Enhancement-Mode Atomic-Layer-Deposited \(\text{In}_2\text{O}_3 \) Transistors With Maximum Drain Current of 2.2 A/mm at Drain Voltage of 0.7 V by Low-Temperature Annealing and Stability in Hydrogen Environment

Mengwei Sia, Adam Charnasb, Zehao Lin, and Peide D. Yec, Fellow, IEEE

Abstract—In this article, we demonstrate atomic-layer-deposited (ALD) indium oxide (\(\text{In}_2\text{O}_3 \)) transistors with a record high drain current of 2.2 A/mm at \(V_{DS} \) of 0.7 V among oxide semiconductor transistors with the enhancement-mode operation. The impact of back-end-of-line (BEOL) compatible low-temperature annealing is systematically studied on these highly scaled \(\text{In}_2\text{O}_3 \) transistors with channel length \(L_{ch} \) down to 40 nm, channel thickness \(T_{ch} \) down to 1.2 nm, and equivalent oxide thickness (EOTs) of 2.1 nm, at annealing temperatures from 250 \(^\circ\)C to 350 \(^\circ\)C in \(\text{N}_2, \text{O}_2 \), and forming gas (FG, 96% \(\text{N}_2/4\% \text{H}_2 \)) environments. Annealing in all different environments is found to significantly improve the performance of ALD \(\text{In}_2\text{O}_3 \) transistors, resulting in enhancement-mode operation, high mobility, reduced bulk and interface trap density \((D_{it} \text{ as low as } 6.3 \times 10^{11} \text{ cm}^{-2} \text{eV}^{-1}) \), and nearly ideal subthreshold slope (SS) of 63.8 mV/dec. Remarkably, the ALD \(\text{In}_2\text{O}_3 \) devices are found to be stable in hydrogen environment, being less affected by the well-known hydrogen doping issue in indium–gallium–tinoxide (IGZO). Therefore, low-temperature ALD \(\text{In}_2\text{O}_3 \) transistors are highly compatible with the hydrogen-rich environment in BEOL fabrication processes.

Index Terms—Annealing, atomic layer deposition (ALD), back-end-of-line (BEOL) compatible, hydrogen, indium oxide, oxide semiconductor, thin-film transistor.

I. INTRODUCTION

Oxide semiconductors are widely employed in thin-film transistors [1], [2] and are promising channel materials for complementary metal–oxide–semiconductor (CMOS) back-end-of-line (BEOL) compatible transistors for monolithic (3-D) integration. Indium oxide \((\text{In}_2\text{O}_3) \) [3], [4] or doped-\(\text{In}_2\text{O}_3 \) [5]–[10] are being investigated due to their low thermal budget growth and fabrication, high mobility, atomically smooth surface, and wafer-scale homogenous films. The capability of atomic layer deposition (ALD) to deposit atomically thin and conformal \(\text{In}_2\text{O}_3 \) films on 3-D structures enables tremendous new opportunities toward 3-D device integration [3], [4], [11]–[14]. High-performance scaled \(\text{In}_2\text{O}_3 \) transistors by ALD have been demonstrated with maximum drain current \((I_{D,max}) \) exceeding 2.0 A/mm at depletion-mode operation [4]. Enhancement-mode operation with threshold voltage \((V_T) \) above zero was also achieved by decreasing channel thickness \((T_{ch}) \) down to 0.7 and 1 nm by the accurate thickness control of ALD, but also causes the reduction of channel mobility and \(I_{D,max} \) down to 1.0 A/mm [3], [4]. Such phenomenon was understood by the impact of quantum confinement on the trap neutral level (TNL) alignment, confirmed by both experiments and \(ab \text{ initio} \) density functional theory (DFT) simulation [3].

Meanwhile, stability in hydrogen-rich environment is required and crucial for BEOL compatible process because \(\text{H}_2 \) is the byproduct during BEOL fabrication [15]. Post-deposition hydrogen doping to amorphous indium–gallium–tinoxide (IGZO), such as \(\text{N}_2/\text{H}_2 \) annealing and H plasma treatment, was well understood to always increase free electron density up to \(\sim 10^{20} \text{ cm}^{-3} \) [16]–[18]. Hydrogen was understood as shallow donor and to form an OH group [17]. Therefore, whether \(\text{In}_2\text{O}_3 \) or doped \(\text{In}_2\text{O}_3 \) can be stable in the CMOS BEOL process becomes a serious concern.

In this article, the impact of post-deposition annealing in various environments, such as \(\text{O}_2, \text{N}_2 \), and forming gas (FG, 96% \(\text{N}_2/4\% \text{H}_2 \)), at various BEOL compatible low temperatures from 250 \(^\circ\)C to 350 \(^\circ\)C on ALD \(\text{In}_2\text{O}_3 \) transistors are systematically studied. Annealing in all different environments is found to shift the \(V_T \) positively and lead to the enhancement-mode operation, where the physical origin is speculated as the annihilation of oxygen vacancies by excessive oxygen in the as-deposited films. Remarkably,
The gate-stack includes 40-nm Ni as gate metal, 5-nm HfO2 as gate dielectric, 1.2 and 1.5 nm In2O3 as semiconducting channels, and 80 nm Ni as source/drain electrodes. Fig. 1(b) presents the photo image of a typical fabricated device.

The device fabrication process is similar to [4]. The device fabrication starts with standard cleaning of p+ Si substrate with 90 nm thermally grown SiO2. 90-nm SiO2 is used for device isolation. A bi-layer photoresist lithography process (Poly(methylglutarimide (PMGI) + AZ1518) was then applied for the sharp lift-off of 40-nm Ni gate metal by e-beam evaporation. Then, 5-nm HfO2 was deposited by ALD at 200 °C, using [(CH3)2N]4HF (TDMAHf) and H2O as HF and O precursors. 1.2 and 1.5-nm thick In2O3 films were then deposited by ALD at 225 °C, using (CH3)3In (TMIn) and H2O as In and O precursors. N2 is used as the carrier gas. ALD In2O3 film has a low surface roughness, as shown in Fig. 1(b), where 3-nm as-deposited In2O3 on Si substrate has a surface roughness of 0.16 nm, measured by atomic force microscopy (AFM), indicating ALD In2O3 film is atomically smooth. As-deposited ALD In2O3 is amorphous [4], further material studies are needed to determine whether annealing at high temperatures changes the phase of ALD In2O3. The ALD deposition process may introduce both excessive hydrogen and oxygen into the In2O3 film from the water precursor. The ALD temperature at 225 °C may be insufficient to passivate all oxygen deficiencies. Channel isolation was done by wet etching of In2O3 using concentrated hydrochloric acid. Hydrochloric acid is another possible hydrogen source. 80-nm Ni was then deposited by e-beam evaporation as S/D contacts, patterned by electron beam lithography, with a minimum Lch of 40 nm. The fabricated devices were annealed in O2, N2, or FG for 30 s at different temperatures from 250 °C to 350 °C. Note that the fabrication process may introduce defects into the In2O3 channel since it is just nanometer thin, causing a Lch dependent carrier density and VT, which can be completely removed by annealing. This will be discussed in detail in Section III.

III. RESULTS AND DISCUSSION

Fig. 1(c) and (d) presents the representative ID–VGS and ID–VDS characteristics of an In2O3 transistor with Lch of 40 nm and Tch of 1.5 nm with 350 °C annealing in O2. Maximum ID of 2.2 A/mm is achieved at a low VDS of 0.7 V with VT of 0.02 V. Here, enhancement-mode is VT > 0 V by definition. Note that although VT > 0 V is achieved, a relatively large current at VGS = 0 V is still existing, indicating that larger VT is still needed to achieve low off-current at VGS = 0 V. A low on-resistance (Ron) of 0.32 Ω·mm is obtained, suggesting a very low contact resistance (Rc). Fig. 1(e) and (f) presents the ID–VGS and ID–VDS characteristics of an In2O3 transistor with Lch of 300 nm and Tch of 1.5 nm, showing well-behaved ID saturation at high VDS greater than VGS–VT.

Fig. 2 summarizes the scaling metrics of In2O3 transistors with Lch from 0.8 μm down to 40 nm and with Tch of 1.5 nm. The devices with and without O2 annealing at 350 °C are compared. Each data point represents the average of at least 5 devices. The small error bar in these plots demonstrates

II. EXPERIMENTS

Fig. 1(a) illustrates the schematic of an In2O3 transistor, employing the same structure as previously reported in [4].
that the ALD-based In$_2$O$_3$ transistors are highly uniform. Fig. 2(a) and (b) shows the $I_{D,max}$ and transconductance (g_m) versus L_{ch} characteristics. $I_{D,max}$ and g_m are extracted at $V_{DS} = 1$ V unless otherwise specified. A high average $I_{D,max}$ of 2.0 A/mm at V_{DS} of 0.7 V is achieved. Low drain voltages are used at shorter channels to avoid the impact of self-heating effect. Fig. 2(c) studies the impact of O$_2$ annealing on V_T, showing a large positive V_T shift by 350 °C annealing in O$_2$. Note that the as-deposited In$_2$O$_3$ transistors have a clearly L_{ch} dependent V_T even in long channel devices while V_T has negligible L_{ch} dependence after O$_2$ annealing, suggests such V_T dependence is from the defects introduced during device fabrication and these defects are completely removed by O$_2$ annealing, such phenomenon is further confirmed by detailed N$_2$/O$_2$/FG annealing completely studies in Figs. 4–6. Fig. 2(d) presents the SS versus L_{ch} characteristics at V_{DS} of 0.05 V. Minimum SS of 91.7 mV/dec is achieved. Fig. 2(e) shows the scaling metrics on μ_{FE}. μ_{FE} is extracted from extrinsic maximum g_m at low V_{DS} of 0.05 V. High μ_{FE} of 91.0 cm2/V-s is achieved at ultrathin T_{ch} of 1.5 nm, which is rather high among amorphous oxide semiconductors, being benefitted from the atomically smooth surface by ALD, which is also consistent with extracted effective mobility (μ_{eff}) as shown in Fig. 2(f). Note that the extracted extrinsic mobilities are still under-estimated without considering the impact from contact resistance R_C, which is generally low at back-gate In$_2$O$_3$ transistors studied here. The intrinsic mobility of annealed ALD In$_2$O$_3$ can be even higher. The devices exhibit excellent immunity to short channel effects down to 40 nm because of the ultrathin In$_2$O$_3$ channel and scaled EOT.

To understand the physics and chemistry of annealing effects on ALD In$_2$O$_3$ transistors, a systematic annealing study was conducted at various temperatures from 250 °C to 350 °C in N$_2$, O$_2$, and FG environments. Such annealing study was done on In$_2$O$_3$ with a thinner channel with T_{ch} of 1.2 nm, because In$_2$O$_3$ transistors with T_{ch} of 1.2 nm have a V_T near zero, so that both carrier density enhancement and reduction can be captured.

Fig. 3 shows representative I – V results of short channel ALD In$_2$O$_3$ transistors with T_{ch} of 1.2 nm after annealing. Fig. 3(a) and (b) shows the $I_{D,VGS}$ and $I_{D,VDS}$ characteristics of an In$_2$O$_3$ transistor with L_{ch} of 40 nm and T_{ch} of 1.2 nm, annealed at 250 °C in FG. Maximum I_D of 1.3 A/mm is achieved at V_{DS} of 0.6 V with V_T of 0.01 V. Fig. 3(c) and (d) shows the $I_{D,VGS}$ and $I_{D,VDS}$ characteristics of an In$_2$O$_3$ transistor with L_{ch} of 40 nm and T_{ch} of 1.2 nm, with 250 °C annealing in FG. Maximum I_D of 1.4 A/mm is achieved at V_{DS} of 1 V with V_T of 0.7 V. Fig. 3(e) and (f) shows the $I_{D,VGS}$ and $I_{D,VDS}$ characteristics of an In$_2$O$_3$ transistor with L_{ch} of 40 nm and T_{ch} of 1.2 nm, with 350 °C annealing in O$_2$. Maximum I_D of 1.3 A/mm is achieved at V_{DS} of 1 V with V_T of 0.5 V.
indicating the mobility is enhanced by N2 annealing but mobilities of the In2O3 films. Fig. 4(c) presents the SS versus V_{DS} of In2O3 with N2 annealing at 350°C increases due to the reduction of carrier density. Extracted V_{TH} at L_{CH} of 400 nm and T_{CH} of 1.2 nm are used to avoid the impact of self-heating on devices. Each data point represents the average of at least 5 devices.

Fig. 4 summarizes the scaling metrics of In2O3 transistors with L_{CH} from 1 μm down to 40 nm and with T_{CH} of 1.2 nm, annealed from 250°C to 350°C in N2 and compared to devices without annealing. Fig. 4(a) studies the impact of N2 annealing at different temperatures on V_{TH}, showing a large positive V_{TH} shift by annealing in N2. Note that the as-deposited In2O3 transistors have a clearly L_{CH} dependent V_{TH} even in long channel devices, which is not predicted by semiconductor device physics. V_{TH} has negligible L_{CH} dependence after N2 annealing at 350°C, suggesting such V_{TH} dependence is from the defects introduced in device fabrication and these defects are completely relaxed, as discussed previously. Fig. 4(b) illustrates the impact of N2 annealing on extrinsic μFE extracted from the extrinsic g_m without considering the contact resistance. μFE increases after annealing at the long channel but μFE decreases after annealing at short channel, indicating the mobility is enhanced by N2 annealing but R_C increases due to the reduction of carrier density. Extracted μFE of In2O3 with N2 annealing at 350°C will decrease at the short-channel devices, because the V_{TH} shift at short channel by annealing, leading to very different contact resistance due to the different carrier concentration. The extracted μFE should be regarded as the lower limit of the intrinsic mobility of the In2O3 film. Fig. 4(c) presents the SS versus L_{CH} characteristics at V_{DS} of 0.05 V at different N2 annealing temperatures. Minimum SS of 97.0 mV/dec is achieved. SS is found to decrease with increasing N2 annealing temperature, suggesting D_{it} can be reduced effectively by N2 annealing. Fig. 4(d) and (f) shows the ON-current (I_{ON}) at $V_{GS}–V_{TH} = 1.8$ V and transconductance (g_m) versus L_{CH} characteristics. I_{ON} and g_m are extracted at $V_{DS} = 1$ V unless otherwise specified. Lower voltage at shorter channel devices are used to avoid the impact of self-heating on devices since self-heating may induce a similar effect as annealing, as specified in Fig. 4 caption.

Fig. 5 summarizes the scaling metrics of In2O3 transistors with L_{CH} from 1 μm down to 40 nm and with T_{CH} of 1.2 nm, annealed from 250°C to 350°C in O2 and compared to devices without annealing. Minimum SS of 73.0 mV/dec is achieved after 350°C annealing in O2, suggesting O2 annealing can more effectively reduce D_{it} than N2 annealing. Except for the significantly reduced SS, other device performance criteria from devices by O2 annealing and N2 annealing are pretty much similar and follow the same trend.

Fig. 6 summarizes the scaling metrics of In2O3 transistors with L_{CH} from 1 μm down to 40 nm and with T_{CH} of 1.2 nm, annealed from 250°C to 350°C in O2 and compared to devices without annealing. Minimum SS of 73.0 mV/dec is achieved after 350°C annealing in O2, suggesting O2 annealing can more effectively reduce D_{it} than N2 annealing. Except for the significantly reduced SS, other device performance criteria from devices by O2 annealing and N2 annealing are pretty much similar and follow the same trend.
of 1.2 nm at V_{DS} of 0.05 V, with 350 °C annealing in FG, exhibiting a nearly ideal SS. Fig. 6(b) presents the SS versus L_{ch} characteristics at V_{DS} of 0.05 V at different FG annealing temperatures. Minimum SS of 63.8 mV/dec (average value) is achieved by FG annealing at 350 °C, corresponding to a low D_{it} of 6.3×10^{11} cm$^{-2}$eV$^{-1}$, extracted from subthreshold method. It suggests that hydrogen is the most effective way to passivate the interface traps in this HfO$_2$/In$_2$O$_3$ material system. Other device performance criteria from devices by FG annealing follow the similar trend to O$_2$ and N$_2$ annealing, suggesting the V_T shift by annealing is the result of annealing temperature instead of the annealing environments.

Oxygen vacancies are known to act as shallow donors and determine the carrier density in doped-In$_2$O$_3$ [19]. It is widely reported that the oxygen pressure during film sputter deposition and thermal annealing have significant impact on the electrical conductivity of doped-In$_2$O$_3$ films such as IGZO and indium–tin-oxide (ITO) [1], [5], [19]–[21]. It was understood that oxygen vacancies form both a deep localized state and a shallow donor state depending on local atomic configurations by first principle simulation [17], [22]. Therefore, because of the similarity between ALD In$_2$O$_3$ and doped-In$_2$O$_3$, it is assumed that oxygen vacancies are also shallow donors in ALD In$_2$O$_3$ films, such assumption may need further verification by materials analysis and simulation. Based on this assumption, it is speculated that the V_T shift of ALD In$_2$O$_3$ transistors by annealing is likely to be the result of oxidization of oxygen deficiencies or vacancies by excessive oxygen inside the In$_2$O$_3$ film not from the environment because FG, N$_2$ and O$_2$ annealing give similar results. The excessive oxygen is likely to come from ALD or other processes during device fabrication. The ALD temperature is not high enough for these excessive oxygens to oxidize the oxygen vacancies, as more than 300 °C is needed to neutralize these defects.

Annealing at 350 °C in all environments causes the slight deteriorate of μ_{FE}, most likely due to the degradation of Ni/In$_2$O$_3$ contact resistance because of the reduction of carrier density, which may be further improved by introducing conducting oxide contact such as ITO [5], [6].

As can be clearly seen from Figs. 4–6, devices after 350 °C annealing in O$_2$, N$_2$, and FG show similar V_T, suggesting the ALD In$_2$O$_3$ is less affected by the widely exhibiting hydrogen doping issue in IGZO [16], [18], [23]–[25]. This result also indicates that the role of hydrogen in ALD In$_2$O$_3$ may be different from the hydrogen in sputter IGZO films. This is a strong support that ALD In$_2$O$_3$ can be highly compatible with hydrogen-rich environment in CMOS BEOL processes.

The detailed surface chemistry experiments and the complete understanding of the hydrogen chemistry in ALD In$_2$O$_3$ are out of the scope of this article. We may give the following two hypotheses to explain the experimental phenomenon. First, all the oxygen bonds in bulk ALD In$_2$O$_3$ film may be already passivated by the hydrogen from water precursors, in a hydrogen saturation state. Thus, new hydrogen from the environment has little impact on the doping of ALD In$_2$O$_3$ film. Second, hydrogen may not behave like shallow dopant in ALD In$_2$O$_3$ due to the possible different electronic structures. As the first work on high-performance enhancement-mode In$_2$O$_3$ transistors with different annealing conditions, we wish it can inspire more fundamental studies on surface chemistry and physics research on this novel material system.

The reliability performance of devices is critical for the application of the ALD In$_2$O$_3$ technology. A complete understanding and optimization on reliability performance is still required to qualify the ALD In$_2$O$_3$ technology for CMOS BEOL transistors for monolithic 3-D integration.

IV. Conclusion

In summary, the impact of post-deposition annealing in various environments, such as O$_2$, N$_2$, and FG (96% N$_2$/4% H$_2$), at various BEOL compatible low temperatures on ALD In$_2$O$_3$ transistors is systematically studied. The optimized annealing conditions are found to enhance the performance of In$_2$O$_3$ transistors significantly. Enhancement-mode In$_2$O$_3$ transistors with record high drain current of 2.2 A/mm at V_{DS} of 0.7 V with V_T of 0.02 V are demonstrated. SS as low as 63.8 mV/dec is achieved, corresponding to a low D_{it} of 6.3×10^{11} cm$^{-2}$eV$^{-1}$. The physical origin of the positive threshold voltage shift by annealing is speculated as the passivation of oxygen vacancies by excessive oxygen in as-deposited films. Remarkably, the ALD In$_2$O$_3$ devices are found to be stable in hydrogen environment, being less...
affected by the well-known hydrogen doping issue in IGZO. Therefore, ALD In$_2$O$_3$ transistors and its high compatibility with hydrogen-rich CMOS BEOL process suggest ALD In$_2$O$_3$ is the promising channel material for BEOL compatible transistors toward monolithic 3-D integration.

REFERENCES

