Ferroelectric FET Based Coupled-Oscillatory Network for Edge Detection

Eunseon Yu®, Amogh Agrawal®, Dongqi Zheng, Mengwei Si®, Minsuk Koo®, Member, IEEE, Peide D. Ye®, Fellow, IEEE, Sumeet Kumar Gupta®, Senior Member, IEEE, and Kaushik Roy®, Fellow, IEEE

Abstract—Coupled-oscillatory networks are an emerging paradigm for efficiently solving optimization problems. In this work, we demonstrate the application of ferroelectric field-effect transistor (FeFET) for energy-efficient coupled-oscillatory networks. A CMOS-compatible FeFET was fabricated having > 1 V of hysteresis window and 57 mV/dec of minimum subthreshold swing. With our proposed FeFET oscillator circuits and optimized biasing schemes, a 2× wider synchronization range and up to 276× lower energy per cycle were achieved compared to previous FeFET-based oscillators. Moreover, we employ FeFET coupled-oscillatory network for an edge detection task. Our simulations considering FeFET non-idealities and process variations with a 5-bit quantized image show that the edge detection output closely follows the ideal output.

Index Terms—Ferroelectric, FeFET, HZO, CMOS compatible oscillator, synchronization, FeFET coupled-oscillatory network.

I. INTRODUCTION

COUPLED oscillator networks, motivated by natural phenomena such as human neural system and flashing fireflies [1], has the potential to achieve low energy consumption while being able to efficiently solve optimization problems. However, there is a lack of theoretical analysis of coupled-oscillatory networks, which is indispensable to understand its applicability in different application scenarios. Although such systems can be implemented in standard CMOS, there are several challenges because the CMOS devices do not inherently mimic the oscillators. [2] used Schmitt triggers for oscillators, however, it requires 10 Transistors (T) and 2 Capacitors (C) for a single oscillator circuit, especially, 6T alone are used for Schmitt trigger functionality. Hence, there have been several works which utilize emerging devices for mimicking coupled-oscillator networks. For example, there are spin-torque oscillator (STO) [3]–[5] and metal-insulator transition (MIT)-based oscillator [6]. However, these devices are not Si compatible and have limitations: STO uses current injection as input which induces large energy consumption: VO2-based oscillator is temperature sensitive [6]. We believe Ferroelectric Field-Effect Transistors (FeFETs) can be a natural choice because of the inherent hysteresis behavior that leads to efficient coupled-oscillatory circuits. Several works have explored FeFET-based coupled oscillators [7]–[9]. For example, in [8] they design a p-type FeFET (pFeFET) for the design of coupled-oscillators. The proposed FeFET oscillator has 4T and 2C. Note that only one pFeFET and one n-type FeFET (nFeFET) are required to mimic the Schmitt trigger operation [9], thanks to the inherent hysteretic behavior of FeFET. The optimum operation regime of the oscillator circuit is examined to secure controllable input range based on a multi-domain FeFET model. Moreover, theoretical approaches for better understanding of these systems are dealt.

II. EXPERIMENTAL DETAILS AND FABRICATION RESULTS

We first fabricated an HZO-based capacitor, the P–V loops of which are shown in Fig. 1(a), validating ferroelectric behavior. Thereafter, a pFeFET was fabricated. After thinning SOI layer by dry oxidation, ion implantation was conducted with Ar at 35 keV. Active isolation and S/D ion implantation with BF2 at 35 keV were performed followed by rapid-thermal annealing (RTA) at 1000°C. H2O2 cleaning was conducted to form SiO2 interfacial layer. Subsequently, 2-nm Al2O3/10-nm HZO/1-nm Al2O3 were serially deposited by atomic-layer deposition (ALD). The first Al2O3 layer was to block metal ions from diffusing towards Si which can degrade carrier mobility. As a capping layer of HZO, 1-nm Al2O3 and 30-nm TiN were deposited by ALD right on the HZO layer. The top Al2O3 layer was to block metal ions from diffusing into...
the HZO layer [10]. S/D patterning and Ni deposition were performed. The ferroelectricity activation and silicide were carried out by RTA at 500°C for 30 sec under N₂ ambient. A 10-nm-thick HZO was chosen for FeFET oscillator to secure a sufficient hysteresis window. Fig. 1(b) shows the results of our fabricated device. The full voltage sweep range was from +6 V to −6 V. The device has > 1 V of hysteresis window and 57 mV/decade of minimum SS. Gate leakage current is also well suppressed as low as <1.3 × 10⁻¹⁰ A.

III. DEVICE MODELING AND IMPLEMENTATION OF A SINGLE OSCILLATOR UTILIZING HYSTERESIS OF FeFET

Having a Si compatibility with sufficient hysteresis window are the advantages of the fabricated pFeFET. We utilize the pFeFET in implementing an oscillator circuit. Before that, the experimental data of pFeFET was modeled using predictive technology model (PTM) [11] in conjunction with calibrated Preisach model [12], which is suitable for devices having many grains/domains. Also, the effectiveness of capturing ferroelectric dynamics with Preisach model in transient domain has been verified [13]–[15]. nFETs are also simulated with PTM model. In model parameter calibration, $V_{GS}$ is shifted at the amount of −2.37 V for inverter operation. Fig. 2(a) shows the good agreement of the simulation result with the used models and the experimental data.

Fig. 2(b) shows the voltage-transfer characteristic (VTC) of an FeFET-based inverter where the input voltage ($V_{in}$) sweep range is between 0 and $V_{DD}$. Because of the hysteresis effects of pFeFET, VTC curves behave like Schmitt trigger. The similar VTC characteristics can also obtained with nFeFET and pFeFET. The hysteresis in VTC depends on the relative strength between pFeFET and nFeFET. For an oscillatory circuit operation, there needs to be a change in the strength of the pFeFET during the forward and reverse sweeps induced by polarization switching, thereby mimicking the Schmitt trigger operation. When $V_{in}$ goes from 0 to $V_{DD}$, the VTC is mostly driven by the nFeFET which tries to pull down against the pFeFET. During the reverse sweep, the trip point increases at higher $V_{DD}$ due to stronger pFeFET. Higher $V_{DD}$ flips the polarization of pFeFET more strongly, leading to a stronger pFeFET. This leads to smaller hysteresis in VTC as $V_{DD}$ increases. Unlike typical memory applications of FeFETs, which demand a large change in polarization to achieve high distinguishability between the memory states, the oscillatory circuit operation has relaxed requirements. Even a small change in the pFeFET polarization induces enough hysteresis in the VTC. Hence, the relatively small voltage operation is possible for the oscillator design.

Using the hysteresis effects, an oscillator is designed by introducing an input capacitor ($C_{in}$), an output capacitor ($C_{out}$), and a transmission gate (TG) [9]. The FeFET oscillator circuit and its pulsing scheme are shown in Fig. 3(a). Initially, the TG is turned on and the input node is kept to 0, thereby $C_{out}$ charges to $V_{DD}$. Once TG is turned on, oscillation is triggered by the interactions between the feedback loop $C_{in}$-TG-$C_{out}$ and hysteretic VTC. Fig. 3(b) indicates the oscillation frequency ($f$) controlled by adjusting the gate voltage of TG, $V_{bias}$. We observe that depending on the TG biasing method, the $f$ range changes differently. With a fixed $V_{bias}$, $f$ changes largely by $V_{bias}$ compared to the case when $V_{bias} = V_{bias}$. For oscillators coupling, the latter scheme is more suitable for synchronization, which occurs when different $f$’s are within a sufficient range.

Moreover, $f$ of the oscillator circuit is modelled as (1).

$$f = \left( \frac{2 \alpha \cdot R_{on} \cdot C_{out,eff} + C_{in,eff} \cdot (R_{on} + R_{TG})}{t_{p,LH} + t_{p,HL}} \right)^{-1}$$

Here, the factor $\alpha$ relates the (dis)charging delay of $C_{in}$ to the voltage swing at the input node. The on-state resistances ($R_{on}$) of pFeFET and nFeFET are assumed to be similar. $C_{in,eff}$ and $C_{out,eff}$ are the effective input and output capacitances, respectively. The delay of the inverter ($t_d$) for a single oscillation period is the combination of $t_{p,LH}$ and $t_{p,HL}$. $t_{p,LH}$ is the delay when $V_{out}$ changes from low to high; $t_{p,HL}$ is vice versa. There are some ways of increasing $f$ with parameters of FeFET: 1) maintaining a thicker $t_{FE}$ since its scaling increases the gate charging time and the actual polarization switching time [16]; 2) the gate length scaling. Energy consumption ($E$) per cycle of the circuit is also investigated. Operation at $V_{DD}$ up to 1.2 V show $E$ in the range of 0.87–3.97 nJ/cycle, which is at least 29× lower energy consumption compared to [8] (115–240 nJ/cycle). The energy consumption mostly coming from short-circuit current of the oscillator circuit and this draws the difference in energy consumption. Additionally, $E$ of the proposed circuit does not grow linearly as $V_{DD}$.
IV. FEFET COUPLED OSCILLATOR

Fig. 4(a) shows the circuit of two oscillators being coupled by a coupling capacitor (C_c). Here, one oscillator (Osc1) is considered as a reference and the other (Osc2) is controlled. V_{bias} of Osc1 (V_{bias1}), V_{bias} of Osc2 (V_{bias2}), and C_c are the variables affecting oscillator synchronization. Osc1 and Osc2, initially having different f as f_1 and f_2 due to different V_{bias1} and V_{bias2}, respectively, can be synchronized (i.e., f locking) by C_c. To find out f locking range, V_{bias1} is fixed and V_{bias2} is swept from 0.1 to 0.9 V. Fig. 4(b) depicts how f_2 changes with V_{bias2} at fixed V_{bias1}. Fig. 5(a) and (b) show phase maps when oscillators are synchronized or not, respectively. When V_{bias1} is in 0.35–0.75 V, f locking range of 0.5 V is obtained, which is 2× better compared to [9]. This is due to controlling both gates together in TG as mentioned in previous section. Importantly, phase difference between Osc1 and Osc2 changes linearly within the f locking range at fixed V_{bias1} (Fig. 5(c)). This can be used in Euclidean distance (ED, L2 norm) computations [5], and one application is explored next.

V. FEFET COUPLED-OSCILLATOR BASED EDGE DETECTION

Convolutional neural network (CNN) is one of the most important tools for processing visual imagery [17]. Here, we performed edge detection based on CNN with FeFET coupled-oscillatory network, harnessing its phase dynamics in the f locking range. Fig. 6(a)-(c) show the basic computations in CNNs and how they can be mapped on

FeFET coupled-oscillators. For edge-detection, a 2 × 2 kernel (Gabor filter) is slid through the input image to generate the output map. For each output pixel, a dot product needs to be computed between the input pixel vector (I) and kernel (K). This can be achieved by using three L2 units having inputs of I-K, I, and K, respectively (Fig. 6(b)).

Each L2 unit has four FeFET oscillators coupled with a single reference oscillator as shown in Fig. 7(a). The inputs to the L2 unit are mapped into different V_{bias} within the f locking range, such that each oscillator has the same f but different phases. The outputs of coupled oscillators have the sinusoidal phase in FeFET coupled-oscillatory network is mathematically derived equation in Fig. 6(c) has two ways to mitigate the error term: 1) increasing the amplitude of the reference signal (A_{ref}); 2) increasing the number of oscillators (n). Fig. 7(b) plots the distributions of amplitude for 10,000 sets of vectors I and K, where the values are randomly chosen in the f locking range. By increasing m and n, the plots become well converged to a parabola.

With the theoretical basis, we perform an edge detection for an image with 5-bit quantization, and the obtained output is in Fig. 8(a). Considering the device non-linearity and process variations, the case having random noise of 2 LSB errors is also included. It is observed that the output with the FeFET oscillator computations closely match the ideal output, with a standard deviation of 6.24% in the pixel values (Fig. 8(b)).

VI. CONCLUSION

An HZO-based pFeFET was experimentally demonstrated having > 1 V of hysteresis window and 57 mV/dec of minimum SS. Using the FeFET in our proposed oscillator, we secured a 2× wider f locking range and up to 276× lower E compared to previous works. Linearly increasing phase in FeFET coupled-oscillatory network is mathematically analyzed and an edge detection application is demonstrated.
REFERENCES


