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There is proposed a generalized mathematical model of endocrine
systems, consisting of a set of differential equations which desoribe a
chain of chemical reactions. The product of each reaction stimulates or
inhibits some other reaction in the chain except possibly the last, which
may or may not influence the system. At least one reaction must be in-
dependent and able to proceed without stimulation or imhibition by the
products of other reactions.

If only two reactions of the type assumed constitute a closed chain,
sustained periodic variations in the concentrations of the reaction prod-
uots cannot occwr. If the chain cdnsists of three or more reactions form-
ing a closed loop, sustained oscillations, such as are observed in the
menstrual cycle or in the mental disorder called periodic catatonia, can
ocour under suitable conditions. In this case, the concentrations of the
system components exhibit relaxation oscillations characterized by
periodioc degeneration of the system when an independent reaction be-
comes completely inhibited by other reaction products. A set of con-
ditions sufficient to produce periodicities in component concentrations
ia presented.

Application of the model to the normally periodic system of the men-
strual oyole and to the abnormal endocrine system which causes periodio
catatonia is discussed.

The endocrine system is often considered to be a mechanism
which maintains the concentrations of certain materials within
narrow limits. Under certain conditions, the limits are so narrow
that the concentrations are practically constant; under other condi-
tions, which may be normal, periodic variations of the concentra-
tions are known to occur.

The maintenance of the concentrations within limits is achieved
by action of system components (hormones and activated enzymes)
each of which stimulates or inhibits the production of other com-
ponents. If these reactions constitute a feed-back mechanism, they

are arranged in a closed chain, -in which each component stimu-
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lates or inhibits the production of the next component, and pos-
sibly others in the chain. While at least one component must be
produced independently of stimulation by another component, in-
hibition of production of this independent component by another is
required if the loop is to be closed.

In such systems, a qualitative description is inadequate to pre-
dict performance, and quantitative representation of internal rela-
tions must be used in an analysis of the kinetics of the system.
Quantitative descriptions of endocrine systems in the form of
mathematical models have been proposed previously, The men-
strual mechanism, a normally periodic system, has been investi-
gated mathematically by Rapoport (1952); the thyroid-pituitary
system, which may exhibit periodicities when not functioning
properly, has been treated mathematically by Danziger and Elmer-
green (1954, 1956). In the present paper, there is proposed a
generalized mathematical model and there is formulated a set of
conditions sufficient to yield periodicities in the component
concentrations,

Consider a system of n components whose concentrations in the
body are functions of time and are denoted by #{, @5,..., z,. The
Kinetics of the system may be described approximately by the set
of first-order differential equations

dmi/dt+>\¢a:,-= Qi, (7"‘ 1,2, 3,...,%) (1)

wherein A, is the loss rate per unit concentration of the component
a;, and @, is the production (activation) rate of the hormone (enzyme)
z;. The production (activation) rate is, in the first approximation,
a linear function of the system components and may be represented
by

Qi=A,+ Z Ay, (2)

j=1

wherein 4;, is zero or a positive constant denoting independent
production (activation) of @;; the Aij are sensitivity constants and
may be zero for no effect, positive for production stimulation (acti-
vation), or negative for production inhibition (deactivation). The
constant 4;; is considered to be zero in all cases as auto-stimulation
or inhibition is not likely.

The function @, as given by (2) may take on negative values for

some positive sets of values of the ;. If ; is a hormone, a nega-
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tive production rate is not possible and the restriction ¢, > 0 must
be imposed; from (1) this also limits @, to non-negative values. If
@; is an enzyme, a negative Q, represents deactivation and is
permissible; in this case the restriction is simply 2, > 0 as nega-
tive concentrations of activated enzymes are not physically possible,

With these restrictions, the mathematical model may be formulated

completely as

n
de/dt + Ay = Ay + Z Ayjz; = Q;
J=1
2,20, €@;>0ifg is a hormone (3)
?:=1, 2, 3,“.,7),.

Rapoport (loc. cit.) includes, in his model, the possibility of
negative production rates of system hormones by assuming that one
hormone can enhance the dissipation or breakdown of another hor-
mone in the blood stream. This assumption leads to linear equa-
tions but, -as Rapoport points out, is not in accord with observa-
tion. The model (38) represents inhibition action wherein com-
ponents act inhibitively on the cells which produce hormones; this
assumption precludes hormone production at negative rates. Ac-
cordingly, the model presented here will be characterized by the
degeneration of one or more hormone equations when the associ-
ated @; are driven to zero. Degeneration of one equation, in ef-
fect, isolates the mechanism which produces the hormone from the
influence of the rest of the system. In the interval during which
(2) yields a negative value, the degenerate equation is a first-
order, homogeneous, linear differential equation whose solution is
an exponential decay of @, with a decrement A;.

The degeneration of the mathematical model produces a system
which is not linear in the unrestricted sense. Instead it is piece-
wise linear comprising a set of linear eruations which may pos-
sibly be unstable in the normal state and a different and stable set
of linear equations in the degenerate state.

The concept of a *‘push-pull’’ endocrine system has been applied
to the mechanism of the pituitary and thyroid glands in the regula-
tion of the metabolic rate and to the pituitary and ovary in the con-
trol of the menstrual cycle. The term ‘‘push-pull’’ indicates stimu-
lation or push by the first gland in the closed loop of production by
the second, and inhibition or pull by the second gland of produc-
tion by the first. Clearly, the ‘‘push-pull’”’ system exhibits the
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phenomenon of feedback. The simplest ‘‘push-pull” system can
be represented in the form (3) by the following second-order set in
which the a;; are positive constants:

dall/dt+)\x{l?1=(110"012a32=Q1) Q12-O
dmg/dt'i' )\2(122 = a’21m1 .

(4)

The set (4) reflects the following assumptions:

(1) only 2, is produced independently.

(2) 2, is a hormone and cannot be produced at a negative rate.
The system is degenerate for @y > ay4/ayy.

(8) @, stimulates the production of the hormone z,.

(4) @, inhibits the production of z.

(5) the components dissipate in proportion to their respective
concentrations,.

As the system (4) exhibits a degeneration point at 2, = a,5/a,,,
different solutions exist for the normal system with 24 <a,,/a1,
and for the degenerate system with 2, > @yy/a;,. These two solu-
tions can be obtained by standard methods and pieced together at
the degeneration point, @, = ajo/@1,. Fach solution has the form

2
2= b, + Z c;j exp (r;t), (i=1,2) (5)

j=1

where the b, are the steady states, the c¢;; are integration con-
stants, and the 7, are the roots of the characteristic equation
[multiple roots being excepted if the form (5) applies].

The possibility of sustained oscillations of the component con-
centrations in a “push-pull” system can be investigated by ex-
amining solutions of typical systems., The second-order system (4)
for the normal condition, @, < a;y/ay,, has steady states which are

by = amkz/()\lz\2 + Gyolgy) s

(6)
by = 19091/ (A1Ag + G1a4y),
while the r; are the roots of the characteristic equation
D+ A ,
( 1) G1g -0 o
=g, (D +Ayp)

For the degenerate condition, z, > a,y/a,,, the system differs only
in that @, = 0, Equivalently, set a4 = a4, = 0 in (6) and (7) yield-
ing, respectively, b, =b; =0 and r = ~A{, r, = ~A,. In the
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normal state, the roots of (7) have negative real parts for all posi-
tive values of the coefficients, and solutions for @, < a,5/a;, must
either be aperiodic or be a damped periodic variation about the
steady states of (6). The steady-state concentration, b,, from (6)
is less than the value of z, at which degeneration occurs; the
steady states for the normal condition are, therefore, stable equi-
librium points. The degenerate state, 2, > ay,/a;y, would obtain
only during an initial transient and then only if an initial condition
2o(t = 0) > a,9/a15 exists. The degenerate state, characterized by
zero steady states and negative, real 7;, would exist only until a,
fell below the degeneration point after which the normal state
would exist for all time. Clearly, the second-order system (4)
could not exhibit sustained oscillations of the component
concentrations.

If, in the system (4), the normal state had been unstable so that
the component concentrations would tend to increase without limit,
the system would degenerate regardless of initial conditions. Re-
laxation oscillations would then exist as the system would alter-
nate between the unstable normal state and the stable degenerate
state. Although this is not possible in the system (4), a physically
realizable set of conditions which would produce sustained oscilla-
tions in a similar manner is proposed for ‘‘push-pull” systems of
order greater than two. These conditions are:

I. at least one of the #; for the normal system has a positive
real part;

I all the #; for the degenerate system have negative real parts;

111, the steady-state concentrations for the degenerate system
are less than the concentrations at which degeneration occurs.
If these conditions obtain in a ‘‘push-pull” system, relaxation
oscillations will occur with the following sequence:

(A) with the system in the normal state, the roots, r;, which
have positive real parts would cause the system to be unstable,
and all concentrations would ultimately rise. This unstable state
would persist until the system degenerates.

(B) when degeneration occurs, the system enters a stable mode
of variation for which all the ; have negative real parts and would
tend toward steady states which are lower than the concentrations
at which degeneration occurs. The concentrations in this stable
mode would ultimately fall until the unstable normal state would

again apply.
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The processes A and B would repeat cyclically, and the system
would be governed alternately by the unstable and stable solutions
of the normal and degenerate state equations. The resulting os-
cillations would be established for any set of initial conditions.

As was shown, the second-order system (4) cannot meet condi-
tion I; further no second-order system of the form (3) can meet the
requirement of an unstable normal state as the r; must have nega-
tive real parts if the loss constants, A,, are positive,

We will examine next the simplest third-order ‘‘push-pull’’ system
which has the form

dwi/dt+/\1w1 a10~013w3=Q1, QIZO
dwg/dt + Aoy = G912y, (8)

dma/dt + )\3%3 = (30lg .

]

If the a;; are positive constants, the set (8) reflects the following
assumptions:
(1) only @, is produced independently.
(2) 2, is a hormone and cannot be produced at a negative rate.
The system is degenerate for 2z, > a5/ay;.
(3) 2, stimulates the production of 2, .
(4) z, stimulates the production of #, .
(5) 2, inhibits the production of z,.
(6) the components dissipate in proportion to their respective
concentrations.
For the set (8), the normal system, with @3 < a,y/a;4, has the
characteristic equation:

(D +Ay) 0 (3T
—ay (D) 0 | =0. 9)
0 —0,32 (D + }\3)

The first of the proposed conditions for sustained oscillations re-
auires that (9) have at least one root with a positive real part. If
(9) is expanded as

AoD® + A, D? + A,D + 45 =0, (10)
the stability criterion of Routh, see Evans (1954), applies and

shows that condition I is satisfied if the physically realizable
inequality

Agds > A4, (11)
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obtains. The second and third conditions apply to the degenerate
state which differs from the normal state only in that @, =0,
Equivalently, set a5 = a;, =0 in (8) and (9) yielding 7, = —A |
79 = =Xy, 73 = ~Az. As the 7, for the degenerate state are all
negative and real, condition II is satisfied for all positive values
of the loss constants. Condition III is also satisfied for all posi-
tive values of the coefficients as with ¢, =0, z, decays expo-
nentially toward a zero steady state, and z, and @, follow. If the
inecuality (11) is satisfied, the system (8) will meet all three of
the proposed conditions and relaxation oscillations will occur.

Illustratively, consider the hypothetical but possible third-order
system:

dz,/dt+ 2y =1-923=¢, €120
dzy/dt + 0.5y = 2, (12)
deg/dt + 1.bag = Ta, .

If the determinant (9) is expanded with the coefficients of (12),
the characteristic equation

D3 4+ 3D? + 2.75D 4+ 63,75 = 0 (13)

is obtained. Applying the inequality (11) to the coefficients of
(13) yields 63.75 > 8,25, and condition I is satisfied by the system
(12). The existence of a root with a positive real part may be
verified by factoring (13) as

(D +5)[(D - 1)% + 11.75) = 0. (14)

The r; from (14) are ~5 and (1% 13.43), and the 2, solution for the
normal state may be written in the form of (5) as

2y = 0.1098 + cgqe 4 €t [0gy 3888 4 gy TIBA] L (15)

where 253 < 1/9.
For the degenerate state we have

+ 0’335‘1'5‘ z, > 1/9. (16)

H

@y = 4yt O
The solutions (15) and (16) would apply alternately. With @3 < 1/9,
the pair of complex roots of (14) yield a periodic term with expo-
nentially increasing amplitude and 3, from (15), would ultimately
reach the concentration of 1/9 unit. At this point, daz/d¢ is posi-
tive and g, would continue to rise to a maximum value which is
greater than 1/9. During the time that z; > 1/9, (18) applies and
z; would ultimately fall toward the zero steady state until the
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transition point, z; = 1/9, is reached. At this point, da,/d¢ is
negative and z, would continue to fall to a minimum value which
is less than 1/9. During the time that z, < 1/9, (15) again applies
and the cycle repeats. A particular solution for the sustained
oscillation would require that the integration constants in (15) and
(16) be evaluated at the transition point, z, = 1/9.

The third-order system (8) has been employed by Danziger and
Elmergreen (loc.cit.) to describe the thyroid-pituitary system
wherein «,is the concentration of pituitary hormone, thyrotropin; 2,
is the concentration of an activated enzyme within the thyroid
gland; and 23 is the concentration of thyroid hormone. The peri-
odic variation of metabolic rate observed in periodic catatonia, a
mental disorder, was explained by the relaxation oscillation theory
presented here. Verification of the form of the solution was ob-
tained using analog computer methods wherein adjustment of
system parameters to obtain periodicities was possible; the re-
quirement imposed by condition I and the inequality (II) was
confirmed.

Rapoport (loc. cit.) gives two models for the pituitary-ovary sys-
tem which controls the menstrual cycle. If negative hormone pro-
duction rates are not permitted, the following fourth-order set will
include both of these models:

dw /Al + M@y = Q1o ~ G1ay ~ G14@y = 1, @20
azy/dt + Aywy = ag @, , (11
dg/dt + Ayt = Gy,

da:.;/dt + A4$4 = (1435133 .

If the a,; are positive constants, the set (17) reflects the following
assumptions:
(1) only @; (the pituitary hormone, prolan A) is produced
independently.
(2) @, cannot be produced at a negative rate. The system is
degenerate for a2, + 04,24 > @0,
(8) =, stimulates the production of @, (the estrogenic hormone
of the ovary).
(4) @, stimulates the production of z; (the pituitary hormone,
prolan B).
(5) @5 stimulates the production of x, (the luteal hormone of
the ovary). -
(6) both 2, and @, inhibit the production of , .
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(7) the components dissipate in proportion to their respective
concentrations. -
For the set (17), the normal system, with a2y + @y 24 < @4y,
has the characteristic equation

(D + ) aqy 0 @14
~ Qg (D +Xy) 0 0 -0. (18)
0 ~Ggq (D + Ay) 0
0 0 ~ Q43 (D +2y)

If (18) is expanded as
AgD* + A\D* + A)D* + A,D + A, =0, (19)

Routh's criterion (loc.cit.) yields the physically realizable
inequality

ARZA, + A A% > A A A, . (20)

Condition I is satisfied in this fourth-order system if (20) obtains; -
conditions II and III are satisfied for any set of positive coefficient
values by the same arguments that applied to the set (8). In addi-

tion to being of higher order, the set (17) differs from (8) in that

degeneration occurs along the line a @, + @424 = a4y instead of
at a point.  This occurs because (17) represents a feed-back sys-

tem with two loops instead of one as in (8).  Application of Routh’s
criterion to (17) yields two conditions for instability for the normal

system: however, only the condition of (20) is physically realizable

with positive a;;.

We believe the system (17) is a good mathematical approxima-
tion for the control system of the menstrual cycle. Verification
would require the determination, by experiment, of the system co-
efficients, A solution of (17) with numerical coefficients would
then yield the time variation of component concentrations and the
period of oscillation,

General Remarks

The mathematical model (8) is an improvement on the model of
Rapoport (loc, ¢it.) in that it describes the steady-state behavior
of endocrine systems exhibiting periodicities in component con-
centrations. - The essential difference between this and earlier
models is the exclusion of negative hormone production rates and
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negative component concentrations. Degenerate equations result
producing a limiting action which ensures conditional stability so
that component concentrations are bounded even if the system is
unstable in the normal state. Although the model becomes non-
linear if the system degenerates, the equations vield to simple
analysis from which an existence criterion for periodicities is
established. If time solutions are required for periodic systems
for which numerical values of coefficients are known, analytical
methods will yield only approximations. The use of differential
analyzers, analog computers, or other machine methods of solution
would be desirable.

Work in progress suggests that the model (3) will also describe,
to a first approximation, the mechanism which regulates the blood
sugar concentration and the mechanism of the pituitary-adrenal
system.

The authors are much indebted to Drs. Anatol Rapoport and
Ernesto Trucco for valuable criticism of the manuscript.
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