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Dynamics of a simplified HPT model in relation to
24h TSH profiles.

Abstract We propose a simplified mathematical model of the hypothalamus-pituitary-
thyroid (HPT) axis in an endocrine system. The considered model is a modification
of the model proposed by Mukhopadhyay and Bhattacharyya in [10]. Our system of
delay differential equations reconstructs the HPT axis in relation to 24h profiles of
human in physiological conditions. Homeostatic control of the thyroid-pituitary axis
is considered by using feedback and delay in our model. The influence of delayed
feedback on the stability behaviour of the system is discussed.
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1. Introduction The thyroid gland (thyroid) is located in the anterolat-
eral lower part of the neck. It is built of two lateral lobes connected by a narrow
isthmus and reminds of the shape of a butterfly. When the thyroid is overac-
tive or underactive, it does not hurt and usually does not show any symptoms
for a long time. However, the disorders in the work of this gland have an ef-
fect on the entire human body. The thyroid gland is responsible regulating
for different body functions (including body temperature, body weight, skin
integrity, heart rate, breathing, cholesterol levels, muscle strength, menstrual
cycle) and control of metabolism. Thyroid gland sectetes, inter alia, a thyrox-
ine hormone (T4). The thyroid gland is influenced by hormones produced by
two other organs: the pituitary gland and the hypothalamus. The pituitary
gland, located at the base of the brain, produces thyroid stimulating hormone
(TSH). The hypothalamus, a small part of the brain above the pituitary, pro-
duces thyrotropin releasing hormone (TRH). Low levels of thyroid hormones
in the blood are detected by the hypothalamus and the pituitary. TRH is
released, stimulating the pituitary to release TSH. Increased levels of TSH,
in turn, stimulate the thyroid to produce more thyroid hormone, thereby re-
turning the level of thyroid hormone in the blood back to normal. Endocrine
hormones have their controls at the biochemical level of cell, but moving in-
formation through the bloodstream are also in the subsequent physiological
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regulation of feedback loops. It can be easily seen that we have a homeostatic
mechanism in the endocrine system. The concept of a negative feedback loop
between the thyroid and pituitary glands was proposed as early as in 1940 and
established experimentally before 1950, [6]. Regulating work of the endocrine
system depends on dynamic inter-relationships between the level of thyroid
and pituitary hormones. There are molecular mechanisms involving multiple
feedback loops on several levels of organization, different time scales, and
varying conditions of their optimum operation. The simplified form of this
mechanism is presented in Fig. 1.
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Figure 1: The simplified homeostasis mechanism of thyroidal influences in the ab-
sence of thyroid inhibitors, in which arrows indicate the coupling between individual
hormones, also negative feedback loops. The output of the thyroid gland is the thy-
roid hormones (T3 and T4), in which, the free thyroid hormones (FT4 and FT3)
are usually sensed by the pituitary gland and/or the hypothalamus to regulate the
input of the thyroid gland, TSH.

The above description shows the complexity of the regulation mechanism
of the HPT axis, making the interaction between TSH, T4 and F'T3 situational
and mathematically more complex. We consider the simplified homeostasis
mechanism. When there is a high level of thyroxine in blood, it act inhibiting
on the pituitary gland and reduces the production of thyrotropin. This reduces
the secretion of thyroxine by the thyroid gland and after some time its level
in the blood decreases. This is a signal to the pituitary gland to resume
production of the tropic hormone and either the cycle repeats, or establishes
an equilibrium between thyrotropin and thyroxine hormones. By analogy, a
feedback mechanism acts on the hypothalamus, [4, 5, 7]. Irregularity in the
synthesis or release of hormones on any of the levels (hypothalamic, pituitary
or peripheral) causes a disturbance in hormonal homeostasis and thus the
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whole body. The homeostatic mechanism in our system is presented in Fig. 2.

thyroid gland
(T4)

Figure 2: TSH-T4 feedback loop.

In early sixties, it became obvious that hormones such as cortisol, LH and
TSH are secreted episodically and with a diurnal variation, each with their
specific secretion pattern under physiological conditions. In healthy adults,
TSH level remains low during the day and begins to increase before the night.
Maximal TSH level is observed soon before sleep, and is independent of the
cortisol rhythm and fluctuations in thyroid hormone levels [12]. After the one-
set of sleep, TSH levels decrease, which is prevented by keeping the person
awake. TSH secretion is partially pulsatile. How TSH pulses are generated
is not completely understood. The HPT axis maintains circulating levels of
thyroid stimulating hormone and the thyroid hormone in an inverse relation-
ship [9, 12].

2. Mathematical model. For years the Danziger and Elmergreen model
has been the most popular model of the thyroid-pituitary homeostatic mecha-
nism [3]. In paper [3], properties of the solutions of the mathematical model for
the study of periodic catatonic schizophrenia are studied. In [10], the modified
Danziger-Elmergreen model was considered. It is worth noting that the au-
thor introduces a discrete delay in feedback, which corresponds to delay which
reflects time lags required for transportation of the hormones. The stability
of behavior of the system is analyzed and numerical study to illustrate the
analytical results is presented. In [11] authors considered the hypothalamus-
pituitary as a single unit. The variables TSH, F'T4, anti-thyroid peroxidase
antibodies (TPOAD) and the functional (active) size of the thyroid gland
are considered in the proposed system. The ordinary differential equations
are used to reconstruct dynamics of thyroid hormones and the size of thy-
roid glands during an autoimmune (Hashimoto’s) thyroiditis. Author takes
into account the coupling of the system but without delay. Particularly, it is
important to introduce time delay into this feedback.

In our paper we focus on the model proposed in [10]|, where authors as-
sumed that the rate of thyrotropin production and the rate of loss of thy-
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rotropin depends on regulation which was described above as the mechanism
of the homeostasis. The model is extended to a degenerate form for the thy-
rotropin production when the level of thyroxine hormone is to high and the
thyrotropine hormone cannot be produced. Authors assumed that the acti-
vated enzyme is activated by thyrotropin and then a thyroxine hormone is
produced. The described model reads, [10]:

: c—gP(s)—hO(s—m) if <¢
Pls) = { ’ —gP(s) 1 if 6> g
E(s) = mP(s — 13) — kE(s), (1)

0(s) = aE(s) — bd(s),

where P, F, 0 represent the concentration of thyrotropin, an activated enzyme
and thyroxine respectively, b, g, k represent the constant loss of thyroxine,
thyrotropin and the activated enzyme, a, h, m are positive constants express-
ing the sensitivities of the glands to simulation or inhibition, c is the rate
of production of thyrotropin in the absence of thyroid inhibition, 71 and 7o
represent the discrete time delays required for transportation of the hormones
thyroxine and thyrotropin respectively.

We simplify this model to two equations (for P (in [mU/I]) and 6 (in
[pmol/1])) for the dynamics of two variables (thyrotropin, thyroxine hor-
mones) because the available literature data with diurnal variation in hormone
levels are available for thyrotropin and thyroxine, whereas the activating en-
zyme is unknown. Hence, we eliminate the equation for this variable.

We estimate the values of parameters in the model based on literature
data (see [9, 12]). The results are given in Fig. 3.

Instead of the activated enzyme we add in the second equation additional
delay. We also introduce to this system feedback and time lags. Feedback
loop in our model includes the effect of the target organ feedback, on the
lower intermediate floor secretory-anterior lobe of the pituitary gland, which
is presented in Fig. 2.

2.1. Construction of model Our system can be given as:

C

P(s) = ¢— hmin {9(5 —7p), —} — gP(s),

. h (2)
0(s) = aP(s — 1p) — bl(s),

where P is a concentration of thyrotropin and 6 — thyroxine and b, g rep-
resent the loss constants of thyroxine and thyrotropin respectively, a, h are
positive constants expressing the sensitivities of the glands to the simulation
or inhibition, ¢ is the rate of production of thyrotropin in the absence of
thyroid inhibition, 7p and 7y represent the discrete time delays required for
transportation of the hormones thyroxine and thyrotropin respectively. We
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Figure 3: Estimation of parameters based on literature data, [9, 12]. Values
of estimation parameters: ¢ = 3.2407mTU b7 A= 03779 8L . pl g =
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is a unique steady state. First, we reduce the number of parameters by scaling
the functions and time in our equations:

c_b c

P: = — f— — —
ahx’ 0 Y t=bs, T =brp, To=>bry

and introducing new constants:

Then our system (2) can be put in the dimensionless form
©(t) = a(l — min {y(¢t — 71),1}) — Bx(?),
y(t) = z(t — m2) —y(t),

where the dot represents the derivative with respect to the dimensionless time
t. Moreover, we impose the initial condition

(3)

CU(t) = ¥p, y(t) = 0, for te€ [_TMa O]a (4)

where the functions pp and @y are non-negative and continuous on the inter-
val [—7ar, 0], Tar = max{7, 72}
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2.2. Basic properties of model We consider the dimensionless model
(3). Due to the fact that the right-hand side of (3) is locally Lipschitz contin-
uous with respect to the variables (z,y), we conclude that the solution to (3)
exists locally and is unique. Moreover, the form of system (3) guarantees the
non-negativity of the solution.

From the above observations we obtain the following result.

THEOREM 2.1 (LOCAL EXISTENCE, UNIQUENESS AND NON-NEGATIVITY) If
the initial functions defined by (4) are non-negative then there exists a unique
and non-negative solution to (3)—(4) defined for all forward time.

Let C(I,R) denote the set of continuous functions defined on the interval I
with values in R.

THEOREM 2.2 (INVARIANT SET) The set

Q= {(m,y) € C([-mm,0],R) : 0 < z(t) < <ylt)y <=, te€ [—TM,O]}

™| L

o
5"
is invariant under the evolution of system (3).

PROOF Since y(t) > 0 for all ¢ > —79, the first equation of system (3) yields

z(t) + Px(t) < a.

o o
z(t) < =+ (acg-——)e_ﬂt,
0 <3 5
where zg = ¢p(0). Finally, we get

o5

for ¢ > 0. By a similar argument, we obtain

y(t)gma‘x g71‘0)y0 )
5

Thus,

where yo = ©p(0), which completes the proof. H

REMARK 2.1 From the existence of the invariant set {2 we can deduce the
global existence of the solutions to system (3).

3. Asymptotic behaviour of system We start with calculating of the
steady state of system (3):

o o«
a+ B’ y—a—l—,B'

Now we formulate and prove the main result.

T =
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THEOREM 3.1 (i) If @ < B then the steady state (Z,y) of system (3) is
locally asymptotically stable for 71, 9 > 0.

(i) If f < «, then exists a critical value 7 such that the steady state
(Z,7) of system (3) is stable for all 74 + 79 < 7, and unstable for all
T + T > Ter, Where

Ter = 1 arctan (1—42_5——29)—0— (5)
wo wi — B

and

Y TR ©

Moreover, for 7 + T2 = T periodic solutions arise with period close to
27 Jwo.

PRrROOF First, we observe that the characteristic function has the following
form

—B— X —ae
W(A) = det I: e__)\,rz _1 - A .
Then, the characteristic equation reads
N+ (L4 BA+B+ae™ =0, (7)

where 7 = 71 +7y. It is easily seen that for 7 = 0 all roots of the above equation
have a negative real part, so the steady state is asymptotically stable. It is
worth pointing out that the switches of stability occur when a pair of complex
conjugate roots crosses the imaginary axis. For this purpose, we write quasi-
polynomial W () in the following form

W(X) = P(\) + Qe ™,

where P(\) = A2 + (1 + B)X + B and Q(\) = a. Now we try to find purely
imaginary characteristic roots, i.e. we solve the equation W (iw) = 0. To do
this, we define the auxiliary function

F(w) = |P(iw)|? — |Q(iw)|* = w* + w?(1 + ) + % — o”.

If B > « then F(w) > 0 for all w € R. In consequence the steady state is
stable for 7 > 0, which completes the proof of (i). If § < « then, there exists
a unique simple positive root of the polynomial F(w) given by the formula

_ \/—(1 +2) + /(1 — 2)? + 402
wp = 9 .
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It is easy to check that F”(wg) > 0. Hence, there exists 7¢, such that system (3)
is stable for 7 = 71 + 73 < 74 and unstable for 7 = 71 + 79 > 7, (compare [1,
2, 8]). Moreover, substituting A = dwp in (7) and separating the real and
imaginary parts, we get

1 2 _
sin(woTer) = A+ B)wo +aﬂ )« and  cos(woTer) = woa p

(8)

and in consequence the critical value of time delay is given by (5). The proof
is completed. B

REMARK 3.1 Due to the fact that the function F(w) has exactly one positive
zero we conclude that no more stability switches are possible. The stability of
the steady state depends on the sum of delays. Moreover, there are oscillations
of constant amplitude for ™ + 70 = 7,

Now, we present the graphs of solutions to the non-rescaled system (2)
for different values of time delays and the rest of parameters as given in the
caption of Fig. 3. For these parameters we calculate the critical value of time
delay, i.e. 7o, = 0.1457. In Fig. 4 we show the behaviour of solutions to (2) in
the case without delay.

17~ —
[aNNT _
161~ 1
14~
13k -1
1 | 1 ] 1

Figure 4: Trajectories of solutions to (2) for reference parameters — case with-
out delay:.

In the next figures (Fig. 5 and Fig. 6), we present the behaviour of solutions
to (2) for 8 < a. In this case we observe that the steady state of our system (2)
is stable for all 7 + o < 7, see Fig. 5.

For m = 19 = 5, i.e. in the case when 71 + 7 > 7, according to The-
orem 3.1 the steady state is unstable and moreover there exists periodic so-
lutions. In Fig. 6 we present projections of trajectories of the solution to (2)
in the plane (P, §) and we observe the undumping oscillations confirming our
analytical results.
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Figure 5: The level of hormones in time [h] (left side). Solutions to (2) in the
plane (P, 0) for the case with delays (right side): 7 = 0.01, 7 = 0.1 and for
reference parameters. In this case 71 + 1o < T, S0 the steady state is stable.
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Figure 6: The level of hormones in time [h] (left side). Solutions to (2) in the
plane (P, 6) for the case with delays (right side): 71 = 72 = 5 and for reference
parameters. In this case 74 + 75 > T¢, s0 the steady state is unstable.

4. Summary. The aim of this work is to propose a mathematical model
describing the secretion system HPT using DDEs with a feedback loop. Ac-
cording to the control theory the feedback loops in the endocrine system try to
regulate the value of concentration of the thyroxine hormone. The considered
model is a modification of the model proposed by Mukhopadhyay and Bhat-
tacharyya in [10]. We simplified this model to two equations (for P and 6),
because we have medical data for the dynamics of two variables (thyrotropin,
thyroxine hormones) in the circadian cycle. It is very difficult to obtain data
for the activated enzyme, hence we eliminate the equation for this variable.
In this work usage of the proposed model allowed to show that we have non-
negative solutions of our system what is not prevented in [10]. The quality of
a mathematical model depends on how well the model developed on the the-
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oretical side and if it agrees with results of repeatable experiments. The lack
of agreement between the theoretical mathematical model and experimental
measurements often leads to mistakes such as even negative solutions. The
analysed system keeps local stability which is very important for mathemat-
ical models used for a description of medical phenomena.
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Dynamika modelu HPT w relacji z 24h zapisem TSH.
Agnieszka Barttomiejczyk i Beata Jackowska-Zduniak

Streszczenie W pracy zapropnowano uproszczony model matematyczny osi pod-
wazgorze-przysadka-tarczyca (HPT). Rozwazany model jest modyfikacjg modelu za-
proponowanego przez Mukhopadhyay i Bhattacharyya w [10]. Nasz uklad réwnani
rézniczkowych z op6znieniem modeluje 0§ HPT w odniesieniu do profili 24h u ludzi
w warunkach fizjologicznych. Kontrole homeostazy osi tarczyca-przysadka uwzgled-
nia sie za pomocy sprzezenia zwrotnego z opdznieniem, ktére jest zadane w naszym
modelu. W pracy oméwiono réwniez wplyw sprzezenia zwrotnego z op6Znieniem na
zachowanie stabilnosci ukladu.

Klasyfikacja tematyczna AMS (2010): 58F15, 58F17; 53C35.

Stowa kluczowe: réwnania rézniczkowe z opdznieniem, stabilnoéé, model HPT.
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