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The electric magnetochiral anisotropy is a nonreciprocal phenomenon accessible via second harmonic
transport in noncentrosymmetric, time-reversal invariant materials, in which the rectification of current, I,
can be controlled by an external magnetic field, B. Quantum geometry, which characterizes the topology of
Bloch electrons in a Hilbert space, provides a powerful description of the nonlinear dynamics in topological
materials. Here, we demonstrate that the electric magnetochiral anisotropy in noncentrosymmetric polar
media owes its existence to the quantum metric, arising from the spin-orbit coupling, and to large Born
effective charges. In this context, the reciprocal magnetoresistance SB? is modified to R(I, P, B) =
Ry[1 + pB? 4+ y*1 - (P x B)], where the chirality dependent y* is determined by the quantum metric
dipole and P is the polarization. In 2D, we predict a universal scaling y=(V) ~ V=>/2, which we compare to
available phase sensitive, second harmonic transport measurements on hydrothermally grown tellurium
films under applied gate voltage, V. The control of rectification by varying I, P, B, and V, demonstrated in
this work, opens up new avenues for the building of ultrascaled complementary metal-oxide-semiconductor

circuits.
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Introduction—Nonreciprocal transport phenomena occur
when the flow of charge, such as electrons and holes in
semiconductors, depends on the direction of the current,
resulting in an asymmetric conduction. In pn junctions, this
nonreciprocity arises from the interface between p-type and
n-type semiconductor materials, where a built-in electric
field creates a depletion region that allows current to flow
more easily in one direction than in the other [1]. This
behavior is fundamental to the operation of diodes, acting
as one-way gates for current flow and enabling rectification
of alternating currents, signal modulation, and voltage
regulation [2].

One of the basic ingredients of nonreciprocal phenomena
is the lack of inversion symmetry in chiral molecules, films,
or crystals [3]. Noncentrosymmetry leads to directional
propagation of quantum particles, giving rise to various
phenomena such as the natural optical activity in chiral
materials [4]; the nonreciprocal magnon transport or spin
current in chiral magnets [5]; the conversion of a coherent
lattice vibration into a quasistatic structural distortion in
nonlinear phononics [6]; and the unidirectional magneto-
resistance, or electrical magnetochiral anisotropy (eMChA),
in polar and chiral semiconductors [7]. The eMChA is a
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nonreciprocal phenomenon observed in materials with
a large magnetoresistance, such as a Si-based field effect
transistor [8]. Other systems also exhibit this type of
unidirectional magnetoresistance, such as the polar semi-
conductor BiTeBr [9]; the multiferroic semiconductor (Ge,
Mn)Te [10]; and nonpolar systems, such as the topological
insulator nanowire heterostructure (Bi;_,Sb,),Te; under
applied voltage bias [11], twisted bilayer graphene [12],
and the topological semimetal ZrTes [13]. In all of these
systems, the ability to control rectification using external
parameters such as current, voltage, polarization, and mag-
netic field opens up new possibilities for the design of, for
instance, ultrascaled complementary metal-oxide-semicon-
ductor circuits [14].

The underlying mechanism responsible for the nonrecip-
rocal carrier diffusion in polar media can be elegantly
understood through a heuristic argument proposed by
Rikken [8]. This mechanism is the transport analog of an
optical phenomenon observed when light with wave vector k
propagates perpendicularly to crossed electric E and mag-
netic B fields [15]. In this context, the effective refractive
index receives a relativistic contribution of the form
on ~ k - v, obtained by means of a Lorentz transformation

© 2025 American Physical Society
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FIG. 1. (a) Setup used in this work. The static and uniform
electric, £||x, and magnetic, B||y, fields are perpendicular to the
flow of the ac-current j(w)||z and voltage related, ac-electric field
E(w)|z. (b) Topological singularities, such as a Weyl node,
introduce both a radial spin texture (and Berry curvature) and
momentum space geodesics (white grid) for the adiabatic
evolution of quantum states.

to a moving frame with velocity v = cE x B/B? with
respect to the laboratory [16]. Rikken argued that an
analogous mechanism applies to diffusive transport [8].
When a current I ~ (k) flows perpendicularly to crossed
electric (£,) and magnetic (B) fields, see Fig. 1(a), the
reciprocal magnetoresistance, AR/R = 1 + pB2, acquires a
nonreciprocal, relativistic correction of the form SR/R =
2yI - (€y x B). This correction arises because, in the labo-
ratory frame, the motion of a charged particle acquires an
additional drift velocity v = c€y x B/B2 The field £, can
represent an applied electric field, the field due to a net
polarization P in noncentrosymmetric materials, or the
field resulting from a band offset at the interface of semi-
conductor heterostructures [8]. Rikken further conjectured
that the nonlinear conductivity would be given by &;;((k) -
&y x B) [8], extending Onsager’s reciprocity relations for
time-reversal invariant systems [17], and it would be acces-
sible via second harmonic transport experiments.

In this Letter, we demonstrate that Rikken’s conjecture
arises naturally from the quantum geometric properties [18]
of noncentrosymmetric media, which are characterized by
strong spin-orbit interactions (relativistic corrections) and
large Born effective charges (macroscopic polarization).
Using Boltzmann’s semiclassical approach [19], we show
how the quantum metric dipole (QMD) constrains the
geodesic flow of velocities in Hilbert space [20-23], gen-
erating a nonzero component for the longitudinal current
from the Lorentz force and a nonlinear magnetoconductivity
of the form &;;((v) qup - €0 % B). To validate our results we
performed density functional theory (DFT) calculations to
estimate the polar electric field, £,, and compared our
findings to phase-sensitive, second harmonic transport
measurements in 2D n-type tellurium films at low temper-
ature, varying both the applied magnetic field and the gate
voltage [24]. We show, unambiguously, that the eMChA in
2D tellurium is polar, not chiral, deviating from the chiral
eMChA recently demonstrated for chiral conductors [25].
This finding is significant for a material relevant for
materials science and electronics [26].

Second harmonics—The polarization-induced eMChA is
a nonlinear phenomenon described by the relation

R(I,B,P) = Ro[l + B> +y*1- (Px B)], (1)

where R is the resistance, f# is the reciprocal magneto-
resistance coefficient, and y* is the nonreciprocal eMChA
coefficient for the two possible chiralities [8,15,27]. This
phenomenon is described by a fourth-rank tensor, G, in the
expansion of the ac current density, j, in powers of the ac
electric field strength and the magnetic field [28]:

H
Ji :Glej+6§Jk)EjBk+GljkajEka (2)

Here, o;; is the linear conductivity, and og,]() represents the

Hall conductivity. The eMChA is encoded in the tensor G,
symmetric in j and k. By solving for E as a function of B
and j up to order Bj?, the tensor G is [28]

Gijkf X YijkeOj Ok ks (3)

and the fourth-rank tensor y;;, characterizes the second-
harmonic generation described by E2* =y, k1J7Ji By, under
conditions of a long period T = 27z/w [27,28]. The relative
nonreciprocal resistance therefore reads as [29]

4vV%® AR
2 — — =2y*I-(PxB), (4)
sz R()

and the eMChA coefficient, y*, introduced in Eq. (1) for an
isotropic system, scales as y* ~ G/o.

Quantum geometry—The existence of a nonlinear con-
ductivity, even at the smallest perturbation, has been
recently claimed to have a quantum geometric origin [18].
Quantum mechanics can be formulated as a geometric
theory in a Hilbert space, where the distance between
adjacent quantum states |ny ) and |ny_ 4 ) in the nth band is
determined by the quantum geometric tensor [31],

Q' (k) = g"(k) ~ L (k). (5)

The Berry curvature, Q"(k), has long been recognized to
generate several important linear transport phenomena, such
as the quantum anomalous Hall effect [32,33], due to its role
as a magnetic field in reciprocal space. In contrast, the
quantum metric tensor, g"(k), has only recently been
experimentally probed, through nonlinear transport mea-
surements, such as the nonlinear Hall effect and nonlinear
magnetoresistance [21], and angle-resolved photoemission
spectroscopy [34]. The quantum metric constrains Bloch
electrons to follow momentum space geodesics [23], as
shown in Fig. 1(b), thereby modifying the wave packet
dynamics. The calculation of g"(k) and Q"(k) is
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straightforward for a 2 x 2 Hamiltonian H = d(k) - o,
where ¢ = (0,,0,,0,) are Pauli matrices and d is a 3D-
vector. In this case, for the two bands n = 4+ and with

0, = 0/0k,, we have

1 1
gy = |ud - 0 = (0,d-)(0,d - d)} ,
9,d x 9,d) -d

243

Boltzmann transport—We compute the current density
(V is the volume of the unit cell),

nk

up to order E’B in Eq. (2). Here, f,(k) is the non-
equilibrium distribution, satisfying the Boltzmann transport
equation in the relaxation time approximation [19]

o Ty ke = ()

and  6f,(k) = f,(k) - f3(k), where  fy(k)=1/
(ePlen®)=#] 1 1) is the equilibrium Fermi-Dirac distribution,
€, (k) is the dispersion relation of the n band, f = 1/kgT is
the inverse temperature, y is the chemical potential, and
7y 1s the relaxation time near a high-symmetry point in
the Brillouin zone due to elastic scattering from impurities
[35-37]. For homogeneous systems df,/dr =0. The
velocity, I,, and the acceleration, kn, are defined by the
semiclassical equations of motion [23]:

t, = vi +k, xQ +k, - il"(0g) - k,, 9)
hk, = —e(E + &) — ef, x B, (10)

where &, is a static and uniform electric field resulting from
the macroscopic polarization and we assumed ¢ = 1. In
Eq. (9), the first term, vi = (1/h)Vye,(Kk), represents the
bare band velocity; the second term, kn x Q, is the
anomalous velocity, arising from the Berry curvature;
and the third term is the geodesic contribution due to
the QMD, with k, -T"(dg) - k, =Tk, Kk, ,, and the
Christoffel symbols, Ty, = 20,87, — (3,87, + 0,85;)/2,
given in terms of the energy normalized quantum metric,
8 = g;;/(ex —e4) [20]. This term encodes the effects of
quantum geometry on carrier dynamics, Fig. 1(b), leading
to a geometric contribution to nonlinear transport.

In the dc limit and in the presence of a static and uniform
magnetic field B, 61, (k) has a semiclassical correction due
to the Lorentz force [29], as in Eq. (10):

(a) (b) e, ©,, ;
SSSese A Tw o L
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FIG. 2. (a) Trigonal a-Te crystal structure consists of spiral
chains with three-fold screw symmetry held together by inter-
chain van der Waals bonds. (b) First Brillouin zone of Te.
(c) Band features near the direct band edge at the H point along
the A-H-K directions.

5fn(k) = €Tk |:rn -E -+ €Tk rn ;l( B . Vk(rn . E):| <%> .

Substituting ¥, from Eq. (9) into 6f, (k) and selecting the
contribution from the QMD, 2¢’E -T'(dg) - €,/h?, the
correction to the current at order EZB becomes

.28
o) = WZTI%VH[E -I"(0g) - &) x B}
nk

Vg B)(-20),

This expression is of the form (v{)omp - €9 x B, valida-
ting Rikken’s conjecture [8]. The momentum dependent
Christoffel symbols, I'(k), emerge as a QMD contribution
to the nonlinear conductivity. Writing Jj as §j; =
GijwE;ExBs, we obtain the eMChA tensor as

265 2 n n n afo
Gijie = szk Vk il€ab T hn (08)E0.m]0u Vi oe,)’

nk
(11)

where the Levi-Civita symbol is defined as €,,, = +1 and,
at low temperatures, the equilibrium distribution derivative
reduces to (—df%/de,) = 8le, (k) — pu]. The G, tensor is
nonzero because both v, and I'(k) are odd under the
transformation k — —k, and in the presence of a macro-
scopic polarization, the electric field £, # 0. Most impor-
tantly, G, ~ 7%, and since from Eq. (3) Gijs ~ 7ijxr07,
with ¢ ~ 7, we conclude that the eMChA tensor, y;jz, is
intrinsic and is determined entirely by the quantum geo-
metric properties of the material.

n-type 2D tellurium—Tellurium (Te) is a narrow-gap
Weyl semiconductor composed of one-dimensional chiral
chains arranged in a hexagonal lattice. Its a-Te form is
shown in Fig. 2(a), and its two-dimensional counterpart has
attracted significant scientific and technological interest
due to its promising electronic, optoelectronic, and piezo-
electric applications [26]. We investigate n-type 2D Te for
two primary reasons: (i) n-type Te hosts a Weyl node at the
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TABLE 1. Conduction band k - p parameters in H,.

Ax1075 Bx 107 Sx 102 Cx10° Fx 107" Gx 1072
eV ecm?) (eVem?) (eVem) (eVem) (eVem?) (eVem?)

6.7 4.2 5.8 3.6 1.7 0.2

é‘@&

H point in the Brillouin zone, near the conduction band
minimum, see Figs. 2(b) and 2(c), ensuring strong quantum
geometric properties, characterized by I';;;, # 0, and (ii) 2D
Te films exhibit a nonzero net polarization [38] due to the
large Born effective charges associated with the lone pairs,
resulting in £, # 0. Furthermore, in few nanometers thick
a-Te films, the carrier concentration in the conduction band
can be tuned through gating [24], enabling the study of
the G-tensor in Eq. (11) as a function of the chemical
potential, pu.

The conduction band of Te is well described by the k - p
perturbation theory, cast by the Hamiltonian [39]

[ AKZ+BI3 +Sk, Ck_+iGk_k,+ Fki]
" |Ck, —iGk k,+FK*  Ak2+BK3 — Sk,
(12)

where k. = k, + ik, k| =

in k - p, the Hamiltonian includes a linear-in-Sk, term, Sk,
due to the lack of inversion symmetry, and a parabolic
Ak? + Bk contribution. Combining k - p and spin-orbit
perturbations yields off-diagonal, linear-in-k, elements
Ck.., resulting in a principal Weyl node at the H point.
A trigonal warping term, Fk%, generates satellite Weyl
nodes away from the H point, and a term iGk_k, arises
from the k-dependent spin-orbit interaction. All parameters
of 'H, can be obtained experimentally, for example, through
the analysis of magneto-optical transitions [39], with values
listed in Table L.

Expanding H,. in terms of the identity and Pauli matrices
as H. = dy(k)Z 4+ d(k) - o allows us to calculate Q] and
gy using Eq. (6). The G, component of the eMChA
tensor, Eq. (11), can be evaluated numerically; see
Supplemental Material [29]. For clarity and to gain physical
insight, we neglect both the trigonal warping, F = 0, and
the k-dependent spin-orbit interaction, G = 0, the smallest
parameters in Table I. These simplifications allow us to
describe the conduction bands by

e, (k) = AK? + BIZ /S22 + C*k3. (13)

The z component of the velocity, v=(k), for these bands
and the nonzero components of the Christoffel symbol,
Fooo(K) and T, (k), are

\/ k% + k2. Up to second order

51 51 0 [ 2 g g
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FIG. 3. Lone pairs in 2D a-Te give rise to a net polarization, P,
whose largest component is perpendicular to the Z (helices) and §

The upper panel shows the charge distribution in a-Te, with
excess charge represented in yellow and charge deficit given in
blue. The macroscopic polarization is also shown in both bottom
panels for a and ' Te, as a function of an applied electric field
oriented along the x direction.

+ kZSZ
v; (k) =24k £ ——e—0rr,
VS + CRZ
s () = 552CH2k,
Fear 16(C2k2L + 82k2)7/2°
k
F;sz(k) == Ffzx(k) (14)

k.

Away from the Weyl node we can approximate the eigen-
values of H,. by e, (K) ~ 7?k?/2m’, with m*. < m?.In this
case, the velocity and its k, derivative are simply given by
vi = hk/m’ and 0.v; =6,;a/m’. The normalized
eMChA coefficient y* appearing in Eq. (4), y*(u) =

G,..y(u)/o(u), can now be obtained analytically in the
constant relaxation time approximation, 7, = 7 [29], with
the scaling for G, (1) given by [29]

G
Gzzzy(”) :/13—/02’ (15)
and Gy = he’? &, I[(m})™% — (m*)™>?]/(27)*V/2,

with the angular integral

2 582C*sin’(a) cos?(a)
7(C,s) = d .
(€.5) A “ 8[C?sin?(a) + S? cos?(a)]7/?

(16)

The final ingredient in Eq. (11), the electric field &,
arises from the macroscopic polarization in the 2D Te film,
P, and should follow the geometry depicted in Fig. 1. DFT
calculations [29] for a two-layer Te film, using the
Quantum Espresso [40] and Siesta [41] packages, verify
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FIG. 4. Electrical magnetochiral anisotropy in 2D Tellurium.
(a)~(c) Normalized magnetoresistance AR,,/(R,.B,) as a func-
tion of magnetic field rotation angle in the (a) y-z, (b) x-y, and
(c) x-z planes, respectively, demonstrating the predicted polar
dependence; see Eq. (4). (d) Backgate voltage dependence of
AR_./(R_.B,), showing a scaling of y*(V) ~ V=/2 (red curve).
The dashed blue curve shows the numerical calculated scaling,
yE(V) ~ V=278 incorporating trigonal warping, finite F, and k-
dependent spin-orbit interaction, with G # 0. The black squares
are the nonlinear transport measurements data of Ref. [24] at
T = 100 mK. Inset: representation of the ¢ (k) bands featuring a
Weyl node at the origin in k-space.

that this requirement is indeed satisfied. The results are
presented in Fig. 3. Our results show that the polarization is
indeed mostly oriented along the x axis, P|| £ X, with a
magnitude of roughly £18uC/cm? at zero applied electric
field, for a-Te (+) and o'-Te (=) [38,42], and is robust
under variations of an external field applied along the x
axis. We have also observed a small polarization compo-
nent perpendicular to the film, P|| F ¥, while the compo-
nent along the coil direction was always zero, a
consequence of the lone pair geometry.

Discussion—We now compare our results to second
harmonic transport experiments on 2D «a-Te that have been
previously reported in Ref. [24] using the setup shown in
Fig. 1(a). Phase sensitive measurements with magnetic
fields up to 10T revealed the antisymmetric resistance
AR = R(B,I) — R(B, —I) between opposite current direc-
tions [24]. A driving ac current in the small frequency, dc
limit, of / = 12 pA was injected into the system and both
the longitudinal voltage, V%, and its second harmonic, V?;",
were measured. The resulting unidirectional magnetoresist-
ance was found to be linear in both B and I, as reported

in [24]. The proportionality coefficient y* is chirality
sensitive and, combined with the net polarization P,
produces the phenomenology described by Eq. (4). For
magnetic field rotations in the y — z (6 rotation) and x — y
(¢ rotation) planes, the angular dependence of the eMChA
coefficient follows cos 6 and cos ¢ functions, respectively
[24,29]. This behavior is consistent with Eq. (4) for the
dominant polarization component, P||x [Figs. 4(a) and 4(b)],
and provides further evidence for the polar nature of the
eMChA effect in tellurene. Importantly, a smaller, nonzero,
and so far undetected, P component perpendicular to the
film, P|| — y, explains the much smaller eMChA coefficient
(~107% T~!) observed for rotations in the z-x plane (a
rotation) [29], which follows a —sin a function [Fig. 4(c)].
This constitutes a truly remarkable finding (not sample
misalignment, see [29]) and a final piece of evidence toward
a polar nature for the eMChA in tellurene.

To test the universal scaling predicted in Eq. (15),
a gate voltage was used to control the carrier population
in the conduction band [24], through n(V) =«V [29].
Because in 2D u(V) = Vrh*x/(m* + m=) [29] and since
o(V) = n(V)e*r/m*, we find that the normalized y*(u)
coefficient in Eq. (4) decreases following y* (V) ~ G(V)/
o(V) ~ V™2, as shown in Fig. 4(d). This is a genuine
quantum geometric effect and results from the Fermi
surface moving away from the Weyl node and toward
regions in the Hilbert space of increasingly Euclidean
character, as shown in Fig. 1(b).

Conclusions—We have shown that the eMChA in non-
centrosymmetric polar media owes its existence to the
quantum geometric properties and to large Born effective
charges. We have laid Rikken’s conjecture on solid theo-
retical ground, and we unveiled a scaling relationship
between the eMChA coefficient and the chemical potential,
v () ~ u=>/* [29], which we verified experimentally by
comparison to available phase sensitive transport measure-
ments in 2D Te under applied gate voltage, V [24].
Remarkably, we have shown that the voltage, V, can be
used to fine-tune the position of the chemical potential, y,
relative to the Weyl node, where the eMChA becomes
maximized, providing a novel mechanism for quantum
geometric rectification [see inset of Fig. 4(d)]. Our work
further demonstrates the full control of rectification by
varying I, P, B, and V, opening up new venues for the
understanding of nonreciprocal phenomena in advanced
quantum materials and paving the way for the design,
production, and control of rectification devices [14].

Acknowledgments—P. F. acknowledges support of the
program Investigo (Reference No. 200076ID6/BDNS
664047) funded by the European Union through
the Recovery, Transformation and Resilience Plan
NextGenerationEU. V. V. acknowledges financial support
from PNRR MUR (Project No. PE0000023-NQSTI) and
PRIN 2022 (Protocol No. 20228YCYY7). This work is

106602-5



PHYSICAL REVIEW LETTERS 135, 106602 (2025)

supported by the Brazilian funding agencies FAPERIJ
and CNPq.

Data availability—The data that support the findings of
this Letter are openly available [1].

[1] C. Alexander and M. Sadiku, Fundamentals of Electric
Cirtuits (McGraw-Hill Education, New York, 2016).

[2] R.W. Erickson and D. Maksimovié, Fundamentals of
Power Electronics (Springer, Cham, Switzerland, 2020).

[3] Y. Tokura and N. Nagaosa, Nonreciprocal responses from
non-centrosymmetric quantum materials, Nat. Commun. 1,
3740 (2018).

[4] J. Wade, J.N. Hilfiker, J. R. Brandt, L. Liiro-Peluso, L.
Wan, X. Shi, F. Salerno, S.T.J. Ryan, S. Schoche, O.
Arteaga, T. Javorfi, G. Siligardi, C. Wang, D. B. Amabilino,
P.H. Beton, A.J. Campbell, and M.J. Fuchter, Natural
optical activity as the origin of the large chiroptical proper-
ties in 7 — conjugated polymer thin films, Nat. Commun.
11, 6137 (2020).

[5] L. Wang, L. Shen, H. Bai, H.-A. Zhou, K. Shen, and W.
Jiang, Electrical excitation and detection of chiral magnons
in a compensated ferrimagnetic insulator, Phys. Rev. Lett.
133, 166705 (2024).

[6] T. Kahana, D. A.B. Lopez, and D. M. Juraschek, Light-
induced magnetization from magnonic rectification, Sci.
Adv. 10, eado0722 (2024).

[7] Y. Li, Y. Li, P. Li, B. Fang, X. Yang, Y. Wen, D. Zheng, C.
Zhang, X. He, A. Manchon, Z.-H. Cheng, and X. Zhang,
Nonreciprocal charge transport up to room temperature in
bulk Rashba semiconductor o — GeTe, Nat. Commun. 12,
540 (2021).

[8] G.L.J. A. Rikken and P. Wyder, Magnetoelectric anisotropy
in diffusive transport, Phys. Rev. Lett. 94, 016601 (2005).

[9] T. Ideue, K. Hamamoto, S. Koshikawa, M. Ezawa, S.
Shimizu, Y. Kaneko, Y. Tokura, N. Nagaosa, and Y.
Iwasa, Bulk rectification effect in a polar semiconductor,
Nat. Phys. 6, 578 (2017).

[10] R. Yoshimi, M. Kawamura, K. Yasuda, A. Tsukazaki, K. S.
Takahashi, M. Kawasaki, and Y. Tokura, Nonreciprocal
electrical transport in the multiferroic semiconductor (Ge,
Mn)Te, Phys. Rev. B 106, 115202 (2022).

[11] H.F. Legg, M. RoBler, F. Miinning, D. Fan, O. Breunig, A.
Bliesener, G. Lippertz, A. Uday, A. A. Taskin, D. Loss, J.
Klinovaja, and Y. Ando, Giant magnetochiral anisotropy
from quantum-confined surface states of topological insu-
lator nanowires, Nat. Nanotechnol. 7, 696 (2022).

[12] Y. Liu, T. Holder, and B. Yan, Chirality-induced giant
unidirectional magnetoresistance in twisted bilayer gra-
phene, Innovation 2, 100085 (2021).

[13] Y. Wang, H. F. Legg, T. Bomerich, J. Park, S. Biesenkamp,
A. A. Taskin, M. Braden, A. Rosch, and Y. Ando, Gigantic
magnetochiral anisotropy in the topological semimetal
ZrTes, Phys. Rev. Lett. 128, 176602 (2022).

[14] R. Dalven, Introduction to Applied Solid State Physics
(Springer, New York, 1990).

[15] G.L.J. A. Rikken, C. Strohm, and P. Wyder, Observation of
magnetoelectric directional anisotropy, Phys. Rev. Lett. 89,
133005 (2002).

[16] J.D. Jackson, Classical Electrodynamics 3rd ed. (Wiley,
New York, 1999).

[17] P. Hertel, Lectures on Theoretical Physics Linear Response
Theory (University of Osnabriick, Osnabriick, 2005).

[18] T. Liu, X.-B. Qiang, H.-Z. Lu, and X. C. Xie, Quantum
geometry in condensed matter, Natl. Sci. Rev. 12, nwae334
(2025).

[19] J. M. Ziman, Principles of the Theory of Solids 2nd ed.
(Cambridge University Press, Cambridge, England, 1972).

[20] D. Kaplan, T. Holder, and B. Yan, Unification of nonlinear
anomalous hall effect and nonreciprocal magnetoresistance
in metals by the quantum geometry, Phys. Rev. Lett. 132,
026301 (2024).

[21] N. Wang, D. Kaplan, Z. Zhang, T. Holder, N. Cao, A. Wang,
X. Zhou, F. Zhou, Z. Jiang, C. Zhang, S. Ru, H. Cai, K.
Watanabe, T. Taniguchi, B. Yan, and W. Gao, Quantum-
metric-induced nonlinear transport in a topological anti-
ferromagnet, Nature (London) 621, 487 (2023).

[22] T. Holder, D. Kaplan, and B. Yan, Consequences of time-
reversal-symmetry breaking in the light-matter interaction:
Berry curvature, quantum metric, and diabatic motion, Phys.
Rev. Res. 2, 033100 (2020).

[23] T.B. Smith, L. Pullasseri, and A. Srivastava, Momentum-
space gravity from the quantum geometry and entropy of
Bloch electrons, Phys. Rev. Res. 4, 013217 (2022).

[24] C. Niu, G. Qiu, Y. Wang, P. Tan, M. Wang, J. Jian, H. Wang,
W. Wu, and P. D. Ye, Tunable chirality-dependent nonlinear
electrical responses in 2D tellurium, Nano Lett. 23, 8445
(2023).

[25] Y. Jiang, Q. Yi, and B. Yan, Electrical magnetochiral
anisotropy and quantum metric in chiral conductors, 2D
Mater. 12, 015020 (2024).

[26] G. Qiu, A. Charnas, C. Niu, Y. Wang, W. Wu, and P.D.
Ye, The resurrection of tellurium as an elemental two-
dimensional semiconductor, npj 2D Mater. Appl. 6, 17
(2022).

[27] G.L.J. A. Rikken and N. Avarvari, Strong electrical mag-
netochiral anisotropy in tellurium, Phys. Rev. B 99, 245153
(2019).

[28] L.E. Golub, E.L. Ivchenko, and B. Spivak, Electrical
magnetochiral current in tellurium, Phys. Rev. B 108,
245202 (2023).

[29] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/7nxc-j62y for further details regard-
ing the k - p perturbation theory, corrections to the Boltz-
mann equation arising from topological terms, the geodesic
contribution to the velocity, an additional description of the
experimental setup, and the DFT calculations, which in-
cludes Ref. [30].

[30] T. Sohier, M. Calandra, and F. Mauri, Density functional
perturbation theory for gated two-dimensional heterostruc-
tures: Theoretical developments and application to flexural
phonons in graphene, Phys. Rev. B 96, 075448 (2017).

[31] J. Cayssol and J.N. Fuchs, Topological and geometrical
aspects of band theory, J. Nonlinear Opt. Phys. Mater. 4,
034007 (2021).

[32] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[33] G.P. Maruggi, J. Ferreira, E. Baggio-Saitovitch, C.
Enderlein, and M. B. Silva Neto, Hedgehog orbital texture

106602-6


https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41467-020-19951-y
https://doi.org/10.1038/s41467-020-19951-y
https://doi.org/10.1103/PhysRevLett.133.166705
https://doi.org/10.1103/PhysRevLett.133.166705
https://doi.org/10.1126/sciadv.ado0722
https://doi.org/10.1126/sciadv.ado0722
https://doi.org/10.1038/s41467-020-20840-7
https://doi.org/10.1038/s41467-020-20840-7
https://doi.org/10.1103/PhysRevLett.94.016601
https://doi.org/10.1038/nphys4056
https://doi.org/10.1103/PhysRevB.106.115202
https://doi.org/10.1038/s41565-022-01124-1
https://doi.org/10.1016/j.xinn.2021.100085
https://doi.org/10.1103/PhysRevLett.128.176602
https://doi.org/10.1103/PhysRevLett.89.133005
https://doi.org/10.1103/PhysRevLett.89.133005
https://doi.org/10.1093/nsr/nwae334
https://doi.org/10.1093/nsr/nwae334
https://doi.org/10.1103/PhysRevLett.132.026301
https://doi.org/10.1103/PhysRevLett.132.026301
https://doi.org/10.1038/s41586-023-06363-3
https://doi.org/10.1103/PhysRevResearch.2.033100
https://doi.org/10.1103/PhysRevResearch.2.033100
https://doi.org/10.1103/PhysRevResearch.4.013217
https://doi.org/10.1021/acs.nanolett.3c01797
https://doi.org/10.1021/acs.nanolett.3c01797
https://doi.org/10.1088/2053-1583/ada0b8
https://doi.org/10.1088/2053-1583/ada0b8
https://doi.org/10.1038/s41699-022-00293-w
https://doi.org/10.1038/s41699-022-00293-w
https://doi.org/10.1103/PhysRevB.99.245153
https://doi.org/10.1103/PhysRevB.99.245153
https://doi.org/10.1103/PhysRevB.108.245202
https://doi.org/10.1103/PhysRevB.108.245202
http://link.aps.org/supplemental/10.1103/7nxc-j62y
http://link.aps.org/supplemental/10.1103/7nxc-j62y
http://link.aps.org/supplemental/10.1103/7nxc-j62y
http://link.aps.org/supplemental/10.1103/7nxc-j62y
http://link.aps.org/supplemental/10.1103/7nxc-j62y
https://doi.org/10.1103/PhysRevB.96.075448
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1088/2515-7639/abf0b5
https://doi.org/10.1103/RevModPhys.82.1959

PHYSICAL REVIEW LETTERS 135, 106602 (2025)

in p-type tellurium and the antisymmetric nonreciprocal hall
response, Phys. Rev. Mater. 7, 014204 (2023).

[34] M. Kang, S. Kim, Y. Qian, P. M. Neves, L. Ye, J. Jung, D.
Puntel, F. Mazzola, S. Fang, C. Jozwiak, A. Bostwick, E.
Rotenberg, J. Fuji, I. Vobornik, J.-H. Park, J. Checkelsky,
B.-J. Yang, and R. Comin, Measurements of the quantum
geometric tensor in solids, Nat. Phys. 21, 110 (2025).

[35] A. Lavasani, D. Bulmash, and S. Das Sarma, Wiedemann-
franz law and fermi liquids, Phys. Rev. B 99, 085104 (2019).

[36] F. Rittweger, N. F. Hinsche, and I. Mertig, Phonon limited
electronic transport in pb, J. Phys. Condens. Matter 29,
355501 (2017).

[37] A.M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson,
K. A. Persson, and A. Jain, Efficient calculation of carrier
scattering rates from first principles, Nat. Commun. 12,
2222 (2021).

[38] J. Zhang, J. Zhang, Y. Qi, S. Gong, H. Xu, Z. Liu, R. Zhang,
M. Sadi, D. Sychev, R. Zhao, H. Yang, Z. Wu, D. Cui,

L. Wang, C.-L. Ma, X. Wu, J. Gao, Y. Chen, X. Wang, and
Y. Jiang, Room-temperature ferroelectric, piezoelectric and
resistive switching behaviors of single-element te nano-
wires, Nat. Commun. 15, 7648 (2024).

[39] J. Blinowski, G. Rebmann, C. Rigaux, and J. Mycielski,
Magnetooptical investigation of the conduction band in
tellurium, J. Phys. II (France) 38, 1139 (1977).

[40] P. Giannozzi et al., Quantum espresso: A modular and open-
source software project for quantum simulations of materi-
als, J. Phys. Condens. Matter 21, 395502 (2009).

[41] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P.
Ordejon, and D. Sdnchez-Portal, The SIESTA method for ab
initio order-N materials simulation, J. Phys. Condens.
Matter 14, 2745 (2002).

[42] Z.-H. Zhang, L.-Z. Yang, H.-J. Qin, W.-A. Liao, H. Liu, J.
Fu, H. Zeng, W. Zhang, and Y.-S. Fu, Direct observations of
spontaneous in-plane electronic polarization in 2D Te films,
Adv. Mater. 36, 2405590 (2024).

106602-7


https://doi.org/10.1103/PhysRevMaterials.7.014204
https://doi.org/10.1038/s41567-024-02678-8
https://doi.org/10.1103/PhysRevB.99.085104
https://doi.org/10.1088/1361-648X/aa7b56
https://doi.org/10.1088/1361-648X/aa7b56
https://doi.org/10.1038/s41467-021-22440-5
https://doi.org/10.1038/s41467-021-22440-5
https://doi.org/10.1038/s41467-024-52062-6
https://doi.org/10.1051/jphys:019770038090113900
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1002/adma.202405590

	Quantum Geometry and the Electric Magnetochiral Anisotropy in Noncentrosymmetric Polar Media
	Introduction
	Second harmonics
	Quantum geometry
	Boltzmann transport
	n-type 2D tellurium
	Discussion
	Conclusions
	Acknowledgments
	Data availability
	References


