit cycle. To achieve
this you will need to tighten the error tolerances with a command like

opts = ddeset(’RelTol’,1e-5,’AbsTol’,1e-8);
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The figure makes the point that introducing a delay into an ODE model can
have a profound effect on the solution. If you experiment with τ , you will
find this to be true even for small delays. It is also interesting to remove the
resource term 1 − y1(t)/m and see how the orbits change as τ is changed.
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Problem 2

This problem considers a cardiovascular model due to Ottesen [16] involving
the arterial pressure, Pa(t) = y1(t), the venous pressure, Pv(t) = y2(t), and
the heart rate, H(t) = y3(t). Ottesen studies conditions under which the
delay causes qualitative differences in the solution and in particular, oscil-
lations in Pa(t). Delays τ = 1.0, 1.4, 3.9, 5.0, 7.5, 10 are considered in [16].
There are a number of parameters in the model, so you might wish simply
to declare them as global values rather than pass them through dde23 to
the function for evaluating the equations, or even to hard code them. Plot
y1(t) = Pa(t) for several values of τ . You should find that the solutions
obtained for different values of τ differ dramatically. Solve on [0, 350] the
equations

y′1(t) = − 1

caR
y1(t) +

1

caR
y2(t) +

1

ca
Vstr y3(t)
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y′2(t) =
1

cvR
y1(t) −

(
1

cvR
+

1

cvr

)
y2(t)

y′3(t) = f(Ts, Tp)

where

Ts =
1

1 + (y1(t− τ )/αs)
βs

Tp =
1

1 + (αp/y1(t))
βp

f(Ts, Tp) =
αHTs

1 + γHTp

− βHTp.

For t ≤ 0, the solution has the constant value

y1(t) = P0

y2(t) =

(
1

1 + R/r

)
P0

y3(t) =
(

1

RVstr

) (
1

1 + r/R

)
P0

As in [16], use ca = 1.55, cv = 519, R = 1.05, r = 0.068, Vstr = 67.9, α0 =
αs = αp = 93, αH = 0.84, β0 = βs = βp = 7, βH = 1.17, γH = 0, P0 = 93. The
following figures for τ = 1 and τ = 7.5 show qualitatively different solutions.
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Problem 2. Baroflex Feedback Mechanism with τ = 7.5.
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One of the figures of [16] shows the solution components when the pe-
ripheral pressure R is reduced exponentially from its value of 1.05 to 0.84
beginning at t = 600. For this computation the delay was 4 and the interval
[0, 1000]. You can easily modify the previous program to solve this problem.
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All you have to do is inform the solver of the low-order discontinuity at a
known time by setting the value of the ’Jumps’ option to 600, modify the
function for evaluating the DDEs to include

if t <= 600

R = 1.05;

else

R = 0.21 * exp(600-t) + 0.84;

end

and use the specified delay and interval. All the solution components are
of interest. The figure shows the sharp change in the heart rate due to the
change in R at t = 600.
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Problem 2b. Baroflex Feedback Mechanism. τ = 4.

time t

H
(t

)

Problem 3

Plant’s Neuron Interaction Model [9] is given by the equations

y′1(t) = a y1(t) − y3
1(t)/3 + m (y1(t− τ ) − y1,0)

y′2(t) = r (y1(t) + a− b y2(t))
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When m = 0, these equations have a steady state solution (y1,0, y2,0), i.e., a
solution with y′1(t) = y′2(t) = 0. Solve the equations on [0, 100] with history
y1(t) = αy1,0, y2(t) = β y2,0 for t ≤ 0 and a = 0.8, b = 0.7, r = 0.08.

The parameters α and β determine how close the solution starts to the
steady state solution. Let us take α = 0.4 and β = 1.8. To determine the
steady state solution, we find from the equation y′2(t) = 0 that when m = 0,
y2,0 = (y1,0 + a)/b. Using this in the equation y′1(t) = 0 for m = 0, we find
that y1,0 satisfies the algebraic equation

−by3 + (3b + 1)y + 3a = 0.

After computing all the roots of this cubic equation with roots, y1,0 is the
unique real root bigger than 1 − rb. For the given a, b this results in y1,0 =
2.417960226013935. Using this value, compute y2,0 and solve the problem for
τ = 20 and various m, say m = 1,−1, 10,−10. The figures for two of these
values show what you might find.
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Problem 3. Plant’s Neuron Interaction Model with m = 10.
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Problem 3. Plant’s Neuron Interaction Model with m = −10.

time t

Problem 4

An epidemic model due to Cooke [8] describes the fraction y(t) of a popula-
tion which is infected at time t by the equation

y′(t) = b y(t− 7) (1 − y(t)) − c y(t)

Here b and c are positive constants. The equation is solved on [0, 100] with
history y(t) = α for t ≤ 0. The constant α satisfies 0 < α < 1.

For all values of b and c, the solution y(t) = 0 is an equilibrium point. For
b > c, the solution y(t) = 1 − c/b is a second equilibrium point. Solve this
DDE for different values of b, c, and α. Verify that if b > c, the solution ap-
proaches the second equilibrium point, and otherwise it approaches the zero
equilibrium point. The long–term behavior of the solution is independent of
the delay; you might want to verify this computationally. The figure shows
the approach of the solution to the second equilibrium point when b = 2,
c = 1, and α = 0.8.
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Problem 4. Cooke Epidemic Model with b = 2 , c = 1.

time t
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Problem 5

Another epidemic model due to Cooke et alia [3] that is more complicated
than Problem 4 involves the size I(t) = y1(t) of an infected population and
the total size N(t) = y2(t) of the population at time t. The equations are

y′1(t) = λ (y2(t) − y1(t))
y1(t)

y2(t)
− (d + ε + γ) y1(t)

y′2(t) = b e−ay2(t−T ) y2(t− T ) e−d1T − dy2(t) − εy1(t)

They are solved on [0, 25] with history y1(t) = 2, y2(t) = 3.5 for t ≤ 0 and
parameter values a = 1, b = 80, d = 1, d1 = 1, γ = 0.5, ε = 10, T = 0.2.

As in Problem 2, it is convenient to pass the parameters to the function
for evaluating the DDEs as global variables or to hard code them. In [3] the
solution is investigated for a number of λ, so pass it as a parameter through
dde23. Values λ = 12, 15, 20, 28 are of interest. You might find it interesting
to compare your plots to those of Figure 4 in [3]. The following figure shows
the case λ = 12.
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Problem 6

A population growth model due to Cooke et alia [3] describes the population
y(t) at time t by the equation

y′(t) = b e−ay(t−T ) y(t− T ) e−d1T − dy(t)

Solve the equation on [0, 25] with history y(t) = 3.5 for t ≤ 0 for one or more
of the data sets

1. a = 1, d = 1, d1 = 1, b = 20

2. a = 1, d = 1, d1 = 1, b = 80

3. a = 1, d = 1, d1 = 0, b = 20

4. a = 1, d = 1, d1 = 0, b = 80

For each set of parameter values, solve the problem using three values of the
delay, namely T = 0.2, 1.0, 2.4, and plot the solutions on the same figure.
Structures can be indexed, so this can be coded as
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for i = 1:3

T = Delays(i);

sol(i) = dde23(’prob6f’,T,3.5,[0, 25],opts);

end

On exit from the loop, the solution for the first delay is sol(1).x,sol(1).y
and so forth. Note that T must be communicated to prob6f as a parameter
or global variable because it appears in the equation. In the code fragment it
is communicated as a global variable along with the parameters of the data
set. You should use tolerances more stringent than the defaults, e.g.,

opts = ddeset(’RelTol’,1e-5,’AbsTol’,1e-8);

You might find it interesting to compare your solutions with those of Figure
3 in [3]. The following figures show the solutions for two of the data sets.
Obviously the delay has a profound effect on the solution.
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Problem 6. Maturation Delay and Nonlinear Birth Problem. Data Set 2.
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