Abstract—In this work, we demonstrate the monolithic 3D integration (M3D) of vertically stacked p-type low-temperature polycrystalline silicon (LTPS) top-gate transistor and n-type back-gate oxide semiconductor transistor, similar to a complementary field-effect transistor (CFET) structure, for complementary metal-oxide-semiconductor (CMOS) logic applications, with a low thermal budget of 450 °C. High-performance logic devices and circuits (inverter, NAND, NOR) are demonstrated with a high voltage gain of 134.3 V/V and a large noise margin of 0.84 V at VDD of 2 V, which are among the best values in reported CMOS inverters by oxide semiconductor n-FET and LTPS p-FET. These devices are enabled by a high electron mobility atomic-layer-deposited (ALD) In2O3 as n-channel to balance the high hole mobility of LTPS. The fabricated ALD In2O3 n-FETs exhibit high electron mobility > 100 cm2/V·s on SiO2/Si substrate and mobility of 23.8 cm2/V·s in the n-FET of the M3D CMOS inverter, which is the highest number in reported CMOS inverters with oxide semiconductor n-FETs and LTPS p-FETs.

I. INTRODUCTION

Oxide semiconductors such as indium oxide (In2O3) [1-4], indium gallium zinc oxide (IGZO) [5-8], indium tungsten oxide (IWO) [9], indium tin oxide (ITO) [10] are considered as promising n-type channel materials for back-end-of-line (BEOL) compatible devices for monolithic 3D integration (M3D) [11], due to their low-temperature process, high electron mobility and low off-leakage current. However, a p-type device with low thermal budget is required for complementary metal-oxide-semiconductor (CMOS) applications. Low-temperature polycrystalline silicon (LTPS) is a potentially suitable candidate for p-FET channel because of the high hole mobility and low-temperature fabrication process at about 400-450 °C [12-16]. Considering the low off-leakage current of oxide semiconductor transistors, the M3D of oxide semiconductor n-FET and LTPS p-FET could not only furtherly improve the area efficiency of CMOS logic circuits with potential on BEOL compatibility, but also be capable for dynamic random-access memory (DRAM) application, particularly for the 2T0C architecture [7, 17-21], taking advantage of the wide bandgap nature of oxide semiconductors for long retention time.

In this work, we report the experimental demonstration of the M3D of vertically stacked ALD In2O3 n-FET and LTPS p-FET for CMOS logic applications. The fabricated ALD In2O3 n-FETs exhibit high electron mobility > 100 cm2/V·s on SiO2/Si and mobility of 23.8 cm2/V·s in the n-FET of the M3D CMOS inverter, which is the highest electron mobility reported in CMOS inverter with oxide semiconductor n-FET and LTPS p-FET. A high inverter gain > 134.3 V/V and a large noise margin of 0.84 V at VDD of 2 V are achieved, indicating high-performance CMOS logic is achieved through the M3D of ALD In2O3 n-FET and LTPS p-FET. The M3D integration process of ALD In2O3 n-FET and LTPS p-FET with a low thermal budget of 450 °C provides a promising route toward 3D CMOS logic and embedded memory applications.

II. EXPERIMENTS

Fig. 1 shows a schematic diagram of an M3D CMOS inverter with vertically stacked ALD In2O3 n-FET and LTPS p-FET, similar to a complementary field-effect transistor (CFET) structure. Top-gate structure is used for LTPS p-FET while back-gate structure is used for ALD In2O3 n-FET, so that the gate electrode can be shared by both n-FET and p-FET. Such structure can be directly applied to CMOS logic such as inverter, NAND, NOR, etc. Fig. 2 and Fig. 3 show the fabrication process flow. The fabrication process started with the plasma-enhanced chemical vapor deposition (PECVD) deposition of 47.5 nm thick a-Si on a glass substrate with SiO2 and SiN buffer layer, followed by dehydrogenation and excimer-laser annealing (ELA) at or below 450 ºC to form the poly-Si channel. A 140 nm thick SiN/SiO2 layer was deposited as the gate insulator (GI) by PECVD at 360 ºC after channel isolation. Then, a Mo layer of 300 nm was deposited by physical vapor deposition (PVD) and patterned to form the gate electrode. At the S/D region of LTPS p-FET, p+ implantation was performed, followed by annealing at 380 ºC for dopant activation. Subsequently, an interlayer dielectric (ILD) of SiO2/SiN stack was deposited, followed by via hole (VIA-1) opening for S/D contacts (Ti/Al/Ti). A planarization layer (PLN) was then formed with via hole (VIA-2) defined for interconnection. A 50 nm thick ITO layer was deposited as the contact electrode and also as the gate electrode for ALD In2O3 n-FET. 12 nm Al2O3 as gate insulator and In2O3 as n-type channel were then deposited by ALD at 200 ºC, with (CH3)3Al (TMA), (CH3)3In (TMIn) and H2O as Al, In and O precursors. Channel isolation was performed by wet etching using diluted hydrochloric acid. Ni S/D electrodes were then evaporated, which were patterned by photolithography. The thermal budget of the M3D fabrication process in this work is about 450 ºC so that it has the potential to be compatible with back-end-of-line (BEOL) process of Si CMOS. ALD In2O3 transistors were also fabricated on SiO2/Si substrate using a similar fabrication process with 5 nm HfO2 as gate insulator, as developed in ref. [3], as control group for comparison with the M3D process.

III. RESULTS AND DISCUSSION

Fig. 4(a) shows a cross-sectional SEM image of an M3D CMOS inverter, capturing the vertically stacked LTPS p-FET and
ALD In₂O₃ n-FET. The LTPS p-FET at the bottom layer has a top-gate structure with Mo as gate electrode and ALD In₂O₃ n-FET has a back-gate structure with ITO as gate electrode. The vias connecting the gate electrodes and S/D electrodes of LTPS p-FET and ALD In₂O₃ n-FET are absent in the cross-section image because these vias are not located at the plane of focused ion beam (FIB) cut. Fig. 4(b) presents the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and the corresponding energy dispersive spectroscopy (EDS) mapping of the ITO/Al₂O₃/In₂O₃/Ni gate stack of the ALD In₂O₃ n-FET, capturing the ITO gate electrode, Al₂O₃ gate insulator, ultrathin In₂O₃ channel, and Ni S/D contacts. Fig. 4(c) presents the bright-field (BF) STEM image and the corresponding EDS mapping of the poly-Si/SiO₂/SiNₓ/Mo gate stack of the LTPS p-FET. Fig. 5 shows the top-view photo image of fabricated CMOS inverter, NAND, and NOR logic gates. The effective layout area can be significantly reduced due to the vertically stacked n-FET and p-FET by the M3D process.

Fig. 6 shows the transfer characteristics of two typical long channel ALD In₂O₃ transistors with 5 nm HfO₂ as gate dielectrics, with different channel thickness (Tₐ₀), fabricated on a SiO₂/Si substrate. The device fabrication process on SiO₂/Si substrate was developed in our previous work with mobility > 100 cm²/V·s, where threshold voltage (Vₜ) can be tuned by thickness and thermal engineering [3]. Fig. 7 presents the field-effect mobility (μₑffective) extracted from the conductance (gₚ) at low VDS of the two devices in Fig. 6. Device with Tₐ₀ of 2.2 nm has a threshold voltage (Vₜ) of -1.15 V exhibiting a high μₑffective of 106.9 cm²/V·s while device with Tₐ₀ of 1.5 nm has a Vₜ of 0.02 V (enhancement-mode) with μₑffective of 90.7 cm²/V·s. These mobilities match well with LTPS p-FET for CMOS logic. Fig. 8 and Fig. 9 show the transfer and output characteristics of a short channel ALD In₂O₃ transistor with channel length (Lₐ₀) of 0.1 μm, Tₐ₀ of 2.2 nm and with 5 nm HfO₂ as gate dielectrics. A high drive current over 2 mA/μm is achieved, also indicating a low contact resistance.

To fully utilize the high mobility property of ALD In₂O₃, ALD In₂O₃ n-FETs with 12 nm Al₂O₃ as gate dielectrics are used to match the voltage range with LTPS p-FET. Fig. 10 and Fig. 11 show the transfer and output characteristics of a typical LTPS p-FET in a vertically stacked M3D CMOS inverter with Lₐ₀ of 5 μm. Fig. 12 presents the μₑffective versus VGS characteristics of the same device, exhibiting a high hole mobility of 96.9 cm²/V·s. Fig. 13 shows the transfer characteristics of a typical ALD In₂O₃ n-FET in the M3D CMOS inverter with Lₐ₀ of 10 μm. Fig. 14 presents the μₑffective versus VGS characteristics of the same device, with an electron mobility of 23.8 cm²/V·s. μₑffective of ALD In₂O₃ in the M3D CMOS inverter is lower than that of ALD In₂O₃ transistors fabricated on the SiO₂/Si substrate, as shown in Fig. 7, most likely due to the surface roughness caused by the 3D integration process. But this μₑffective is still a record on n-FETs among CMOS devices and circuits using oxide semiconductor n-FET and LTPS p-FET, as discussed latter. Further process optimization on the 3D stack and fabrication process can further improve the electron mobility of ALD In₂O₃.

Fig. 15 shows the voltage transfer characteristics of an M3D CMOS inverter with ALD In₂O₃ n-FET with Lₐ₀ of 10 μm and LTPS p-FET with Lₐ₀ of 20 μm at VDD from 2 V to 6 V, exhibiting a full swing on output from VDD to zero. The midpoint voltage is tuned by threshold voltage engineering, based on thickness engineering and thermal engineering approaches as in ref 3, to enhance the noise margin (NM). The inverter gain is presented in Fig. 16, where a high gain of 134.3 V/V is achieved, which is among the best reported values in CMOS inverters by oxide semiconductor n-FET and LTPS p-FET. Fig. 17 shows the NM of the same M3D CMOS inverter as in Fig. 15 at VDD of 2 V. A high noise margin of 0.84 V at VDD of 2 V is achieved. NM here is extracted by the largest possible square method, which is the largest noise margin reported normalized by VDD. The high inverter voltage gain and large noise margin indicate high-performance CMOS logic is achieved by the M3D of ALD In₂O₃ n-FET and LTPS p-FET.

Fig. 18 and Fig. 19 present the VOUT and VIN versus time characteristics at VDD of 4 V of M3D CMOS NAND/NOR logic gates by vertically stacked ALD In₂O₃ n-FET and LTPS p-FET. Four combinations of input states ‘00’, ‘01’, ‘10’, and ‘11’, and corresponding output results are highlighted, demonstrating functional NAND/NOR operation with a full swing across zero to VDD.

Table 1 summarizes the reported state-of-the-art CMOS devices and circuits by oxide semiconductor n-FET and p-FET with LTPS and SnO as channel materials. In this work, we use ALD In₂O₃ as n-FET channel to achieve the highest electron mobility in these CMOS devices. Meanwhile, we have demonstrated 3D vertically stacked CMOS logic gates such as inverter, NAND, NOR gates, using an M3D fabrication process, achieving largest noise margin (normalized by VDD) and highest voltage gain among these devices.

IV. CONCLUSION

In conclusion, the monolithic 3D integration CMOS devices and circuits with vertically stacked top-gate LTPS p-FET and back-gate ALD In₂O₃ n-FET are demonstrated with a low thermal budget of 450 °C. High-performance CMOS logic gates with a high inverter gain > 134.3 V/V and a large noise margin of 0.84 V at VDD of 2 V are achieved, enabled by the high-mobility ALD In₂O₃ as n-channel to balance the high hole mobility of LTPS. The above M3D integration process provides a promising route toward 3D CMOS logic and embedded memory applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding support through the National Key R&D Program of China (Grant No. 2019YFA0706100), Innovation Program of China (Grant No. 2022ZD0210600), and the Multi-Glass Project (MPG) Platform from Tianma Microelectronics Co., Ltd. The work is also partly supported by SRC JUMP ASCENT Center and nCore IMPACT Center.

REFERENCES

Fig. 1. Schematic diagram of a M3D CMOS inverter by ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 2. Fabrication process flow of the M3D of vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 3. Illustration of the M3D fabrication process of vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 4. (a) SEM cross-section image of a CMOS inverter by the M3D process using vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET. TEM and EDS cross-section images of gate stack of (b) ALD In$_2$O$_3$ n-FET and (c) LTPS p-FET.

Fig. 5. Top-view photo image of (a) inverter, (b) NAND, and (c) NOR circuits fabricated using M3D process by stacked ALD In$_2$O$_3$ n-FETs and LTPS p-FETs. The scale bar in each figure is 10 µm. ALD In$_2$O$_3$ n-FETs (bottom) and LTPS p-FETs (top) are vertically stacked on top of each other similar to a CFET structure.

Fig. 6. Comparison of I_D-V_{GS} of back-gate ALD In$_2$O$_3$ n-FETs with different T_{ch} and with 5 nm HfO$_2$ as gate dielectrics fabricated on a SiO$_2$/Si substrate. The device fabrication process was developed in our previous work [3].

Fig. 7. m_{FE}-V_{GS} at low V_{DS} of the same device as in Fig. 6.

Fig. 8. I_D-V_{GS} of a back-gate ALD In$_2$O$_3$ n-FET with L_{ch} of 0.1 µm and T_{ch} of 2.2 nm, and with 5 nm HfO$_2$ as gate dielectrics fabricated on a SiO$_2$/Si substrate. The device fabrication process was developed in our previous work [3].

Fig. 9. I_D-V_{DS} of the same device as in Fig. 8. Maximum drain current > 2 mA/µm is achieved.
Fig. 10. I_{DS}-V_{GS} of a representative top-gate LTPS p-FET with L_{ch} of 5 μm, in a M3D CMOS inverter by vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 11. I_{DS}-V_{GS} of the same device as in Fig. 10.

Fig. 12. I_{DS}-V_{GS} at low V_{DS} of the same device as in Fig. 10.

Fig. 13. I_{DS}-V_{GS} of a representative back-gate ALD In$_2$O$_3$ n-FET with L_{ch} of 10 μm, in a M3D CMOS inverter by vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 14. I_{DS}-V_{GS} at low V_{DS} of a back-gate ALD In$_2$O$_3$ n-FET with L_{ch} of 10 μm, in a M3D CMOS inverter by vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET.

Fig. 15. V_{OUT} versus V_{IN} characteristics of a M3D CMOS inverter by vertically stacked ALD In$_2$O$_3$ n-FET (L_{ch}=10 μm) and LTPS p-FET (L_{ch}=20 μm).

Fig. 16. Voltage gain of the same M3D CMOS inverter as in Fig. 15.

Fig. 17. Noise margin of the same M3D CMOS inverter as in Fig. 15 at V_{DD} of 2 V.

Fig. 18. V_{OUT} and V_{IN} versus time characteristics of a M3D CMOS NAND logic gate by vertically stacked ALD In$_2$O$_3$ n-FET and LTPS p-FET, demonstrating the NAND logic.

Table I. Comparison of State-of-the-Art 3D Stacked CMOS Technology by Bottom-Up Fabrication

<table>
<thead>
<tr>
<th></th>
<th>This work</th>
<th>[16]</th>
<th>[15]</th>
<th>[12]</th>
<th>[13]</th>
<th>[14]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-FET</td>
<td>In$_2$O$_3$</td>
<td>IGZO</td>
<td>IGZO</td>
<td>IGZO</td>
<td>IGZO</td>
<td>IGZO</td>
</tr>
<tr>
<td>p-FET</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>SnO</td>
</tr>
<tr>
<td>Channel Stacked</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>n-Channel Mobility (cm2/V·s)</td>
<td>106.9 (n-FET only)/23.8 (M3D)</td>
<td>-</td>
<td>13.52</td>
<td>16.3</td>
<td>10.1</td>
<td>10.05</td>
</tr>
<tr>
<td>p-Channel Mobility (cm2/V·s)</td>
<td>96.9</td>
<td>-</td>
<td>81.76</td>
<td>69.0</td>
<td>78.3</td>
<td>1.19</td>
</tr>
<tr>
<td>Gain (V/V)</td>
<td>134.3</td>
<td>18</td>
<td>114.28</td>
<td>-</td>
<td>66.3</td>
<td>112</td>
</tr>
<tr>
<td>Noise Margin</td>
<td>$</td>
<td>N_{M} (V) / V_{DD} (V)</td>
<td>$</td>
<td>0.84 / 2</td>
<td>0.60* / 2</td>
<td>4.5 / 8</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>N_{M} (V) / V_{DD} (V)</td>
<td>$</td>
<td>0.84 / 2</td>
<td>0.62* / 2</td>
<td>2.8 / 8</td>
</tr>
<tr>
<td>n-Channel Process</td>
<td>ALD</td>
<td>Sputter</td>
<td>Sputter</td>
<td>Sputter</td>
<td>Sputter</td>
<td>Sputter</td>
</tr>
<tr>
<td>p-Channel Process</td>
<td>PECVD</td>
<td>PECVD</td>
<td>PECVD</td>
<td>PECVD</td>
<td>PECVD</td>
<td>Sputter</td>
</tr>
</tbody>
</table>

* NM here is calculated based on the voltage transfer curve from ref. [16]