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Abstract—The trap behavior in a two-dimensional (2D) 

ferroelectric semiconductor (FeS) field-effect transistors 
(FETs) that can overcome the device scaling limit of 
conventional ferroelectric FETs was analyzed. The 
conventional ferroelectric FETs exhibit a counterclockwise 
hysteresis loop, whereas ferroelectric channel-based FETs 
with high effective oxide thickness exhibit a clockwise 
hysteresis loop. Therefore, it is challenging to determine 
the contribution of ferroelectric polarization switching and 
trap states to the current conduction of FeS-FETs and to 
quantify their respective impacts, owing to their complex 
interaction. The modified conductance method with a 
four-element equivalent circuit model was employed to 
analyze the behavior of intrinsic trap states, with parasitic 
capacitance de-embedded, depending on the FeS 
polarization switching states. As a result, we confirmed 
that over the full energy range trap density can be 
extracted by unique characteristics of FeS-FETs. The 
retention characteristic was maintained at over 70 % of the 
initial memory on/off ratio when extrapolated to 104 s. 
Based on these results, guidelines for undefined trap state 
behavior of 2D α-In2Se3 FeS-FETs were presented. 

Index Terms—Alpha-indium selenide (α-In2Se3), 
ferroelectric semiconductor field-effect transistors 
(FeS-FETs), intrinsic trap states (Dtrap), modified conductance 
method (MCM), nonvolatile memory device. 
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I. INTRODUCTION 
n2Se3 exhibits ferroelectricity in the α-/β-phase. In particular, 
α-In2Se3 demonstrates interlocking between out-of-plane 

(OOP) and in-plane (IP) polarization at room temperature, 
resulting in strong spontaneous polarization [1], [2], [3], [4], [5]. 
OOP and IP polarizations can be controlled by both planar and 
vertical electric fields, making α-In2Se3 suitable for 
multiterminal device applications, unlike other ferroelectrics 
that only have controllable OOP polarization [6], [7], [8]. In 
addition, α-In2Se3 is a two-dimensional (2D) material with a 
bandgap energy of 1.46 eV, characterized by its ultrathin 
geometry, free dangling bonds across the interface, easy 
manipulation for integration with other materials, and no limit 
of critical thickness, which is the primary problem in 
conventional ferroelectric films [9], [10], [11], [12]. α-In2Se3 is 
expected to provide a solution to nonvolatile memory 
applications currently facing scaling limitations. However, 
unlike conventional ferroelectric field-effect transistors (FETs), 
which have a counterclockwise hysteresis loop, 
ferroelectric-semiconductor (FeS)-FETs with high effective 
oxide thickness (EOT) have a clockwise hysteresis loop [13]; 
thus, the hysteresis direction in FeS-FETs reflects the combined 
influence of both trap states and ferroelectric polarization 
switching. Therefore, accurate analysis of trap states is 
necessary to address the performance degradation and 
confusion in the device’s operation, for example, threshold 
voltage instability, memory window reduction, and on/off ratio 
lowering [14], [15]. Nevertheless, α-In2Se3 is still in the early 
stages of research, hence, the specific characterization of the 
device’s properties is yet to be fully established. In this work, 
for the first time, we quantitatively analyzed the intrinsic trap 
density of α-In2Se3 FeS-FETs after de-embedding parasitic 
capacitance based on the modified conductance method 
(MCM), in consideration of the unique operation mechanism of 
α-In2Se3 FeS-FETs. 

II. EXPERIMENTS 
Fig. 1(a) depicts a schematic of the device, which indicates 

both the down and up states of ferroelectric polarization. The 
optical microscopy (OM) image of fabricated α-In2Se3 
FeS-FETs can be shown in the inset image. α-In2Se3 flakes 
were transferred by using a mechanical exfoliation method on a 
100 nm-SiO2/p+-Si substrate. The channel width (W) and length 
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(L) of the α-In2Se3 FeS-FETs were 6 μm and 4 μm, respectively. 
The thickness of the transferred flake was confirmed to be 40 
nm by using the atomic force microscopy (AFM) line profile, as 
shown in Fig. 1(b). Subsequently, Ti/Ni (10/70 nm) was 
deposited via e-beam evaporation as source (S) and drain (D) 
contacts, patterned by the photolithography process. The 
current–voltage (I–V) and capacitance–voltage (C–V) 
characteristics of the fabricated α-In2Se3 FeS-FETs were 
measured by a semiconductor parameter analyzer (Keithley 
4200A-SCS) and Agilent E4980A LCR meter, respectively. 
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Fig. 1. (a) Device schematic reflecting polarization-down and -up states 
of the ferroelectric channel material with inset OM image and (b) AFM 
line profile of α-In2Se3 flake. 

III. RESULTS AND DISCUSSION 
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Fig. 2.  Energy band diagram of α-In2Se3 FeS-FETs at ferroelectric (a) 
polarization-down state and (b) polarization-up state, which indicates 
the behavior of trap state. 

 
Figs. 2(a) and (b) show the energy band diagram of α-In2Se3 

FeS-FETs at ferroelectric polarization-down and -up states, 
respectively. In the partially polarization-down state induced by 
a negative gate bias (VGS), band bending due to the polarization 
charge increases the density of free carriers near the 
insulator/channel interface, inducing a low resistance state 
(LRS) in FeS-FETs with high EOT gate oxide. Concurrently, 
band bending caused by an internal electric field due to the 
polarization charge enhances the predominance of 
acceptor-like trap behavior. Conversely, when positive VGS was 
applied, the polarization was partially switched to upstate. 
Owing to the band bending by the internal electric field caused 
by the polarization charge, the free carrier near the 
insulator/channel interface is depleted and also donor-like trap 
behavior is dominated. In addition, free carriers could not be 
accumulated on the top side of the channel by the high EOT, 
resulting in a high resistance state (HRS). 

Fig. 3(a) shows the transfer characteristics of the α-In2Se3 
FeS-FETs, which indicate a clockwise gate hysteresis loop, 
reflecting the unique operation mechanism mentioned above. 
The multifrequency C–V curve is shown in Fig. 3(b). Free 

carriers were excited from the channel trap states by the 
frequency and VGS, enabling the quantitative extraction of trap 
states according to the frequency dispersion. The parallel mode 
capacitance-conductance (Cm–Gm) was obtained from the 
measured capacitance-dissipation factor (Cm–Dm) using the 
following equation: 

 1/m m mD C Rw=  (1) 
 1/m mG R=  (2) 
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Fig. 3. (a) Transfer characteristics and (b) frequency-dispersive C–V 
curve of fabricated α-In2Se3 FeS-FETs. Equivalent circuit model of (c) a 
two-element model for the parallel mode Cm–Gm, (d) a three-element 
model for the Cox including parallel mode Cp–Gp, and (e) a four-element 
model for the Cox including parallel mode CFE–CA/RA or –CD/RD 
according to polarization switching states. 

 
As presented in Figs. 3(c) and (d), Cm–Gm was converted into 

oxide capacitance (Cox) and parallel capacitance–conductance 
(Cp–Gp). Subsequently, depending on the polarization 
switching states, Cp–Gp was converted into 
frequency-dependent acceptor- or donor-like trap capacitance 
(CA or CD)/resistance (RA or RD), which are physical parameters 
related to the capture and emission of free carriers, in parallel 
with the α-In2Se3 ferroelectric channel capacitance (CFE), 
shown in Fig. 3(e). The intrinsic capacitance (Cm,int) without 
parasitic capacitance (Cpar), which is inevitably included 
because of the S/D metal overlap region, was calculated from 
the measured C–V curves [16]. Gp/ω was calculated as the 
following equation: 

 m,int m parC C C= - [F]  (3) 

 
2
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Here, Gm,int is the intrinsic conductance; Dtrap is the intrinsic trap 
density, which represents either acceptor-like trap density 
(DA(E)) or donor-like trap density (DD(E)), depending on the 
polarization switching state; τtrap (=Rtrap·Ctrap) is the time 
constant; and ω (=2πƒ) is the angular frequency. The obtained 
Gp/ω was plotted as a function of ω, shown in Figs. 4(a) and 
4(b) at polarization-down and -up states, respectively. Dtrap is 
obtained from the maximum value of Gp/ω at ω=1/τtrap as 
follows: 
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w
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The extracted and characterized by energy distribution Dtrap 
profiles, with the frequency- and VGS-dependent trapped charge 
(Qtrap) inside the energy bandgap, are shown in Fig. 4(c) as a 
function of surface potential (ψS,A and ψS,D) as expressed in (7) 
and (8), respectively: 
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Herein, the ψS,A and ψS,D was calculated from the flat band 
voltage to the voltage representing the on and off states in both 
LRS and HRS. In LRS, integration proceeded in a positive 
direction, while in HRS, it proceeded in the negative direction, 
mapping to the energy levels near the conduction and valence 
band, respectively. The ψS corresponding to the voltage range, 
where the effective Gp/ω peak appears, was used to represent 
Dtrap within the subgap energy region. DA(E) and DD(E) were 
extracted from 2.79×1019 cm-3eV-1 to 2.94×1019 cm-3eV-1 and 
from 1.57×1016 cm-3eV-1 to 2.04×1016 cm-3eV-1 at 
polarization-down and -up states, respectively, within the 
subgap energy range. We note that the interface and bulk traps 
have a high density near the conduction band (EC) and valence 
band (EV) rather than near the midgap energy [17], resulting in 
the order of magnitude difference between DA(E) and DD(E). 
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Fig. 4. The obtained Gp/ω from the MCM with a four-element model at 
(a) polarization-up and (b) -down states, respectively. (c) The Dtrap was 
extracted separately for donor-like traps near the EV and acceptor-like 
traps near the EC, considering polarization switching states. 

 
The retention and endurance characteristics for investigating 

the ferroelectric memory device reliability of the α-In2Se3 
FeS-FETs were measured and shown in Fig. 5. In the retention 
characteristics, when linearly extrapolated to 104 s, the LRS and 
HRS states remained over 70 % compared to the initial data. 

The endurance characteristics were measured with the program 
and erase repeated at -10 V and 10 V, respectively. The LRS 
and HRS states of fabricated FeS-FETs were maintained over 
the 103 program/erase cycles under various operation 
temperatures of 65 ℃, 85 ℃, and 105 ℃. 

It’s noteworthy that band bending caused by ferroelectric 
polarization charge determines the types of trap states, which 
affect the transfer characteristics of FeS-FETs. Hence, trap 
states were extracted at polarization-down and -up states using 
the frequency-dispersive conductance method excluding 
parasitic capacitance. The energy profile of trap states can be 
extracted using C–V characteristics that precisely measure the 
time constant by examining the trapping/de-trapping speed of 
traps through frequency-dependent behaviors. Thus, 
C–V-based trap analysis techniques are suitable for an intuitive, 
quantitative, and accurate evaluation of the spatial distribution 
of trap states compared to the I–V-based analysis method. 
Therefore, the proposed technique in this study is expected to 
be extensively utilized for analyzing trap states in FeS-FETs. 
While this study provides critical insight into the role of 
electrically active traps associated with polarization switching, 
further studies are required to clarify the correlation between 
the physical mechanisms and electrical characteristics, 
considering device geometry and polarization switching 
behavior. 
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Fig. 5. (a) Extrapolated retention time up to 104 s and endurance 
characteristics for 103 cycles under (b) 65 °C, (c) 85 °C, and (d) 105 °C 
for investigating the reliability of ferroelectric memory device. 

IV.  CONCLUSION 
In this work, for the first time, the trap states behavior of 2D 

ferroelectric α-In2Se3 FeS-FETs was investigated through the 
frequency-dispersive C–V characteristics de-embedding the 
Cpar. The acceptor- and donor-like trap density in the 
polarization-down and -up states were extracted over the full 
range of subgap energy levels in high EOT α-In2Se3 FeS-FETs. 
We expect that the proposed technique will become an effective 
tool for analyzing the unique behavior of trap density in 
FeS-FETs, which have not yet been fully understood. 
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