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50.1 Introduction and Background

This chapter investigates variable structure control (VSC) as a high-speed switched feedback control
resulting in a sliding mode. For example, the gains in each feedback path switch between two values
according to a rule that depends on the value of the state at each time instant. The purpose of the
switching control law is to drive the plant’s state trajectory onto a prespecified (user-chosen) surface in
the state space and to maintain the plant’s state trajectory on this surface for all subsequent time. This
surface is called a switching surface and the resulting motion of the state trajectory a sliding mode. When
the plant state trajectory is “above” the surface, a feedback path has one gain and a different gain if the
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50-2 Control System Advanced Methods

trajectory drops “below” the surface. This surface defines the rule for proper switching. The surface is also
called a sliding surface (sliding manifold) because, ideally speaking, once intercepted, the switched control
maintains the plant’s state trajectory on the surface for all subsequent time and the plant’s state trajectory
then slides along this surface. The plant dynamics restricted to this surface represent the controlled
system’s behavior, The first critical phase of a VSC design is to properly construct a switching surface,
so that the plant, restricted to the surface, has desired dynamics, such as stability to the origin, tracking,
regulation, and so on.

In summary, a VSC control design generally breaks down into two phases. The first phase is to design
or choose a sliding manifold/switching surface, so that the plant state restricted to the surface has desired
dynamics. The second phase is to design a switched control that will drive the plant state to the switching
surface and maintain it on the surface upon interception. A Lyapunov approach is used in this chapter
to characterize this second design phase. Here, a generalized Lyapunov function, which characterizes the
motion of the state trajectory to the surface, is specified in terms of the surface. For each chosen switched
control structure, one chooses the “gains,” so that the derivative of this Lyapunov function is negative
definite with respect to the sliding surface, thus guaranteeing motion of the state trajectory to the surface,

As an introductory example, consider the first-order system x(¢) = u(x, t) with control

-1, if x>0,
u(x, t) = —sgn(x) = .
+1, if x<O0.
Hence, the system with control satisfies X = —sgn(x) with trajectories plotted in Figare 50.1a. Here

the control u(x, t) switches, changing its value between =1 around the surface o(x, t) = x = 0. Hence,
for any initial condition xg, a finite time #; exists for which x(t) = 0 for all £ > #;, Now, suppose x(t) =
u(x, t) -+ v(t), where again u(x, f) = —sgn(x) and v(t) is a bounded disturbance for which sup, |v(t)] < 1.
As before, the control u(x,t) switches its value between =1 around the surface o(x, t) = x = 0. It follows
that if x(¢) >0, then x(t) = —sgn[x(¢)] + v(t) < 0, forcing motion toward the line o(x, t) = x = 0, and if
x(t) < 0, then #(¢) = —sgn[x(¢)] + v(t) > 0, again forcing motion toward the line o(x, t) = x = 0. For a
positive initial condition, this is illustrated in Figure 50.1b. The rate of convergence to the line depends
on the disturbance. Nevertheless, a finite time #; exists for which x(¢) = 0 for all t > #;. If the disturbance

@

x>0
State trajectories

(b)

%3>0

State trajectory

4(v)

FIGURE 50.1 (a) State trajectories for the system x = —sgn(x); (b) State trajectory for the system x(f) =
—sgn[x(£)] + ().
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magnitude exceeds 1, then the gain can always be adjusted to compensate for the change. Hence, this VSC
law is robust in the face of bounded disturbances, illustrating the simplicity and advantage of the VSC
technique.

From the above example, one can see that VSC can provide a robust means of controlling (nonlinear)
plants with disturbances and parameter uncertainties. Further, the advances in computer technology
and high-speed switching circuitry have made the practical implementation of VSC quite feasible and of
increasing interest. Indeed, pulse-width modulation control and switched dc-to-dc power converters [1]
can be viewed in a VSC framework.

50.2 System Model, Control Structure, and Sliding Modes
50.2.1 System Model

The class of systems investigated herein has a state model nonlinear in the state vector x(-) and linear in
the control vector u(-) of the form

#(t) = F(x, t,u) = f (x, ) + B(x, hulx, 1), (50.1)

where x() € R", u(t) € R™, and B(x, t) € R"*™; further, each entry inf (x,) and B(x.t) is assumed contin-
wous with a bounded continuous derivative with respect to x. In the linear time-invariant case, Equation

50.1 becomes
x=Ax-+ Bu (50.2)

with A # X n and B n X m being constant matrices.

As mentioned in the previous section, the first phase of VSC or sliding mode control (SMC) design
is to choose a manifold S C R, so that the control goal is reached once the state is maintained on S. As
such we formally define the (n — m)-dimensional switching surface (also called a discontinuity, sliding
manifold, or equilibrium manifold), as (the possibly time-varying)

S={x e R"o(x,1) =0} = | {x € R"loi(x, 1) =0}, (50.3)

i=1

where
o0, £) = [0106, 1), . . om(x, 1)) = 0. (50.4)

(We will often refer to S as o(x,t) =0.) When there is no t-dependence, this (n — m)-dimensional
manifold S C R” is determined as the intersection of m (n — 1)-dimensional surfaces oi(x,t) = 0. These
surfaces are designed in such a way that the system state trajectory, resiricted to o(x,t) =0, has a desired
behavior such as stability or tracking. Although general nonlinear time-varying surfaces as in Equation
50.3 are possible, linear ones are more prevalent in design [2-6]. Linear surface design is presented in
Section 50.4.

50.2.2 Control Structure

After proper design of the surface, a controller ulx, 1) = [u1(x, 1), . . . (% 01T is constructed, which
generally has a switched form

-+ ,
1) = {ui (x,t), wheno;(x,t) >0, (50.5)

u; (x,t), when oi(x,1) < 0.

Equation 50.5 indicates that the control changes its value depending on the sign of o(x,#). Here
we can define that a discontinuity set, D, in the right-hand side is a union of the hypersurfaces
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defined by o (x, t) = 0:

D ={_J{x € R"|oi(x,1) = 0}.

i=1

Thus, the (possibly ¢-dependent) hypersurfaces {x € R"|o;(x, ) = 0} can be called switching surfaces
and the functions o;(x, t) switching functions. The goal of phase 2 is to stabilize the state to S. Off §,
the control values uli are chosen so that the state trajectory converges to S in finite time, that is, the
sliding mode exists on S, but the sliding mode may (or may not) also exist on some of the hypersurfaces
{x € R"|o;(x, t) = 0} while the state is converging to S.

50.2.3 Sliding Modes

The control u(x, t) is designed in such a way that the system state trajectory is attracted to S and, once
having intercepted S, remains there for all subsequent time; thus, the state trajectory can be viewed as
sliding along S meaning that the system is in a sliding mode. A sliding mode exists if, in the vicinity of
the switching surface, S, the tangent or velocity vectors of the state trajectory point toward the switching
surface. If the state trajectory intersects the sliding surface, the value of the state trajectory or “repre-
sentative point” remains within an e-neighborhood of S. If a sliding mode exists on S, then S, or more
commonly a(x, t) = 0, is also termed a sliding surface. Note that interception of the surface o;(x, t) = 0
does not guarantee sliding on the surface for all subsequent time as illustrated in Figure 50.2, although
this is possible.

An ideal sliding mode exists only when the state trajectory x(t) of the controlled plant satisfies
o(x(£),t) =0 at every t > #; for some #;. This may require infinitely fast switching. In real systems, a
switched controller has imperfections, such as delay, hysteresis, and so on, which limit switching to a
finite frequency. The representative point then oscillates within a neighborhood of the switching surface.
This oscillation, called chattering (discussed in a later section), is also illustrated in Figure 50.2. If the
frequency of the switching is very high relative to the dynamic response of the system, the imperfections
and the finite switching frequencies are often but not always negligible. The subsequent development
focuses primarily on ideal sliding modes.

(5, tl)\ 3 01=0

Chattering

Origin
Sliding x=0

FIGURE50.2 A situation in which a sliding mode exists on the intersection of the two indicated surfaces for £ > #;.
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boundary point

Non-sliding b
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trajectory

— %

5 /
D
Sliding mode
trajectory
I™~— Boundary point of D

FIGURE 50.3 Two-dimensional illustration of the domain of a sliding mode.

50.2.4 Conditions for the Existence of a Sliding Mode

The existence of a sliding mode [2,5,6] requires stability of the state trajectory to the switching surface
o(x,1) =0, that is, after some finite time f1, the system representative point, x(t), must be in some
suitable neighborhood, {x| llo(x, )| < €}, of S for suitable £ > 0. A domain, D, of dimension n—m in
the manifold, S, is a sliding-mode domain if, for each >0, there is a § > 0, so that any motion starting
within an n-dimensional 3-vicinity of D may leave the n-dimensional e-vicinity of D only through the
n-dimensional e-vicinity of the boundary of D as illustrated in Figure 50.3.

The region of attraction is the largest subset of the state space from which sliding is achievable. A sliding
mode is globally reachable if the domain of attraction is the entire state space. The second method of
Lyapunov provides the natural setting for a controller design leading to a sliding mode. In this effort one
uses a generalized Lyapunov function, V (¢, x, o), that is positive definite with a negative time derijvative
in the region of attraction.

Theorem 50.1: [5, p. 83]:

For the (n — m)-dimensional domain D to be the domain of a sliding mode, it is sufficient that in some
n-dimensional domain Q2 O D, a function V(t,x, o) exists, continuously differentiable with respect to all of
its arguments and satisfying the following conditions:

1. V(t,x,0)is positive definite with respect to o, that is, for arbitrary t and x, V(t,x,0) > 0, wheno # 0
and V(t,x,0) = 0; on the sphere ||o]| < p >0, forallx € Q and any t, the relationships

inf V(t,x,0)=hy, hy>0 and sup V(t,x,0)=Hp, Hy>0
[lof|=p llotl=p

hold, where hy, and H, depend only on p with hy # 0 ifp#0.

2. The total time derivative of V(t, x, o) on the trajectories of the system of Equation 50.1 has a negative
supremum for all x € S except for x on the switching surface where the control inputs are undefined
and the derivative of V (t,x, o) does not exist.



50-6 Control System Advanced Methods

In summary, two phases underlie VSC design. The first phase is to construct a switching surface
o(x,t) = 0, so that the system restricted to the surface has a desired global behavior, such as stability,
tracking, regulation, and so on. The second phase is to design a (switched) controller u(x, t), so that away
from the surface o(x, ) = 0, the tangent vectors of the state trajectories point toward the surface, that
is, there is stability to the switching surface. This second phase is achieved by defining an appropriate
Lyapunov function V (t,x,0), differentiating this function so that the control u(x,t) becomes explicit, and
adjusting controller gains so that the derivative is negative definite. The choice of V (£,x,0) determines the
allowable controller structures. Conversely, a workable control structure has a set of possible Lyapunov
functions to verify its viability. A later section discusses general control structures.

50.2.5 An Illustrative Example

To conclude this section, we present an illustrative example for a single pendulum system,

0 1
%= A(x)x+Bu(x)= | sin(x;) [’”J + m u(x),
—— 0] {x 1
X1
with a standard feedback control structure, u(x) = ki (x)x1 + ka (x)x3, having nonlinear feedback gains
switched according to the rule
i > f i O)
ki) = o (x) 1 o(x)x; >
Bilx), ifo(x)x; <0,

which depend on the linear switching surface (G(x) =[s1 sz]x) . Without loss of generality, assume s, > 0.
For such single-input systems it is ordinarily convenient to choose a Lyapunov function of the form
V(t.x,0) = 0.506%*(x). To determine the gains necessary to drive the system state to the surface o(x) = 0,
they may be chosen so that

. do? d
Vit,x,0) = o.sdit = 0(x)$ = o(x)[s1 $2]%
= o) [52 (kl(x> - Sl‘f”)] o)z [51 4 s2kax)] < 0.
1
This is satisfied whenever
o1{x) = 0y < min I:sin(xl)] =-1,
X1 X1
B1(x) = B1 > max [sm(xl)} =1,
X1 X1

0z < —(s1/s2) and By > —(sy/s,). Thus, for properly chosen s; and s,, the controller gains are readily
computed.

This example proposed no methodology for choosing s; and s,, that is, for designing the switching
surface. Section 50.4 presents this topic. Further, this example was only single input. For the multi-input
case, ease of computation of the control gains depends on a properly chosen Lyapunov function. For most
cases, a quadratic Lyapunov function is adequate. This topic is discussed in Section 50.5.

50.3 Existence and Uniqueness of Solutions to VSC Systems

VSC produces system dynamics with discontinuous right-hand sides owing to the switching action of
the controller. Thus they fail to satisfy conventional existence and uniqueness results of differential
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Grad(o)

E-

FO-qFt+(1-a)F"
oe [0, 1]

F*

FIGURE 50.4 Illustration of the Filippov method of determining the desired velocity vector FO for the motion of
the state trajectory on the sliding surface as per Equation 50.6.

equation theory. Nevertheless, an important aspect of VSC is the presumption that the plant behaves
uniquely when restricted to o(x, t) = 0. One of the earliest and conceptually straightforward approaches
addressing existence and uniqueness is the method of Filippov [7]. The following briefly reviews this
method in the two-dimensional, single-input case.

From Equation 50.1, () = F(x, t,1) and the control u(x,?) satisfy Equation 50.5. Filippov’s work
shows that the state trajectories of Equation 50.1 with control Equation 50.5 on the switching manifold
Equation 50.3 solve the equation

W) =aFt+(1—)F =F° 0<a<l (50.6)

This is illustrated in Figure 50.4, where F™ = F(x, t,u™), F~ = F(x,t,u”),and F 0 is the resulting velocity
vector of the state trajectory in a sliding mode.

The problem is to determine o, which follows from solving the equation (grad(o), F9% = 0, where the
notation (g, b) denotes the inner product of a and b, that is,

(grad(o), F™)
o= s
(grad(o), (F~ — F*))

provided:
1. {(grad(o),(F~ - FT)y)y #£0.
2. (grad(o), F*) <0.
3. {grad(c),F7)=0.
Here, FO represents the “average” velocity, x(¢) of the state trajectory restricted to o(x, £)=0. On

average, the solution to Equation 50.1 with control Equation 50.5 exists and is uniquely defined on the
switching surface S. This technique can also be used to determine the plant behavior in a sliding mode.

50.4 Switching-Surface Design

Switching-surface design is predicated based on the knowledge of the system behavior in a sliding mode.
This behavior depends on the parameters of the switching surface. Nonlinear switching surfaces are
nontrivial to design. In the linear case, the switching-surface design problem can be converted into an
equivalent state feedback design problem. In any case, achieving a switching-surface design requires
analytically specifying the motion of the state trajectory in a sliding mode. The so-called method of
equivalent control is essential to this specification.
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50.4.1 Equivalent Control

Equivalent control constitutes a control input which, when exciting the system, produces the motion of
the system on the sliding surface whenever the initial state is on the surface. Suppose at #; the plant’s
state trajectory intercepts the switching surface and a sliding mode exists. The existence of a slidihg
mode implies that for all ¢t > #;,6(x(¢), t) = 0, and hence 6(x(t), t) = 0. Using the chain rule, we define the
equivalent control ue, for systems of the form of Equation 50.1 as the input, satisfying

do o, 0o Jo

‘ Oo
200 00, 09 00 iyt YRl g = 0.
0= gyt gy i =gy T B+ 5 B e

Assuming that the matrix product (8a/8x)B(x, t) is nonsingular for all  and x, one can compute ue, as

oo 1 /80 Bo
g {ax (x )} ((,ﬁ + 24 )) (50.7)
Therefore, given that o(x(t;), #;) = 0, then, for all ¢ = #, the dynamics of the system on the switching
surface will satisfy

-1 -1
x() = {I — B(x, t)[%‘;B(x, t)i| %}f(x, ) — B(x, t)[%:—B(x, t)] %% (50.8)

This equation represents the equivalent system dynamics on the sliding surface. The driving term is present
when some form of tracking or regulation is required of the controlled system, for example, when

olx,t)=Sx+r{t)=0

with r{¢) serving as a “reference” signal [4].

The (n — m)-dimensional switching surface, o(x, t) = 0, imposes 7 constraints on the plant dynamics
in a sliding mode. Hence, 1 of the state variables can be eliminated, resulting in an equivalent reduced-
order system whose dynamics represent the motion of the state trajectory in a sliding mode. Unfortunately,
the structure of Equation 50.8 does not allow convenient exploiting of this fact in switching-surface
design. To set forth a clearer switching-surface design algorithm, we first convert the plant dynamics to
the so-called regular form.

50.4.2 Regular Form of the Plant Dynamics
The regular form of the dynamics of Equation 50.1 is
4 =hizt),
1 =hGE, (50.9)
é2 =f2(Z, t) + BZ(Z> f)M(Z, t),

where z; € R"™™, z, € R"™. This form can often be constructed through a linear state transformation,
z(t) = Tx(t), where T has the property

0
=TB(T 'z,t) = 4 ,
TB(x,t) ( z,t) {Bz(z, t)}
and By(z, t) is an (m x m) nonsingular mapping for all # and z. In general, computing the regular form
requires the nonlinear transformation,

T1 (x, t)
Ty (x, 1) ’

2ty =T(x,t) = I:
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where

1. T(xt) is a diffeomorphic transformation, that is, a continuous differentiable inverse mapping
T(z, ) = « exists, satisfying T(0,1) = 0 for all £.

2. T1() :R* x R— R" ™ and T»(-,-) : R"" x R — R™.

3. T(x,t) has the property that

0T
oT ox |~ 0
—B(x,t) = L) = | .
o (x, 1) 2,1;2— B(T(z,t),t) |:B2(z) t)]
Ox

This partial differential equation has a solution only if the so-called Frobenius condition is satisfied
[8]. The resulting nonlinear regular form of the plant dynamics has the structure,

0Ty . ~ oT: N
lﬂﬂzmﬂ+5féﬁ@m

Ox

. dT7 , = aTz 8T2 ~
=T T > >t e, I T 3 >
Z 8xf( (z,1), 1)+ 5 T 8xB( (z,1),1)

£ f(z, 1)+ Baz .

21 =

(50.10)

Sometimes all nonlinearities in the plant model can be moved to f’z (z,t) so that
. z
H=filzt)=[An  Awn] [zj’ (50.11)

which solves the sliding-surface design problem with linear techniques (to be shown). If the original
system model is linear, the regular form is given by

2 Ay Aplla 0

= -+ U, 50.12
al=l &lla]+ s o
where z; € R"™" and z; € R™ are as above.

50.4.3 Equivalent System Dynamics via Regular Form

The regular form of the equivalent state dynamics is convenient for analysis and switching-surface design.
To simplify the development we make three assumptions: (1) the sliding surface is given in terms of the
states of the regular form; (2) the surface has the linear time-varying structure,

oz, t) = Sz +r(t) =[S S2] [z]] +7(t) =0,
2

where the matrix S, is chosen to be nonsingular; and (3) the system is in a sliding mode, that is, for some
t1, o(x(1), t) = 0 for all £ > ;. With these three assumptions, one can solve for z;(¢) as

2(t) = =S5 Sz () — S5 ' (t). (50.13)

Substituting Equation 50.13 into the nonlinear regular form of Equation 50.10 yields
4 = filz,2,1) =fi (zl, —8, 18121 — S;lr(t),t) )

The goal then is to choose $; and S; to achieve a desired behavior of this nonlinear system.
If this system is linear, that is, if Equation 50.11 is satisfied, then, using Equation 50.13, the reduced-
order dynamics are
z1 = <A11 — Alzsglsl) z1— Alzs;li’(t). (50.14)
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50.4.4 Analysis of the State Feedback Structure of Reduced-Order Linear
Dynamics
The equivalent reduced-order dynamics of Equation 50.14 exhibit a state feedback structure in which

F=§8; 15, is a state feedback map and A; represents an “input” matrix. Under the conditions that the
original (linear) system is controllable, the following well-known theorem applies.

Theorem 50.2: [9]:

If the linear regular form of the state model (Equation 50.12) is controllable, then the pair (A1, A12) of the
reduced-order equivalent system of Equation 50.14 is controllable.

This theorem leads to a wealth of switching-surface design mechanisms. First, it permits setting the
poles of Ay; - AnSy 181, for stabilizing the state trajectory to zero when r(t) = 0 or to a prescribed rate
of tracking, otherwise. Alternatively, one can determine S; and §; to solve the LQR (linear quadratic

regulator) problem when r(¢) = 0.
As an example, suppose a system has the regular form of Equation 50.12 except that Ay; and Ay, are

time-varying and nonlinear,

0 1 0 0 0 0 0

0 0 0 1 0 0 0
[?l]z o 0 00 1 [21J+ 0 0|u
22 2 a—

ajl app 413 | 14 A5 1 0

a1 Gy a3 | G4 025 0 1

where a; = a;;(t,x) and a1 < g;.(¢, x) < a3 Let the switching surface be given b
ij ij ij ij if g 8 ¥

‘ z
o(z) = [$1 Sz]I: 1} =0,
)
The pertinent matrices of the reduced-order equivalent system matrices are
0 1 0 0 0
Ai1=10 0 O and A;p=1|1 0].
0 0 0 0 1

To stabilize the system, suppose that the goal is to find F so that the equivalent system has eigenvalues
at {~1,-2,-3}. Using MATLAB®’s Control System’s Toolbox yields

Choosing S; = I leaves §; = F. This then specifies the switching-surface matrix S=[F  I].
Alternatively, suppose that the objective is to find the control that minimizes the performance index

[o:0]
J= / (zf Qz + &' RB) dt,
0

where the lower limit of integration refers to the initiation of sliding. This is associated with the equivalent

reduced-order system
21 = Anz — A,
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where
U= 82_18121 = Fz;.
Suppose weighting matrices are taken as
1.0 05 1.0
Q=105 20 10}, RZB (1) ]
1.0 1.0 3.0

Using MATLAB Control Systems Toolbox, the optimal feedback is

_[0.6420 1.4780 0.2230
“ 104190 04461 1.7031]°

Again, choosing $» = I, the switching-surface matrix is given by § = [F I]. Here, the poles of the system
in sliding are {~1.7742,-0.7034 +j0.2623}.

50.5 Controller Design
50.5.1 Stability to Equilibrium Manifold

As mentioned, in VSC a Lyapunov approach is used for deriving conditions on the control u{x, t) that
will drive the state trajectory to the equilibrium manifold. Ordinarily, it is sufficient to consider only
quadratic Lyapunov function candidates of the form

V(t,%,0) =0 (x,t) Wolx, 1), (50.15)

where W is a symmetric positive-definite matrix. The control u(x,t) must be chosen so that the time
derivative of V(t, %, o) is negative definite for o # 0. To this end, consider

V(t,x,0) = 6T Wo +oT Wé = 20" W, (50.16)
where we have suppressed specific x and ¢ dependencies. Recalling Equation 50.1, it follows that

6—?E+?35c—80+80f+603u (50.17)
T Bt ox. ot ox  ox '

Substituting Equation 50.17 into Equation 50.16 leads to a Lyapunov-like theorem.

Theorem 50.3:

A sufficient condition for the equilibrium manifold (Equation 50.3) to be globally attractive is that the
control u(x, t) be chosen so that

9o

do do
26TW=f + 26T W—Bu<0 50.18
gy T20 W H2o W B (50.18)

V=2TW
for o # 0, that is, V{1, x, ) is negative definite.

Observe that Equation 50.18 is linear in the control. Virtually all control structures for VSC are chosen
so that this inequality is satisfied for appropriate W. Some control laws utilize an x- and t-dependent W
requiring that the derivation above be generalized.
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50.5.2 Various Control Structures

To make the needed control structures more transparent, recall the equivalent control of Equation 50.7,

do 1 /86 B0
”eq(x» f)=— [:5;3(96, t)] (5? -+ 8—xf(x, t))

computed assuming that the matrix product %B (x,t) is nonsingular for all £ and x. We can now decom-
pose the general control structure as

u(x, 1) = vy (2, £) + un{x, 1), (50.19)
where uy (x, 1) is as yet an unspecified substructure. Substituting the above into Equation 50.18 produces
the following sufficient condition for stability to the switching surface: Choose un(x, t) so that

. 8
V(t,x,0) = ZGTW8—GB(x, fun(x, 1) < 0. (50.20)
X

Because %B(x, t) is assumed to be nonsingular for all t and x, it is convenient to set
do -1
un(x, t) = E—B(x, O anlx, ). (50.21)
X

Often a switching surface o(x,t) can be designed to achieve a desired system behavior in sliding and,
at the same time, to satisfy the constraint g%B = I in which case uy = iy, Without loss of generality, we
make one last simplifying assumption, W = I, because W > 0, W is nonsingular, and can be compensated
for in the control structure. Hence, stability on the surface reduces to finding #iy (x, ) such that

V=20"W PEB} [@BTIQN =20y < 0. (50.22)
Ox Ox
These simplifications allow us to specify five common controller structures:
1. Relays with constant gains: Ziy(x, £) is chosen so that
iy = asgnlo(x, 1))

with a = [] an m x m matrix, and sgn (o(x, 1)) is defined componentwise. Stability to the sur-
face is achieved if o = [ay] is chosen diagonally dominant with negative diagonal entries [5].
Alternatively, if o is chosen to be diagonal with negative diagonal entries, then the control can be
represented as

iini = ajisgn(o;(x, 1))

and, for o; %0,
207t = 20y;038gn(0;) = 2a4]0;] < 0,

which guarantees stability to the surface, given the Lyapunov function, V{t, x,0) = o7 (x, H)o(x, t).
2. Relays with state-dependent gains: Fach entry of fiy(x, t) is chosen so that

iini = o (x, £)sgn(o(x, 1)), wilx, ) < 0.
The condition for stability to the surface is that
2050 = 20 (x, Hoisgn(oy) = 20u(x, t)loy] <0 for o; # 0.
An adequate choice for o (x, t) is to choose B; < 0, y; > 0, and k a natural number with

i(x) = Bi(o 2 (x, 1) + ).
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3. Linear state feedback with switched gains: Here iy (x,t) is chosen so that

Ol <0, GiXj >0,

iy =VWx; V={WU;i; W=
[ IJ] v Bij>0, c,-xj<0.

To guarantee stability, it is sufficient to choose a; and Bj; so that
it = oi (Winxs + Winxa -+ - + Winsy) = Wioix) + Wipoixg -+ -+ - -+ Winoixy < 0.
4. Linear continuous feedback: Choose
iy = —Po(x,t), P=P">0,
that is, P € R™>™ is a symmetric positive-definite constant matrix. Stability is achieved because
T

oliy = —c"Po <0,

where P is often chosen as a diagonal matrix with positive diagonal entries.
5. Univector nonlinearity with scale factor: In this case, choose

o(x, 1)
oy = 1 oo 0l

0, o=0.

p<0 and o #0,

Stability to the surface is guaranteed because, for o # 0,

T~ O'TG
o' iy = ——p=|lo]lp <O.
loll

Of course, it is possible to make p time dependent, if necessary, for certain tracking problems. This
concludes our discussion of control structures to achieve stability to the sliding surface.

50.6 Design Examples

This section presents two design examples illustrating typical VSC strategies.

Design Example 50.1:

In this example, we illustrate a constant gain refay control with nonlinear sliding surface design for a
single-link robotic manipulator driven by adc armature-controlled motor modeled by the normalized
(i.e., scaled) simplified equations

X1 X2 0
X3 | =|sin(p)+x3 |+ {0 |u=f)+Bu
X3 X2 + X3 1

in the regular form,
To determine the structure of an appropriate sliding surface, recall the assumption that g—;B(x, t)

is nonsingular. Because B=[00 117, it follows that gx—"a must be nonzero. Without losing generality,
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we set gx% = 1. Hence, it is sufficient to consider sliding surfaces of the form
olx) = o(x1, %7, x3) = 01 (x7,x3) +x3=0. (50.23)

Our design presumes that the reduced-order dynamics have a second-order response represented
by the reduced-order state dynamics,

X1 1 X2 Y 1 X1
)'(2 - ~a1X1 —dxxa - —a) —ayjlx )

This form allows us to specify the characteristic polynomial of the dynamics and thus the eigenvalues,
that is, a()) = 22 + a4 ay. Proper choice of a; and ax leads to proper rise time, settling time,
overshoot, gain margin, and so on.

The switching-surface structure of Equation 50.23 implies that, in a sliding mode,

X3 = —01(x7,X2).

Substituting the above equation into the given system model, the reduced-order dynamics become

x| _ X2 _[ X2 ]
Xa] T sinGa) —o10a,x0) | T | —axy —azx |

Hence the switching-surface design is completed by setting
o1(x1,X2) = sin(x7) + a1x7 + axxs.

To complete the controller design, we first compute the equivalent control,

do1  doy 1 X
Ueg = — l: 3 o :I 5|r:((x1£ )—(f—X3
2 3

For the constant gain relay control structure (Equation 50.19),
uy = a sgn{o(x)).

Stability to the switching surface results whenever o <0 as

|
§
;
!
i
j
i
i

06 = oo sgn(o) = ajo| < 0.

Design Example 50.2;

Consider the fourth-order (linear) model of a mass-spring system that could represent a simplified
model of a flexible structure in space with two-dimensional control (Figure 50.5).

-

*1 X

Uy

FIGURE 50.5 A mass spring system for design Example 50.2.
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Here, x; is the position of my, x the position of my, uq the force applied to my, and uy the force
applied between m and my. The differential equation model has the form

myXq +k(xy —x2) = + U2
maXo + kX2 —X1) = —U2,

where k is the spring constant. Given that X3 = %1 and x4 = X2, the resulting state model in regular
formis

X3 0
X1 X4 0
X2 k k
2o g —x |+ | Y
X3 m 1 : 2 T 2
X4 k X N i "
X1 ——Uu2
my ! my 2

There are two simultaneous control objectives:

1. Stabilize osciliations, that is, X1 = X2,
2. Track a desired trajectory, Xp(t) = Zpef (0).

These goals are achieved if the following relationships are maintained for ¢1,¢c2 > 0:
X =X+ abg —x)=0 = X —x3—>0
and
X3 — Zref + €202 —Zef) =0 = X2~ Zref — 0.

The first step is to determine the appropriate sliding surface. To achieve the first control objective,

set
o1lx, ) =X3 —~ x4+ €100 —X2) =0,

and to achieve the desired tracking, set
o9 (X, 1) = X4 = Zyef + (X2 — Zpef) = 0.

The next step is to design a VSC law to drive the state trajectory to the intersection of these switching
surfaces. In this effort, we illustrate two controller designs. The first is a hierarchical structure [2] 50

that, foro # 0,

U = asgnlo),

Uy = 0L2$gn(02)

with the sign of aq, 02 # 010 be determined.
For stability to the surface, it is sufficient to have o161 < 0 and o702 <0, as can be seen from
Equation 50.16, with W = /. Observe that

&1 = X3 — X+ 0y —X2) =3 — X4+ C1(X3 — Xa)
and
&y = X — Zref + €22 — Zref) = X4 — Zyof + C20Xa — Zref)-

substituting for the derivatives of x3 and x4 leads to

1 1 1 1 1
. — =+ —_— —
g1 - my m1 my uq + h1 — mi mq my oqsgn(m) + h-l (50-24)
G2 0 _~'|_ uy hy 0 __.l_ apsgn(o?) hy |’
my m3
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where

k k k k
hf=——Xx14+ —X3 — —X1 +—X2 +C1X3 — C1X4
mq m my ma
and
h k k 5 o1 o3
—X] o — Xy — X4 — CoZyef -
2 m 1 my 2 ref 244 24yref

Taking a brute force approach to the computation of the control gains, stability to the switching
surface is achieved, provided

. —a,
G0 = — 2 o25gn(oy) +o2hy <0,
2

which is satisfied if
g > malha|(>0),

and provided
1

1
+ —) apsgn(og) +h1] <0
m my

. 3
01071 = EO‘]SQI’I(G'])—I—(H

which is satisfied if
m
ap < —mylhyl—{ 14— ao.
my
In a second controller design, we recall Equation 50.24. For o1 3 0 and o2 # 0, it is convenient to
define the controller as
[ 1 1977
N - + J—
ur|_|m mg o omp B1sgn(oy)
uz 0 _ Basgn(oz) |
m

where 81 and B are to be determined. It follows that

611 _ [Bisgn(oq) n hy
62 Basgn(o2) | * |h2]’
As in the first controller design, the state trajectory will intercept the sliding surface in finite time and

sliding will occur for B and B sufficiently negative, thereby achieving the desired control objective.

A unifying characterization of sliding mode controllers that drive a trajectory to the sliding manifold
is given in [10].

50.7 Chattering

The VSC controllers developed earlier assure the desired behavior of the closed-loop system. These
controllers, however, require an infinitely (in the ideal case) fast switching mechanism. The phenomenon
of nonideal but fast switching was labeled as chattering (actually, the word stems from the noise generated
by the switching element). The high-frequency components of the chattering are undesirable because they
may excite unmodeled high-frequency plant dynamics resulting in unforeseen instabilities. To reduce
chatter, define a so-called boundary layer as

{x| lol)ll <ee>0}, (50.25)

whose thickness is 2¢. Now, modify the control law of Equation 50.26 (suppressing t and x arguments) to

>
o e Funs ol z e (50.26)
teg +plo,x), loll <&
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where p(o,x) is any continuous function satisfying p(0,x) =0 and p(o,x) = un(x) when |o(x)l] =¢.
This control guarantees that trajectories are attracted to the boundary layer. Inside the boundary layer,
Equation 50.26 offers a continuous approximation to the usual discontinuous control action. Similar to
Corless and Leitmann [11], asymptotic stability is not guaranteed but ultimate boundedness of trajectories
to within an e-dependent neighborhood of the origin is assured.

50.8 Robustness to Matched Disturbances and Parameter
Variations

To explore the robustness of VSC to distarbances and parameter variations, one modifies Equation 50.1

to
x(t) = [f(x, 1) + Af (%, £, g(¢)] + [Blx, £) 4+ AB(x, t, q(t)1u(x, t) + d(t), (50.27)

where g(t) is a vector function representing parameter uncertainties, Af and AB represent the cumulative
effects of all plant uncertainties, and d(¢) denotes an external (deterministic) disturbance. The first critical
assumption in our development is that all uncertainties and external disturbances satisfy the so-called
matching condition, that is, Af, AB, and d(¢) lie in the image of B(x, t) for all x and £. As such they can all
be lumped into a single vector function §(x, £, g, d, u), so that

(1) = f(x, 1) + Blx, u(x, 1) + Blx, 5 (v, £ g, d, ). (50.28)
The second critical assumption is that a positive continuous bounded function p(x, t) exists, satisfying
&t g ds )l < o, ). (50.29)

To incorporate robustness into a VSC design, we utilize the control structure of Equation 50. 19, u{x, t) =
Ueg (x, 1) + un(x, ), where tgg(x, t) is given by Equation 50.7. Given the plant and disturbance model of
Equation 50.28, then, as per Equation 50.20, it is necessary to choose uy (x, ), so that

. 0
V(t,x,0) = ZongB(x, t) [uN(x, t)+E(x 1, g, d, u)] < 0.
X

Choosing any one of the control structures outlined in Section 50.5, a choice of sufficiently “high” gains
will produce a negative-definite V (£, x, o). Alternatively, one can use a control structure (2],

5%
— 2 [p(x, 1) + alx, 1)) foro(x,t) #0,
unGet)=1 B[]0 (50.30)

0 otherwise,
where a(x, t) is to be determined. Assuming W =L it follows that, for o # 0,

T
im0y = 207 BB L5 0
B7[%]%|

|
BT\:Z—%]TO

Choosing a(x, t) = o > 0 leads to the stability of the state trajectory to the equilibrium manifold despite
matched disturbances and parameter variations, demonstrating the robustness property of a VSC law.

x [plee, ) +olx, )]+ 207 @BE
Ox

< -2 alx, t).
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50.9 Observer Design

“Observers” can be viewed as software algorithms that allow online estimation of the current state of a
dynamic system when only the output and the input of the system can be measured. In the case of a linear
system, we have

* = Ax + Bu -+ B,

50.31
o (50.31)

where C € RP*”, and we assume that the pair (C,A) is observable. The observer design problem is to
construct a dynamic system that estimates the system state based on knowledge of the input and the
output measurement. This results in the so-called Luenberger observer when £ =0,

& =AR+Bu+Liy—Ch), (50.32)

The estimation error e(t) = x(t) — 2(¢) satisfies: é(t) = (A — LC)e(t). Since (C, A)is observable, the eigen-
values of A — LC can be assigned arbitrarily by a choice of the gain matrix L, although in practice this is
limited by the bandwidth of the system.

The sliding mode concept can be used for designing an observer by replacing L(y — CZ) in Equation
50.32 with a discontinuous function E4(y, %) of and % yielding

ic:Aic-{—Bu-i-Ed(y,y), (50.33)
y=Cx,
where By is a user-chosen function to insure convergence in the presence of uncertainties modeled by
nonzero § in Equation 50.31.
One possibility is to choose B 0. )) =Ly —Cz)+ BE(y, ), where L is chosen so that A-LCisa stability
matrix (eigenvalues in the open left-half-complex plane) and

Fly -3
76— 9)]
where 1 is a design parameter satisfying n > ||£|]. Now, L, F ¢ R™P, p > m, and a matrix P = pT >0

must simultaneously satisfy:

L eiglA-LC)c ¢~
2. FC=BTp, and
3. (A—LC)TP+P(A~LC)=—Q

E(y,5)=n (50.34)

for an appropriate Q = QT >0, if it exists. A solution for (L, F, P) exists if and only if
1. rank(B) = rank(CB) = r and

sI-A B
2. rank[ c OJ:n—i—r,Re[s]zO

With the estimation error as e(t) = x(t) — 2(t), the error dynamics become
é(t) = (A — LO)e(t) — BE(y,7) -+ Bt. (50.35)
It follows that
1P = —T Qe an el + 20" ppe
< =" Qe =20 | FCell + 2 | FCe] |15 < —eT Qe,

which implies limy_; ooe(t) = 0. For further analysis see [3,12,13]. For an alternate sliding mode observer
structure, see [14-16].

{
1
;
{
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50.9.1 Observer Design 2 [17,18]
Now consider E4(y, %) = L sign(y — CX) resulting in the observer dynamics
% = A% + Bu + Lsign(y — C%). (50.36)

For the deterministic case (§ = 0) the observation error satisfies ¢ = Ae — L sgn(Ce). For such a system,
a sliding mode is possible on the manifold Ce = 0. It order to describe the choice of the observer gain L
and analyze the error dynamics let us consider a nonsingular transformation of the state x into a new set
of coordinates such that the first p coordinates correspond to the observed vector y:

yi |C
Pl
The transformed plant dynamics are

7| _14n Anlly B;
l:w} B l:AZl Azz] [w} + l:Bz] u. (50.37)

The observer in the new coordinates is

j/:Anjf—!—Aufv—i-Blu—{—Ll sgn(y — ), (50.38a)
W= Any + ApW + Bau Ly sgnly — . (50.38b)
Denoting ej () = y(t) — J(#) and e, (f) = w(t) — w(t), the error dynamics for the first subsystem is
¢ = Apye; + Appe; — Ly sgnler), (50.39a)
¢y = Ag1e; + Axez — Lo sgnler). (50.39b)

By choosing an appropriate nonsingular gain matrix L; (it is a square matrix), we can enforce sliding
regime in the first equation along the manifold e1(t) = 0. Indeed, the equivalent control is obtained from
Equation 50.39a under the condition, é;{t) =0 as

[sgn(en)],, = L1 Anzer. (50.40)

The dynamics of the system in a sliding mode (é; = 0) can be obtained by substituting this value into
Equation 50.39b, to obtain the linear equation

&y = (An — LszlAu)ez- (50.41)

Let us note that the observability of the original pair (C, A) implies observability of the pair (A2, A22)
in the system (Equation 50.37). Using this fact it follows that we can assign any eigenvalues in this system
by appropriate choice of La; thus, guaranteeing convergence ex(f) = 0 with any desired exponential
rate. The dimension of the system or Equation 50.41 is n-p. The case when the output is corrupted by
measurement noise was also considered in [18]. Similar observer structures and explanations can be
found in [6,14-16]. An application of such an observer structure to state estimation of a magnetic bearing
is considered in {19].

In [20], Drakunov proposed a sliding mode observer structure

. [oHE)T!
= [ B(x):l M, t) sgniV — H(%)] (50.42)
x
that can be used for a nonlinear system of the form
% = f(x),
y = h(x),
where the measurement map h:R" — R is a scalar and where H(x) = [h1(x) ha(x) - -- hn(x)]T

has entries defined using repeated Lie derivatives: hi(x) = h(x), hz(x)szh(x), hs(x) =
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L}h(x), e hy(x) = L}’_lh(x); M(X,t) = diag(m1(X, 1), ..., mu(%,1)) is a diagonal gain matrix and
the vector V=[y;vy --- vn]T has components defined recursively: vi(£) =y(t), vi1(t) =
[mi(fc, t)sgn (vi(t) - hi(fc))]eq. The equivalent values can be obtained using an equivalent control fil-
ter such as a low-pass filter, although a first-order low-pass filter may not be sufficient; more complicated
even nonlinear digital filters may need to be employed.

Example 50.3:

To illustrate the above nonlinear observer design, consider the nonlinear state model
. 2
X1 ={1=2x1 4 2x3)x2,

)'(2 = —X] +X22

with the output y = x; —x22. In this case, we have h(x) = h1(x1,x2) = x; —x%, and since n =2 we
need only the first Lie derivative: hy(x1,x2) = Lrh(x) = x3. Therefore, the corresponding map H and

its Jacobian matrix are
Ho =[], P —20 B\ 210
“Lox | oex o1 ox o 1]
%1 =m sgn(y — X +)?22) +2myk; sgn(v — Xo),

The observer of Equation 50.42 is

X2 = my sgn(v —%a),

where v = {my sgn(y ~ % +)?22)}eq. The second-order observer converges as long as the observer

gains are sufficiently large, which means that m; > |x3],my > lx1 —x%’. If the region of initial condi-

tions and system trajectories are bounded, then the gains can be chosen to be constant. In general,
the gains depend on (Xq, X,). The equivalent value operator {- - - }eq can be implemented in different

14 T T T T T T
12

10

FIGURE 50.6 Nonlinear observer convergence.
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ways, the easiest of which is a first-order low-pass filter v = —\v 4+ kmysgn(y — X1 +>A(§) for an appro-
priate value of . > 0. The resulting solution to the filtering equation is v = {m1sgn(y — X +>?§)}eq.
The simulation results are shown in Figure 50.6.

For further work on VSC systems and sliding mode observers we refer the reader to [16,20-22].

50.10 Concluding Remarks

This chapter has summarized the salient results of sliding mode control theory and illustrated the design
procedures with various examples. A wealth of literature exists on the subject that cannot be included
because of space limitations. In particular, the literature is replete with realistic applications [1,23],
extensions to output feedback [24], extensions to decentralized control [25], and extensions to discrete-
time systems. Additionally, there is some work, old and new, on higher-order sliding modes [16] and
[26]. For extensions of the above methods to time delay systems, see [18,27,29]. The reader is encouraged
to search the literature for many papers in this area.

50.11 Defining Terms

Chattering: The phenomenon of nonideal but fast switching The term stems from the noise generated
by a switching element.

Equilibrium (discontinuity) manifold: A specified, user-chosen manifold in the state space to which a
system’s trajectory is driven and maintained for all time subsequent to intersection of the mani-
fold by a discontinuous control that is a function of the system’s states, and hence, discontinuity
manifold. Other terms commonly used are sliding surface and switching surface.

Equivalent control: The solution to the algebraic equation involving the derivative of the equation of the
switching surface and the plant’s dynamic model. The equivalent control is used to determine
the system’s dynamics on the sliding surface.

Equivalent system dynamics: The system dynamics obtained after substituting the equivalent control
into the plant’s dynamic model. It characterizes state motion parallel to the sliding surface if the
system’s initial state is off the surface and state motion is on the sliding surface if the initial state
is on the surface.

Ideal sliding mode: Motion of a system’s state trajectory alonga switching surface when switching in the
control law is infinitely fast.

Matching condition: The condition requiring the plant’s uncertainties to lie in the image of the input
matrix, that is, the uncertainties can affect the plant dynamics only through the same channels
as the plant’s input.

Region of attraction: A set of initial states in the state space from which sliding is achievable.

Regular form: A particular form of the state-space description of a dynamic system obtained by a suitable
transformation of the system’s state variables.

Sliding surface: See equilibrium manifold.

Switching surface: See equilibrium manifold.
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