

Back-End-of-Line-Compatible Scaled InGaZnO Transistors by Atomic Layer Deposition

Jie Zhang[®], *Member, IEEE*, Zehao Lin[®], Zhuocheng Zhang[®], Ke Xu[®], Hongyi Dou, Bo Yang, Adam Charnas[®], Dongqi Zheng[®], Xinghang Zhang, Haiyan Wang, and Peide D. Ye[®], *Fellow, IEEE*

Abstract-In this work, we report on back-end-of-line (BEOL)-compatible InGaZnO indium gallium zinc oxide (IGZO) thin film transistors (TFTs) with extreme scaled device dimension including channel thickness (T_{ch}) down to 1.5 nm and channel length (L_{ch}) down to 60 nm. These IGZO channels with a high In atomic ratio of 92% were derived by atomic-layer-deposition (ALD), where the IGZO thickness could be precisely controlled by ALD cycles. These TFTs were subjected to a mild O₂ annealing at 250 °C, the effect of which is also systematically investigated. It is found that both T_{ch} and O_2 annealing have significant effects on TFT performance. By using optimized O_2 annealing conditions, the ALD IGZO TFTs with scaled T_{ch} of 1.5 nm and L_{ch} of 60 nm exhibit desirable electrical performance including a high on/off ratio $(I_{ON}/I_{OFF}) \sim 10^{11}$, a decent high lon of 354 μ A/ μ m under V_{DS} of 1.2 V, a steep subthreshold swing (SS) of 68 mV/dec, a small drain-induced-barrier-lowering (DIBL) of 30 mV/V, and a normal-off operation, which is comparable to the stateof-art sputtered IGZO TFTs. Furthermore, the optimized TFTs also exhibit significantly resolved threshold voltage $(V_{\rm T})$ roll-off and a remarkably high degree of stability to the positive gate bias stress (PBS). A trap model with its possible microscopic origin is proposed, which explains well the dependence of electrical performance on both T_{ch} and O₂ annealing, thus providing a new insight into the reliability of IGZO TFTs.

Index Terms— Atomic layer deposition (ALD), back-endof-line (BEOL), indium gallium zinc oxide (IGZO), O_2 annealing, reliability, thin film transistor (TFT), trap model.

Manuscript received 19 July 2023; accepted 1 September 2023. This work was supported in part by the Semiconductor Research Corporation (SRC), Nanoelectronic Computing Research (nCORE), Innovative Materials and Processes for Accelerated Compute Technologies (IMPACT) Center, Air Force Office of Scientific Research (AFOSR); and in part by the SRC/Defense Advanced Research Projects Agency (DARPA), Joint University Microelectronics Program (JUMP) Applications and Systems Driven Center for Energy-Efficient Integrated NanoTechnologies (ASCENT) Center. The review of this article was arranged by Editor F. Arnaud. (*Corresponding author: Peide D. Ye.*)

Jie Zhang is with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA, and also with the Department of Microelectronics and Integrated Circuit, Xiamen University, Xiamen 361005, China.

Zehao Lin, Zhuocheng Zhang, Adam Charnas, Dongqi Zheng, and Peide D. Ye are with the School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail: yep@purdue.edu).

Ke Xu, Hongyi Dou, Bo Yang, Xinghang Zhang, and Haiyan Wang are with the School of Materials Engineering, Purdue University, West Lafayette, IN 47907 USA.

Color versions of one or more figures in this article are available at https://doi.org/10.1109/TED.2023.3312357.

Digital Object Identifier 10.1109/TED.2023.3312357

I. INTRODUCTION

NDIUM-GALLIUM-ZINC-OXIDE (IGZO) thin film transistors (TFTs) have made a commercial success in back-plane display applications as the replacement for a-Si and poly-Si TFTs due to their excellent properties such as decent mobility, low off-current (I_{OFF}) , high transparency, and good uniformity [1], [2]. Recent work on scaled IGZO TFTs has extended their application domain from the traditional back-plane display to back-end-of-line (BEOL)-compatible logic and memory applications toward monolithic 3-D integration [3], [4], [5], [6], [7], [8], [9]. These scaled IGZO TFTs were derived by sputtering method and fabricated under a low thermal budget (<400 °C), exhibiting excellent electrical performance with high on-current (I_{ON}) and thus revitalizing the prospects of IGZO as a TFT channel material. Compared to sputtering, atomic layer deposition (ALD) growth method provides more precise thickness control, excellent conformity, composition flexibility, and large-area uniformity, benefiting to the realization of the ultrascaled TFTs [10], [11], [12]. However, to the best of our knowledge, scaled ALD IGZO TFTs are still missing, with only reports demonstrating long-channel TFTs with $L_{ch} > 10 \ \mu m$ [13], [14]. On the other hand, although sputtered IGZO TFTs with sub-100 nm L_{ch} have been reported, these scaled TFTs could suffer from some unsatisfied properties such as large drain-induced barrierlowering (DIBL), normal-on operation, significant threshold voltage $(V_{\rm T})$ roll-off at scaled length, and severe positive bias stability issues [3], [4], [5], [6], [7], [8], [9], which needs to be addressed properly for practical applications. Additionally, the underlying reasons for these undesirable performances have not been disclosed yet, which requires more in-depth studies.

In this work, we report for the first time ALD IGZO TFTs with extreme scaled $T_{\rm ch}$ down to 1.5 nm and $L_{\rm ch}$ down to 60 nm using optimized O₂ annealing, exhibiting outstanding electrical performance including a high ON/OFF ratio ($I_{\rm ON}/I_{\rm OFF}$) ~ 10¹¹, a steep subthreshold swing (SS) of 68 mV/dec, a high $I_{\rm ON}$ of 354 μ A/ μ m at $V_{\rm DS}$ of 1.2 V, a small DIBL of 30 mV/V, a normal-off operation, a negligible $V_{\rm T}$ roll-off, and a remarkably high degree of stability to positive gate bias stress (PBS). The excellent electrical performances could be attributed to the combinatorial effects of ultrathin channel and optimized O₂ annealing. It is found that $T_{\rm ch}$ has a significant effect on TFT performance, where $V_{\rm T}$ is shifted positively and field-effect-mobility ($\mu_{\rm FE}$) is reduced with the decreased $T_{\rm ch}$, explained well by the trap neutral level (TNL) model.

0018-9383 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 1. (a) Device schematic. (b) Illustration of IGZO ALD growth. (c) Fabrication flow of scaled IGZO TFTs, where the maximum temperature during fabrication is 250 °C, qualifying the BEOL applications.

The DIBL is also found to be improved with the reduced T_{ch} , which is attributed to the alleviated self-heating effect (SHE) with thinner channels, suppressing the formation of donor-like traps. On the other hand, optimizing O_2 annealing could significantly alleviate V_T roll-off at scaled L_{ch} and achieve a high degree of stability to PBS, which could be attributed to reduced donor traps without introducing many acceptor traps. Based on these observations, it is believed that the donor-like traps such as oxygen vacancy and hydrogen states are the underlying reason for large DIBL, significant V_T roll-off, and anomaly-negative V_T shift during PBS. A TNL trap model with its possible microscopic origin is proposed, explaining well the dependence of electrical performance on both T_{ch} and O_2 annealing, offering guidance for future device optimization.

II. EXPERIMENT

Fig. 1(a) illustrates the schematic of an ultrathin IGZO TFT with the T_{ch} ranging from 0.7 to 4.3 nm, where 40 nm Ni, 6 nm HfO₂ function as electrode and dielectric, respectively. The IGZO channel was deposited by ALD at 225 °C, with one cycle of ZnO and Ga₂O₃ followed by ten cycles of In₂O₃ forming one super-cycle of the IGZO growth, as shown in Fig. 1(b). The IGZO channel thickness was controlled by the number of super-cycles with a growth rate of ~ 1.25 Å/super-cycle, which was examined by an ellipsometer and high-resolution transmission electron microscope (HRTEM). The detailed TFT fabrication process is depicted in Fig. 1(c). Briefly, the fabrication process started with the deposition of 8 nm Al₂O₃ by ALD at 175 °C on the Si/SiO₂ substrates to obtain a smooth surface. Then, 40 nm Ni was deposited by *e*-beam evaporation as bottom gate, defined by photolithography. Next, 6 nm HfO₂ was deposited by ALD at 200 °C, followed by the deposition of IGZO by ALD at 225 °C. The thickness of IGZO channel were varied from 0.7 to 4.3 nm to investigate the effects of channel thickness on TFT performance. After channel deposition, the IGZO mesa isolations were formed by Cl-based inductively coupled plasma (ICP) etching. Finally, 40 nm Ni was deposited as source/drain contacts by e-beam evaporation, defined by electron beam lithography. The fabricated TFTs have a L_{ch} ranging from 1 μ m to 60 nm. After fabrication, TFTs were subjected to a mild O₂ annealing at 250 °C with respective duration of 1, 10, and 30 min to investigate the effects of oxygen annealing on TFT performance.

Fig. 2. Cross-sectional STEM with EDX elemental mapping of ultrascaled IGZO TFTs after 10 min O_2 annealing, capturing T_{ch} of 1.5 nm and L_{ch} of 60 nm.

Fig. 3. (a) XPS of In $3d_{5/2}$, Ga $2p_{3/2}$, and Zn $2p_{3/2}$ spectrum of 1.5 nm IGZO films. (b) Elemental analysis from XPS spectrum based on IGZO films with T_{ch} of 1.5 and 4.3 nm, showing consistent film composition with high In atomic ratio of 92%.

Fig. 2 shows the cross-sectional scanning transmission electron microscopy (STEM) image of the ultrascaled IGZO TFTs with a T_{ch} of 1.5 nm and a L_{ch} of 60 nm after 10 min O₂ annealing. The energy dispersive X-ray (EDX) spectroscopy elemental mapping suggests the appearance of In, Ga and Zn elements in the channel with the dominance of the In element. This is further confirmed by the X-ray photoelectron spectroscopy (XPS) in Fig. 3, where the chemical composition of ALD IGZO films with thickness of 1.5 and 4.3 nm were analyzed. Both films exhibit a consistently high In ratio of ~92%/4%/4% for In/Ga/Zn, respectively. The high In ratio could be attributed to the high In₂O₃ cycle ratio during IGZO super-cycle ALD growth, which is beneficial for achieving high I_{ON} for IGZO TFTs with scaled T_{ch} .

III. RESULTS AND DISCUSSION

A. Effects of Channel Thickness on TFT Performance

Fig. 4(a) illustrates bi-directional transfer characteristics of IGZO TFTs with a L_{ch} of 60 nm and various T_{ch} of 0.7 to 4.3 nm under V_{DS} of 0.5 V using optimized 10 min O₂ annealing. It is found that the T_{ch} has a significant effect on the electron transport in the IGZO channel. The IGZO TFTs with T_{ch} of 0.7 nm show no observable current while that of 1.5 to 4.3 nm exhibit a well-behaved performance. This is in contrast to that pure In₂O₃ TFTs with T_{ch} of 0.7 nm could still be operational [11], suggesting that Zn and Ga could function as carrier suppressors and transport hinders in the In₂O₃ host. The V_{T} , which is defined at V_{GS} where I_D reaches 1 nA/ μ m, is also

Fig. 4. (a) Transfer characteristics of IGZO TFTs with L_{ch} of 60 nm and varying T_{ch} of 0.7 to 4.3 nm under V_{DS} of 0.5 V, which have undergone optimized 10 min O_2 annealing at 250 °C. (b) Statistical results of extracted V_T as a function of L_{ch} . (c) Extracted transconductance (g_m) as a function of L_{ch} under V_{DS} of 0.05 and 0.5 V for IGZO TFTs with varying T_{ch} . (d) Extracted μ_{FE} from g_m of long-channel IGZO TFTs with L_{ch} of 1 μ m and varying T_{ch} of 1.5 to 4.3 nm.

found to be negatively shifted with the increased T_{ch} . Fig. 4(b) exhibits the extracted V_T as a function of L_{ch} for IGZO TFTs of different T_{ch} . The IGZO TFTs with T_{ch} of 1.5 and 2.2 nm show enhancement-mode (E-mode) operation with positive V_T whereas that of 3.5 and 4.3 nm exhibit depletion-mode (D-mode) with negative V_T . It is also noted that TFTs with different L_{ch} show consistent V_T , which could be attributed to the optimized O₂ annealing and will be discussed in later session. All TFTs show a negligible hysteresis in Fig. 4(a), suggesting a high-quality channel/dielectric interface. This is also evidenced by the low SS values of the IGZO TFTs, where a nearly ideal SS of ~68 mV/dec can be achieved for TFTs with T_{ch} of 1.5 nm.

Fig. 4(c) exhibits the extracted transconductance (g_m) as a function of L_{ch} under V_{DS} of 0.05 and 0.5 V for IGZO TFTs with varying T_{ch} , where $1/L_{ch}$ trend is followed well for TFTs with large L_{ch} . Some deviation from $1/L_{ch}$ trend can be observed for sub-100 nm L_{ch} , suggesting that contact resistance (R_C) starts to play a role and could be related to the increased R_C due to O_2 annealing. The field-effect-mobility (μ_{FE}) can be extracted from g_m of long-channel IGZO TFTs without considering R_C . Fig. 4(d) shows the extracted μ_{FE} for IGZO TFTs of different T_{ch} , where μ_{FE} is reduced from $20.2 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ to $19.1 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, $14.7 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$, and 8.6 cm² $\cdot \text{V}^{-1} \cdot \text{s}^{-1}$ as the T_{ch} is reduced from 4.3 nm to 3.5 nm, 2.2 nm, and 1.5 nm, respectively. Fig. 5(a) and (b) summarize the extracted V_T and μ_{FE} as a function of T_{ch} , where V_T is shifted positively and μ_{FE} is reduced with the decreased T_{ch} . This T_{ch} dependence could be explained Authorized licensed use limited to: Purdue University. Downloaded on

Fig. 5. (a) Extracted V_{T} . (b) μ_{FE} as a function of T_{ch} , where V_{T} is negatively shifted and μ_{FE} is increased with the increased T_{ch} . (c) Proposed TNL model, explaining the T_{ch} dependence.

Fig. 6. Transfer curves of IGZO TFTs under varying V_{DS} with L_{ch} of 60 nm and T_{ch} of (a) 4.3 nm and (b) 1.5 nm, where the DIBL is significantly reduced from 556 to 30 mV/V as T_{ch} is reduced from 4.3 to 1.5 nm. (c) Illustration of alleviated SHE due to reduced T_{ch} , suppressing the formation of donor traps and leading to improved DIBL. (d) Maximum g_m for TFTs with L_{ch} of 60 nm and varying T_{ch} and V_{DS} .

by the TNL model [11], [12], [13], [14], [15], where TNL moves from the conduction band into the bandgap (E_g) of IGZO with the decreased T_{ch} . This is also companied by the enlarged E_g with the reduced T_{ch} due to quantum confinement, all leading to the reduced electron concentration and positively shifted V_T . The reduced μ_{FE} with positively shifted V_T can be explained by the percolation conduction theory [16], [17], where electron transport is hindered by more in-gap states due to the movement of TNL into E_g arising from the reduced T_{ch} .

 $^2 \cdot V^{-1} \cdot s^{-1}$ to 19.1 cm² $\cdot V^{-1} \cdot s^{-1}$, 14.7 cm² $\cdot V^{-1} \cdot s^{-1}$, cm² $\cdot V^{-1} \cdot s^{-1}$ as the T_{ch} is reduced from 4.3 nm m, 2.2 nm, and 1.5 nm, respectively. Fig. 5(a) and marize the extracted V_T and μ_{FE} as a function of ere V_T is shifted positively and μ_{FE} is reduced with eased T_{ch} . This T_{ch} dependence could be explained Authorized licensed use limited to: Purdue University. Downloaded on October 23,2023 at 20:51:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Output characteristics of IGZO TFTs with L_{ch} of 60 nm and T_{ch} of (a) 1.5 nm and (b) 4.3 nm, featuring a high I_{ON} of 354 and 1080 μ A/ μ m, respectively.

Fig. 8. Transfer characteristics of IGZO TFTs with T_{ch} of 1.5 nm and L_{ch} ranging from 1 μ m to 60 nm under V_{DS} of 0.5 V (a) asdeposited, (b) 1 min, (c) 10 min, and (d) 30 min O₂-annealed IGZO TFTs, suggesting a solution to the V_{T} roll-off issue with a reduced I_{ON} .

result in the loss of switching behavior. This is in contrast to that TFTs with $T_{\rm ch}$ of 1.5 nm exhibit a high $I_{\rm ON}/I_{\rm OFF}$ of > 10^{11} and a small DIBL of ~30 mV/V with $V_{\rm DS}$ up to 1.2 V. The reduced DIBL could be attributed to less generated heat due to less I_{ON} and more heat dissipation due to the increased surface area to volume ratio with thinner channel [Fig. 6(c)], thus suppressing the formation of donor-like traps such as ionized oxygen vacancy and hydrogen states and resulting in the alleviated SHE [18], [19]. The maximum g_m for TFTs with L_{ch} of 60 nm and varying T_{ch} can be found in Fig. 6(d). Our ALD IGZO TFTs show a high g_m value of ~151 to 265 μ S/ μ m, which are among the best values for the IGZO TFTs [3], [4], [5], [6], [7], [8], [9]. Fig. 7(a) shows the output characteristics of IGZO TFTs with L_{ch} of 60 nm and T_{ch} of 1.5 nm, where a relatively high $I_{\rm ON}$ of 354 μ A/ μ m can be observed under $V_{\rm DS}$ of 1.2 V. An extreme high $I_{\rm ON}$ of

Fig. 9. (a) Extracted $V_{\rm T}$ as a function of $L_{\rm ch}$ for 1, 10, and 30 min O_2 -annealed IGZO TFTs with $T_{\rm ch}$ of 1.5 nm. (b) O 1 s spectrum of 1 and 30 min O_2 -annealed IGZO, showing a reduced V_O and OH contamination. (c) Illustration of possible origin of $V_{\rm T}$ roll-off, where donor traps migrate under high electric field. (d) Contact resistance ($R_{\rm C}$) as a function of gate overdrive voltage ($V_{\rm GS} - V_{\rm th}$) for 1, 10, and 30 min O_2 -annealed IGZO TFTs with $T_{\rm ch}$ of 1.5 nm, where the reduced $I_{\rm ON}$ could be attributed to the increased $R_{\rm C}$.

1080 μ A/ μ m can be achieved in Fig. 7(b) for TFTs with T_{ch} of 4.3 nm under V_{DS} of 0.8 V. The enhanced current drivability is attributed to the increased electron concentration and mobility with the increased T_{ch} .

B. Effects of Oxygen Annealing on TFT Performance

Fig. 8(a)-(d) illustrates bi-directional transfer characteristics of IGZO TFTs with T_{ch} of 1.5 nm and L_{ch} ranging from 1 μ m to 60 nm under V_{DS} of 0.5 V, which have the as-deposited or O2-annealed channel with respective annealing time of 1, 10, and 30 min. It is interesting to note that the as-deposited IGZO TFTs exhibit a large hysteresis window and negative $\Delta V_{\rm T}$ with the decreased $L_{\rm ch}$. With the increased O_2 annealing time, a shrinking hysteresis window and a reduced $V_{\rm T}$ variation among different $L_{\rm ch}$ can be observed accompanied by a decreased $I_{\rm ON}$. The extracted $V_{\rm T}$ as a function of L_{ch} for as-deposited TFTs and O₂-annealed TFTs of different duration is depicted in Fig. 9(a). At least five devices of the same L_{ch} were measured for the average extraction with error bars standing for the standard deviation. It is found that an overall positively shifted $V_{\rm T}$, an alleviated $V_{\rm T}$ roll-off and a smaller error bar can be achieved with the increased O₂ annealing time. This suggests that O₂ annealing could effectively reduce the trap states in IGZO TFTs, leading to the shrinking hysteresis window, more positive $V_{\rm T}$ and smaller device-to-device variation. These trap states are also the underlying reasons for the $V_{\rm T}$ roll-off at scaled $L_{\rm ch}$.

5

References	Structure	T _{ch} (nm)	L _{ch} (nm)	$I_{\rm on}/I_{\rm off}$	SS (mV/dec)	$I_{on} \textcircled{@} V_{DS} = 1V,$ $V_{GS} - V_T = 2V$	DIBL (mV/V)	V _T >0?
[3]	Back-gate	3.6	38	2×10 ⁸	87	160	187	No
[4]	Top-gate	30	100	5×10^{8}	80	620	45	No
[5]	Back-gate	8	45	108	105	55	120	No
[6]	Top-gate	10	40	10^{8}	174	NA	NA	No
[7]	Back-gate	8	12.8	2×10^{8}	NA	635	NA	No
[8]	Double-gate	3	30	5×10 ⁸	63	615	10	Yes
[9]	Back-gate	8	60	1011	NA	800	NA	Yes
This work	Back-gate	1.5	60	10 ¹¹	68	208	30	Yes

TABLE I BENCHMARKING TABLE FOR ALD IGZO TFTS WITH OTHER RECENTLY REPORTED SPUTTERED IGZO TFTS

NA: Not applied. It is noted that the reliability performance is not evaluated and the V_T roll-off issues also exist in previous reports [3-9].

To shed light on the function of oxygen annealing, XPS of O 1 s spectrum for 1 and 10 min O₂-annealed IGZO films with $T_{\rm ch}$ of 1.5 nm were taken. A significant reduction in oxygen vacancy and hydrogen contamination can be observed with the increased O₂ annealing time in Fig. 9(b). Both oxygen vacancy and hydrogen states have been recognized as donor states in IGZO, giving rise to excessive electrons and negative $V_{\rm T}$ in IGZO TFTs [20], [21], [22]. Thus, by reducing donor traps such as oxygen vacancy and hydrogen states, a more positive $V_{\rm T}$, a reduced hysteresis window and smaller deviceto-device variations can be achieved. The alleviated $V_{\rm T}$ roll-off could also be explained by the reduced donor traps in Fig. 9(c). These donor traps are promoted to migrate under high electric field in short-channel TFTs with less migration length, leading to the formation of current path under lower V_{GS} and resulting in lower $V_{\rm T}$ compared to that of long-channel TFTs. Thus, O₂ annealing could effectively reduce donor traps and suppress the formation of current path due to the migration of donor traps, alleviating the $V_{\rm T}$ roll-off at scaled $L_{\rm ch}$. However, longtime O_2 annealing is also found to reduce I_{ON} significantly in Fig. 8. This could be explained by the increased $R_{\rm C}$ with the increased O_2 annealing time in Fig. 9(d), where R_C as a function of gate overdrive voltage $(V_{\rm GS} - V_{\rm th})$ are plotted for 1, 10, and 30 min O_2 -annealed IGZO TFTs with T_{ch} of 1.5 nm. It is found that $R_{\rm C}$ is increased by ~four and ~tenfold when O₂ annealing time is increased from 1 to 10 min and 30 min, respectively. The increased $R_{\rm C}$ could be due to the reduced electron density in the channel, oxidation of metal contact, and the formation of interfacial barrier between metal contact and channel [23].

C. Positive Gate Bias Stability Test

The effects of O₂ annealing and T_{ch} on PBS performance of IGZO TFTs were also systematically investigated. During the PBS test, the gate is biased at V_{T} + 3 V while the source and drain are grounded for a stress time of 2000 s. Fig. 10(a)–(c) exhibit the evolution of transfer characteristics of IGZO TFTs with L_{ch} of 80 nm and T_{ch} of 1.5 nm during PBS test, which have undergone different O₂ annealing time. It is interesting to note that the 1 min O₂-annealed TFTs show a negative ΔV_{T}

of -134 mV whereas the 30 min O₂-annealed TFTs show a positive $\Delta V_{\rm T}$ of +173 mV. The 10 min O₂-annealed TFTs exhibit a remarkably high PBS stability with a small $\Delta V_{\rm T}$ of +53 mV. The transition of $\Delta V_{\rm T}$ from negative to positive with increased O_2 annealing time can be observed in Fig. 10(d). On the other hand, the T_{ch} of IGZO TFTs is also found to play an important role in PBS performance. Fig. 10(e)-(g)exhibit the evolution of transfer characteristics of IGZO TFTs with L_{ch} of 80 nm and varying T_{ch} using the optimized 10 min O_2 annealing. It is also interesting to note that all TFTs exhibit negative $\Delta V_{\rm T}$ and the magnitude of negative $\Delta V_{\rm T}$ is also increased with the increased $T_{\rm ch}$. The IGZO TFTs with $T_{\rm ch}$ of 2.2, 3.5, and 4.3 nm exhibit $\Delta V_{\rm T}$ of -19, -160, and -231 mV, respectively. It is noted that the IGZO TFTs with $T_{\rm ch}$ of 2.2 nm also exhibit excellent PBS stability, with only marginal negative $\Delta V_{\rm T}$. Fig. 10(h) summaries the $\Delta V_{\rm T}$ of IGZO TFTs with different T_{ch} and same O_2 annealing duration of 10 min as a function of stress time, where the transition from negative to positive can be observed with reduced T_{ch} .

Based on these observations, we propose a TNL model to explain the dependence of the electrical performance of IGZO TFTs on O_2 annealing and T_{ch} (Fig. 11). It is generally believed that the electron trapping at interface trap states leads to the positive $\Delta V_{\rm T}$ under PBS test [24]. This could explain the electrical performance of IGZO TFTs in previous reports with large device dimensions and relatively low current drivability, aimed at display applications. However, for scaled devices with high current drivability, new defects could be generated under a high electric field and severe self-heating, which may be insignificant in previous IGZO TFTs. Thus, it is believed that the generation of different types of traps in addition to electron trapping could be the underlying mechanism, which can be described by the TNL model. In this model, the TNL level presents the branch point of the interface traps, below which traps are acceptor-like traps becoming electrically neutral if filled and above which are donor-like becoming electrically positive if empty [15], [25]. This could explain the PBS stability of IGZO TFTs with different T_{ch} , where the TNL moves from the conduction band into the E_g of IGZO with the reduced T_{ch} . As a result, the Fermi level (E_F) may reside in the conduction band of IGZO TFTs with

Fig. 10. Evolution of transfer curves of IGZO TFTs with L_{ch} of 80 nm and T_{ch} of 1.5 nm under gate stress voltage of V_T + 3 V upon (a) 1 min, (b) 10 min, and (c) 30 min O₂ annealing. (d) Extracted ΔV_T as a function of stress time for IGZO TFTs with T_{ch} of 1.5 nm, where a transition from negative to positive can be observed with increased annealing time. Evolution of transfer curves of IGZO TFTs with L_{ch} of 80 nm and varying T_{ch} under gate stress voltage of V_T + 3 V using 10 min O₂ annealing. (e) T_{ch} of 4.3 nm. (f) 3.5 nm. (g) 2.2 nm. (h) Extracted ΔV_T as a function of stress time for 10 min O₂-annealed IGZO TFTs with varying T_{ch} , where a transition from negative to positive can be observed with reduced T_{ch} .

Fig. 11. Proposed TNL models and possible origins of two different types of traps, explaining the ΔV_T behaviors under PBS test for IGZO TFTs with different O₂ annealing conditions and varying T_{ch} .

large T_{ch} during the PBS test, precipitating the formation of donor-like traps and leading to the negative $\Delta V_{\rm T}$. For IGZO TFTs with small T_{ch} , the E_F still lies in the E_g of IGZO during PBS test and these in-gap states could function as acceptorlike traps, causing positive $\Delta V_{\rm T}$. The TNL model could also explain the dependence of PBS stability performance on O2 annealing time. Similar to T_{ch} , increased O₂ annealing time could also move the TNL down toward the Eg of IGZO, which is evidenced by the positively shifted $V_{\rm T}$, explaining the transition of $\Delta V_{\rm T}$ from negative to positive. In addition, from XPS spectrum, these donor-like traps could be the ionized oxygen vacancy and/or hydrogen state [20], [21], [22], which could be significantly reduced by O_2 annealing. On the other hand, acceptor-like traps may origin from the peroxide state with excessive oxygen upon long-time O2 annealing, which have been reported previously [26], [27], [28]. Thus, the TNL

model could explain well the dependence of $\Delta V_{\rm T}$ behaviors for IGZO TFTs on both O₂ annealing and $T_{\rm ch}$, which provides a guidance of achieving a high bias stability by balancing these two types of traps.

D. Benchmarks

Table I benchmarks our ALD IGZO TFTs with other recently reported sputtered IGZO TFTs with sub-100 nm L_{ch}. Our ALD IGZO TFTs show comparable electrical performance with L_{ch} of 60 nm and a much thinner T_{ch} of 1.5 nm, including a high $I_{\rm ON}/I_{\rm OFF} \sim 10^{11}$, a decent high $I_{\rm ON}$ of 208 μ A/ μ m under V_{DS} of 1 V and gate overdrive of 2 V, a steep SS of 68 mV/dec, a small DIBL of 30 mV/V and a normal-off operation, which is comparable to the stateof-art sputtered IGZO TFTs. Furthermore, the $V_{\rm T}$ roll-off at scaled L_{ch} is significantly resolved by optimizing O₂ annealing in this work, which also exists in previous sputtered IGZO TFTs [3], [4], [5], [6], [7], [8], [9]. Additionally, a remarkably high degree of stability to the PBS is also achieved in our ALD IGZO TFTs, which has not been evaluated in previous reports [3], [4], [5], [6], [7], [8], [9] and is of great importance for practical applications.

IV. CONCLUSION

In summary, we report for the first time BEOL-compatible IGZO TFTs with extremely scaled T_{ch} down to 1.5 nm and L_{ch} down to 60 nm by ALD. The effects of T_{ch} and O_2 annealing on the electrical performance of IGZO TFTs were systematically investigated. By using optimized O_2 annealing

conditions, the ALD IGZO TFTs with scaled $T_{\rm ch}$ of 1.5 nm and $L_{\rm ch}$ of 60 nm exhibit desirable electrical performance including a high $I_{\rm ON}/I_{\rm OFF} \sim 10^{11}$, a decent high $I_{\rm ON}$ of 354 $\mu A/\mu$ m under $V_{\rm DS}$ of 1.2 V, a steep SS of 68 mV/dec, a small DIBL of 30 mV/V, and a normal-off operation. Furthermore, the $V_{\rm T}$ roll-off issue at scaled $L_{\rm ch}$ is resolved together with a remarkably high degree of stability to the PBS, which could be explained well by a TNL trap model with possible microscopic origin. This study not only proves that ALD IGZO TFTs with excellent electrical performance could be highly promising for BEOL-compatible logic and memory applications toward monolithic 3-D integration, but also provide some new insights into underlying reason for reliability issues and undesirable electrical properties such as DIBL, $V_{\rm T}$ roll-off in scaled oxide TFTs.

REFERENCES

- [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," *Nature*, vol. 432, pp. 488–492, Nov. 2004, doi: 10.1038/nature03090.
- [2] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," *Sci. Technol. Adv. Mater.*, vol. 11, no. 4, Feb. 2010, Art. no. 044305, doi: 10.1088/1468-6996/11/4/044305.
- [3] J. Liu et al., "Low-power and scalable retention-enhanced IGZO TFT eDRAM-based charge-domain computing," in *IEDM Tech. Dig.*, Dec. 2021, p. 21, doi: 10.1109/IEDM19574. 2021.9720576.
- [4] K. Han et al., "First demonstration of oxide semiconductor nanowire transistors: A novel digital etch technique, IGZO channel, nanowire width down to 20 nm, and ion exceeding 1300 μ A/ μ m," in *Proc. Symp. VLSI Technol.*, Jun. 2021, pp. 1–2.
- [5] S. Subhechha et al., "First demonstration of sub-12 nm Lg gate last IGZO-TFTs with oxygen tunnel architecture for front gate devices," in *Proc. Symp. VLSI Technol.*, Jun. 2021, pp. 1–2.
- [6] S. Samanta, K. Han, C. Sun, C. Wang, A. V. Thean, and X. Gong, "Amorphous IGZO TFTs featuring extremely-scaled channel thickness and 38 nm channel length: Achieving record high G_{m,max} of 125 μS/μm at V_{DS} of 1 V and I_{ON} of 350 μA/μm," in *Proc. IEEE Symp. VLSI Technol.*, Jun. 2020, pp. 1–2, doi: 10.1109/VLSITechnology18217.2020.9265052.
- [7] C. Wang et al., "Extremely scaled bottom gate a-IGZO transistors using a novel patterning technique achieving record high gm of 479.5 μS/μm (VDS of 1 V) and fT of 18.3 GHz (VDS of 3 V)," in *Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits)*, Jun. 2022, pp. 294–295, doi: 10.1109/VLSITechnologyandCir46769.2022.9830393.
- [8] K. Chen et al., "Scaling dual-gate ultra-thin a-IGZO FET to 30 nm channel length with record-high $G_{m,max}$ of 559 μ S/ μ m at V_{DS} = 1 V, record-low DIBL of 10 mV/V and nearly ideal SS of 63 mV/dec," in *Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits)*, Jun. 2022, pp. 298–299, doi: 10.1109/VLSITechnologyand-Cir46769.2022.9830389.
- [9] Q. Li et al., "BEOL-compatible high-performance a-IGZO transistors with record high $I_{ds,max} = 1207 \ \mu A/\mu m$ and on-off ratio exceeding 10^{11} at $V_{DS} = 1$ V," in *IEDM Tech. Dig.*, Dec. 2022, pp. 1–4, doi: 10.1109/IEDM45625.2022.10019448.
- [10] M. Si, Z. Lin, Z. Chen, X. Sun, H. Wang, and P. D. Ye, "Scaled indium oxide transistors fabricated using atomic layer deposition," *Nature Electron.*, vol. 5, no. 3, pp. 164–170, Feb. 2022, doi: 10.1038/s41928-022-00718-w.
- [11] M. Si et al., "Why In₂O₃ can make 0.7 nm atomic layer thin transistors," *Nano Lett.*, vol. 21, no. 1, pp. 500–506, Jan. 2021, doi: 10.1021/acs.nanolett.0c03967.

- [12] J. Zhang, D. Zheng, Z. Zhang, A. Charnas, Z. Lin, and P. D. Ye, "Ultrathin InGaO thin film transistors by atomic layer deposition," *IEEE Electron Device Lett.*, vol. 44, no. 2, pp. 273–276, Feb. 2023, doi: 10.1109/LED.2022.3233080.
- [13] M. H. Cho et al., "High-performance amorphous indium gallium zinc oxide thin-film transistors fabricated by atomic layer deposition," *IEEE Electron Device Lett.*, vol. 39, no. 5, pp. 688–691, May 2018, doi: 10.1109/LED.2018.2812870.
- [14] M. H. Cho, C. H. Choi, H. J. Seul, H. C. Cho, and J. K. Jeong, "Achieving a low-voltage, high-mobility IGZO transistor through an ALD-derived bilayer channel and a Hafnia-based gate dielectric stack," ACS Appl. Mater. Interfaces, vol. 13, no. 14, pp. 16628–16640, Apr. 2021, doi: 10.1021/acsami.0c22677.
- [15] A. Charnas, M. Si, Z. Lin, and P. D. Ye, "Improved stability with atomic-layer-deposited encapsulation on atomic-layer In₂O₃ transistors by reliability characterization," *IEEE Trans. Electron Devices*, vol. 69, no. 10, pp. 5549–5555, Oct. 2022, doi: 10.1109/TED. 2022.3198926.
- [16] S. Lee et al., "Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors," *Appl. Phys. Lett.*, vol. 98, no. 20, May 2011, Art. no. 203508, doi: 10.1063/ 1.3589371.
- [17] T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," *NPG Asia Mater.*, vol. 2, no. 1, pp. 15–22, Jan. 2010, doi: 10.1038/asiamat.2010.5.
- [18] P.-Y. Liao et al., "Alleviation of self-heating effect in top-gated ultrathin In₂O₃ FETs using a thermal adhesion layer," *IEEE Trans. Electron Devices*, vol. 70, no. 1, pp. 113–120, Jan. 2023, doi: 10.1109/TED.2022.3221358.
- [19] P.-Y. Liao et al., "Transient thermal and electrical co-optimization of BEOL top-gated ALD In₂O₃ FETs on various thermally conductive substrates including diamond," in *IEDM Tech. Dig.*, Dec. 2022, p. 12, doi: 10.1109/IEDM45625.2022.10019438.
- [20] B. Ryu, H.-K. Noh, E.-A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors," *Appl. Phys. Lett.*, vol. 97, no. 2, Jul. 2010, Art. no. 022108, doi: 10.1063/1.3464964.
- [21] A. D. J. de Meux, A. Bhoolokam, G. Pourtois, J. Genoe, and P. Heremans, "Oxygen vacancies effects in a-IGZO: Formation mechanisms, hysteresis, and negative bias stress effects," *Phys. Status Solidi* (A), vol. 214, no. 6, Jun. 2017, Art. no. 1600889, doi: 10.1002/pssa.201600889.
- [22] Q. Kong et al., "New insights into the impact of hydrogen evolution on the reliability of IGZO FETs: Experiment and modeling," in *IEDM Tech. Dig.*, Dec. 2022, p. 30, doi: 10.1109/IEDM45625. 2022.10019394.
- [23] J. Zhang et al., "Fluorine-passivated In₂O₃ thin film transistors with improved electrical performance via low-temperature CF₄/N₂O plasma," *Appl. Phys. Lett.*, vol. 121, no. 17, Oct. 2022, Art. no. 172101, doi: 10.1063/5.0113015.
- [24] J.-M. Lee, I.-T. Cho, J.-H. Lee, and H.-I. Kwon, "Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors," *Appl. Phys. Lett.*, vol. 93, no. 9, Sep. 2008, Art. no. 093504, doi: 10.1063/1.2977865.
- [25] D. Zheng et al., "First demonstration of BEOL-compatible ultrathin atomiclayer-deposited InZnO transistors with GHz operation and record high bias-stress stability," in *IEDM Tech. Dig.*, Dec. 2022, pp. 1–4, doi: 10.1109/IEDM45625.2022.10019452.
- [26] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, and H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors," *Appl. Phys. Lett.*, vol. 99, no. 9, Aug. 2011, Art. no. 093507, doi: 10.1063/1.3633100.
- [27] H.-H. Nahm, Y.-S. Kim, and D. H. Kim, "Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state," *Phys. Status Solidi* (B), vol. 249, no. 6, pp. 1277–1281, Jun. 2012, doi: 10.1002/pssb.201147557.
- [28] S. Choi et al., "Systematic decomposition of the positive bias stress instability in self-aligned coplanar InGaZnO thin-film transistors," *IEEE Electron Device Lett.*, vol. 38, no. 5, pp. 580–583, May 2017, doi: 10.1109/LED.2017.2681204.