Scaling of InGaAs MOSFETs into deep-submicron

Yanqing Wu and Peide D. Ye

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA

We have demonstrated high-performance deep-submicron inversion-mode InGaAs MOSFETs with gate lengths down to 150 nm with record G_m exceeding 1.1 mS/µm. Oxide thickness scaling is performed to improve the on-state/off-state performance and G_m is further improved to 1.3 mS/µm. HBr pre-cleaning, retro-grade structure and halo-implantation processes are first time introduced into III-V MOSFETs to steadily improve high-k/InGaAs interface quality and on-state/off-state performance of the devices. We have also demonstrated the first well-behaved inversion-mode InGaAs FinFET with ALD Al$_2$O$_3$ as gate dielectric using novel damage-free etching techniques. Detailed analysis of SS, DIBL and V_T roll-off are carried out on FinFETs with L_{ch} down to 100 nm and W_{Fin} down to 40 nm. The short-channel effect (SCE) of planar InGaAs MOSFETs is greatly improved by the 3D structure design. The result confirms that the newly developed dry/wet etching process produces damage-free InGaAs sidewalls and the high-k/3D InGaAs interface is comparable to the 2D case.

Introduction

In the quest for perfect dielectrics for III-V semiconductors, significant progress has been made recently on inversion-type enhancement-mode InGaAs NMOSFETs, operating under the same mechanism as Si MOSFETs, using high-k gate dielectrics. The promising dielectric options include ALD Al$_2$O$_3$ [1-3], HfO$_2$ [4-6, 13], HfAlO [4, 7-9], ZrO$_2$ [9] and in-situ MBE Ga$_2$O$_3$(Gd$_2$O$_3$) [10-12]. Most recently, record-high inversion current above 1 A/mm has been achieved for long-channel Al$_2$O$_3$/InGaAs MOSFETs [2]. In order to further verify the potential of scaling of the InGaAs MOSFETs towards the deep-submicron regime, we have made the surface channel inversion-type InGaAs MOSFETs with gate lengths down to 150 nm using electron beam lithography (EBL), and performed various techniques including oxide thickness scaling, channel engineering, novel surface treatment and 3-dimensional InGaAs FinFET with Fin width down to 40nm. These devices are compared in terms of the on-state performance and off-state performance. The results show that these InGaAs surface channel MOSFETs have great potential for next generation high performance applications.

Oxide Thickness Scaling of InGaAs MOSFETs

Fig.1 illustrates the cross section of an ALD Al$_2$O$_3$/In$_{0.75}$Ga$_{0.25}$As MOSFET. A 500 nm p-type 4×10^{17}/cm3 buffer layer, a 300 nm p-type 1×10^{17}/cm3 In$_{0.53}$Ga$_{0.47}$As layer, and a 12 nm strained p-type 1×10^{17}/cm3 In$_{0.75}$Ga$_{0.25}$As channel were sequentially grown by molecular beam epitaxy on a 2-inch p$^+$-InP wafer. Fig. 2 shows the process flow for the Inversion-type Enhancement-mode InGaAs MOSFET. After surface cleaning and
ammonia passivation, the wafers were transferred via room ambient to an ASM F-120 ALD reactor. A 10 nm thick Al₂O₃ encapsulation layer was deposited at a substrate temperature of 300°C. All patterns were defined by a Vistec VB-6 UHR EBL system. The source and drain regions of the MOSFETs were formed by selective implantation of 1×10¹⁴ cm⁻² at 20 keV Si and annealed at 600°C - 700°C for 10 s in N₂ for activation. Compared with the values in Ref. [2], relatively low implantation energy was chosen here to avoid the penetration of implanted Si ions through the 280 nm thick electron beam resist used to protect the channel regions.

After treated with (NH₄)₂S solution for 10 minutes, another 5 nm Al₂O₃ or 2.5 nm Al₂O₃ was also grown by ALD after stripping away the encapsulation oxide layer. The ohmic source and drain contacts were made by electron-beam evaporation of AuGe/Ni/Au and annealing at 320°C for 30 s in N₂. The gate electrode was made by electron-beam evaporation of Ni/Au. The fabricated MOSFETs have nominal gate lengths L₉ of 100, 110, 120, 130, 140, 150, 160, 170, 180 and 200 nm defined by the source-drain implant separation. The device process is not self-aligned.

![Fig. 1 Cross-section schematic view of InGaAs MOSFET.](image)

![Fig. 2 Process flow of the Inversion-type Enhancement-mode InGaAs MOSFET.](image)

![Fig. 3 Output characteristic of a 160 nm InGaAs MOSFET with 5 nm Al₂O₃.](image)

![Fig. 4 Transfer characteristic of a 160 nm InGaAs MOSFET with 5 nm Al₂O₃.](image)
The oxide thickness scaling has been introduced to explore the potential for the complete scaling. Reduction of Al$_2$O$_3$ down to 2.5 nm (EOT=1nm) can improve the electrostatic control of the channel significantly, and can increase the electric field to the semiconductor surface at similar voltage supply. A well-behaved output characteristic and transfer characteristic of a 160 nm-gate-length inversion-mode In$_{0.7}$Ga$_{0.3}$As NMOSFET with 5 nm Al$_2$O$_3$ as gate dielectric are shown in Fig. 3 and Fig. 4 with I_{ds} of 840 μA/μm and peak G_{m} of 650 μS/μm at maximum supply voltage of V_{DD}=1.6 V. The contact resistance R_C of 350 Ω/μm is measured by TLM. After subtracting the contact resistance, the resulting intrinsic G_m is as high as 840 μS/μm.

Fig. 5 and Fig. 6 show output characteristic and transfer characteristic of a similarly finished 160 nm-gate-length inversion-mode In$_{0.7}$Ga$_{0.3}$As NMOSFET with 2.5 nm Al$_2$O$_3$ as gate dielectric with I_{ds} of 810 μA/μm and peak G_{m} of 1100 μS/μm at maximum supply voltage of V_{DD}=1.6 V. After subtracting the contact resistance, the resulting intrinsic G_m is as high as 1790 μS/μm. The V_T shifts positively almost 0.5V as can be seen in the later part of this paper.
Fig. 7 and Fig. 8 compare I_{dss} and G_m of 2.5 nm and 5 nm Al$_2$O$_3$ devices without HBr treatment at $V_{DD}=1.6V$. Record high extrinsic transconductance G_m of 1.3 mS/µm is reached at $L_{ch}=150$ nm. Both the I_{dss} and G_m of the 2.5 nm devices are significantly improved over the 5 nm devices. Especially for the transconductance, the improvement is more than 50% for long channel devices and more than 80% for the shorter channel devices (channel lengths less than 170 nm). This shows the great potential InGaAs MOSFETs have in terms of the gate stack scaling.

Improved off-state characteristics are summarized in Fig. 9-Fig. 12. S.S. improves through the better gate control by reducing the effect from the interface trap capacitance. Both the SS and DIBL show great potential to be further improved to be comparable with Silicon with better gate control. This comparison shows the potential of both on-state and off-state performance of the deep-submicron InGaAs MOSFETs for logic applications. The availability of even higher dielectric constant material, i.e., ALD LaLuO$_3$ (k=24-26), provides a pathway to further scale down the InGaAs MOSFETs.

Fig. 9 Comparison of S.S. vs L_{ch} for the devices with 2.5 nm and 5 nm Al$_2$O$_3$.

Fig. 10 Comparison of DIBL vs L_{ch} for the devices with 2.5 nm and 5 nm Al$_2$O$_3$.

Fig. 11 Comparison of V_T vs L_{ch} for the devices with 2.5 nm and 5 nm Al$_2$O$_3$.

Fig. 12 Comparison of I_{on}/I_{off} vs L_{ch} for the devices with 2.5 nm and 5 nm Al$_2$O$_3$.
The interface quality between the gate oxide and III-V channel material is commonly regarded as one of the major challenges for high performance III-V MOSFETs. Although the ALD process has a self cleaning mechanism and can effectively reduce the interface trap density, it is one of the major causes for degrading transistor performance due to the contribution of C_{it}. To further improve the interface quality between ALD oxide and InGaAs channel, novel HBr / (NH$_4$)$_2$S has been proposed in order to get better on-state performance as well as off-state performance.

Fig. 13 show the schematic cross section of HBr treated MOSFETs. ALD Al$_2$O$_3$ as gate dielectric was grown directly on MBE InGaAs surface. A 500 nm p-doped 4×10^{17} cm$^{-3}$ buffer layer, a 300 nm p-doped 1×10^{17} cm$^{-3}$ In$_{0.53}$Ga$_{0.47}$As and a 12 nm 1×10^{17} cm$^{-3}$ In$_{0.7}$Ga$_{0.3}$As channel layer were sequentially grown by MBE on a 2-inch InP p+ substrate for all samples except for the retro-grade sample. The process flow is shown in Fig. 14. After surface degreasing and ammonia-based native oxide etching, the wafers were transferred via room ambient to an ASM F-120 ALD reactor. A 10 nm thick Al$_2$O$_3$ layer was deposited at a substrate temperature of 300 °C as an encapsulation layer after NH$_4$OH treatment. Source and drain regions were selectively implanted with a Si dose of 1×10^{14} cm$^{-2}$ at 20 keV through the 10 nm thick Al$_2$O$_3$ layer. The implantation condition was chosen carefully to achieve the desired junction depth and S/D doping concentration. Implantation activation was achieved by rapid thermal anneal (RTA) at 600 °C for 15 s in a N$_2$ ambient. After removing the 10nm oxide in BOE, HBr / (NH$_4$)$_2$S combination was used as the novel pretreatment and followed by another 5nm Al$_2$O$_3$ growth by ALD. HBr treated InGaAs surface is hydrophilic and is believed to be helpful to passivate InGaAs surface from surface recombination velocity measurements [16]. And it is expected to improve interface properties and the output performance. After 400-500 °C PDA process, the source and drain ohmic contacts were made by an electron beam evaporation of a combination of AuGe/Ni/Au and a lift-off process, followed by a RTA process at 320 °C for 30 s also in a N$_2$ ambient. The PDA temperature cannot exceed 500°C, as the remaining Sulfur atoms on the interface will be activated and serve as an n-type doping at

Fig. 13 Cross-section schematic view of the HBr treated InGaAs MOSFET.

Fig. 14 Process flow of the HBr treated Inversion-type Enhancement-mode InGaAs MOSFET.
temperatures above 600°C. The gate electrode was defined by electron beam evaporation of Ni/Au and a lift-off process.

A well-behaved I-V characteristic of a 160 nm-gate-length inversion-mode In$_{0.7}$Ga$_{0.3}$As NMOSFET with 5 nm Al$_2$O$_3$ as gate dielectric is demonstrated in Fig. 15 with I_{ds} of 925 µA/µm and peak G_m of 1.1 mS/µm at maximum supply voltage of $V_{DD}=2.0$V. The contact resistance R_C of 350 $\mu\Omega$·µm is measured by TLM. After subtracting the contact resistance, the resulting intrinsic G_m is as high as 1.8 mS/µm as illustrated in Fig. 16.

Fig. 17 shows I_d and I_s at three V_{ds} of the same In$_{0.7}$Ga$_{0.3}$As MOSFET with $L_{ch}=160$ nm. It is clear that I_{sub} (the reverse-biased pn-junction leakage current) determines the leakage floor and I_d at V_{gs} < 0 as discussed before caused by the implantation and activation steps. The off-state is thus affected adversely by this parasitic effect. There is no Fermi-level pinning at V_{gs} < 0 since the gate still controls the channel well as shown in I_s with 7-8 orders of magnitude change with the gate bias. The analysis on I_s reflects more accurately the intrinsic

![Fig. 15 Output characteristic of an HBr treated 160 nm InGaAs MOSFET with 5 nm Al$_2$O$_3$.](image1)

![Fig. 16 Transfer characteristic of an HBr treated 160 nm InGaAs MOSFET with 5 nm Al$_2$O$_3$.](image2)

![Fig. 17 I_d and I_s at three V_{ds} of the same In$_{0.7}$Ga$_{0.3}$As MOSFET with $L_{ch}=160$ nm.](image3)

![Fig. 18 Scaling characteristics of maximum drain current and peak transconductance vs L_{ch}.](image4)
properties of devices by avoiding the substrate leakage. The major contribution of the difference of drain and source current comes from the non-optimized S/D junctions, which can be improved by the refined implant condition and following thermal activation. Fig. 18 summarizes the increase of \(I_{dss} \) and \(G_m \), the on-state performance, versus the channel length \(L_{ch} \) from 250 nm to 150 nm. The maximum drain current changes from 700 µA/µm to 1 mA/µm and peak transconductance changes from 750 µS/µm to more than 1 mS/µm as the gate length scales. It shows pretty good trend of increasing output performance while scaling the channel length, which is promising for further scaling into the nanometer regime.

Channel Engineering for InGaAs MOSFETs

Channel engineering–retro-grade structure illustrated in Fig. 19 and halo-implantation as shown in Fig. 20–has been studied to further improve off-state performance. The underlying heavily doped InGaAs layer beneath the channel of the retro-grade structure would improve the S/D punch-through. The halo-implantation was performed by implanting Zn with ±30 degree angles to the normal.

![Fig. 19 Cross-section schematic view of the Retrograde structure InGaAs MOSFET.](image1)

![Fig. 20 Cross-section schematic view of the Halo-implanted InGaAs MOSFET.](image2)

Fig. 21 Comparison of \(I_{dss} \) vs \(L_{ch} \) for 4 different types of devices. Note \(V_{gs} = 1.6V + V_T \) is applied for fair comparison.

Fig. 22 Comparison of \(G_m \) vs \(L_{ch} \) for 4 different types of devices. Note here \(V_{ds} = 1.6V \).
Fig. 21 and Fig. 22 summarize I_{ds} and G_{m} of 4 different types of devices with 5 nm Al$_2$O$_3$ at all L_{ch} measured. Uniform channel as shown in Fig. 1 without HBr pretreatment is used as a control sample. HBr treated sample (without channel engineering) has the best on-performance among the four and is attributed to the improved interface. Both retro-grade sample and halo-implanted sample are degraded on-current and peak G_{m}, which are expected from inducing scattering and reducing channel mobility. This is a trade-off for the improved off-state performance such as S.S. and DIBL as demonstrated in Fig. 23 and Fig. 24.

It should be pointed out that S.S. of devices in deep-submicron region is not only affected by interface trap density, but also by short-channel effect, and can be dominated by the latter when entering the sub-100 nm region. Halo-implanted sample has the best DIBL among the four shown in Fig. 24, which indicates that it has the best-improved short-channel effect. The combination of HBr and channel-engineering could result in even better scaling metrics and is currently being investigated.

Fig. 23 Comparison of S.S. vs L_{ch} for 4 different types of devices. The best value at $V_{ds}=1.6$V is 150 mV/decade.

Fig. 24 Comparison of DIBL vs L_{ch} for 4 different types of devices.

Fig. 25 Comparison of V_T vs L_{ch} for 4 different types of devices using 1µA/µm metrics.

Fig. 26 Comparison of I_{on}/I_{off} obtained from I_D vs L_{ch} for the 4 types of devices.
Fig. 25 shows V_T vs L_{ch} using $I_{ds}=1\mu A/\mu m$ metrics at $V_{ds}=1.6V$. The typical roll-off of V_T at shorter gate lengths is also observed here. All treated samples have better V_T roll-off than control sample. Fig. 26 summarizes I_{on}/I_{off} vs L_{ch} of 4 different types of devices from I_s. I_{on}/I_{off} is chosen as $I_{on} (V_{ds}=1.6V, V_{gs}=2/3V_{ds}+V_T)/I_{off} (V_{ds}=1.6V, V_{gs}=-1/3V_{ds}+V_T)$, where V_T is determined by 1\mu A/\mu m metric [14]. The similar definition is also used in Fig. 12 for I_s. Junction leakage is the dominant factor currently for I_d at $V_{gs}<0$ or I_{off}. For retro-grade sample, I_{sub} or I_{off} is higher due to heavily p-doped $2\times10^{18}/cm^3$ layer in source/drain as shown in Fig. 19. This junction leakage mainly comes from the non-optimized S/D junctions after implantation and activation which can be greatly improved by better control of the process. If eliminating the junction leakage or I_{on}/I_{off} taken from I_s, I_{on}/I_{off} is improved to 104-106 at 150-200 nm gate lengths as shown in Fig. 12. Without considering the contribution from short-channel effect, with the lowest S.S. of 126 mV/dec. for HBr treated samples at $V_{ds}=0.05V$, the upper limit for interface trap density D_{it} is $2.8\times10^{12}/cm^2-eV$. The short-channel effect will significantly degrade SS when the gate lengths get shorter. The first pitfall introduced in calculating D_{it} directly from SS comes from SCE, especially in the deep submicron region. The deteriorating of SS for short devices could be attributed to the enhanced SCE by adding a term of CGD, which is a function of drain induced barrier lowering. With DIBL of less than 100 mV/V, it is reasonable to assume the SCE is minimized for 250 nm long device. More detailed interface characterizations by CV and GV methods are on-going to more accurately to determine the interface properties of the deeply scaled InGaAs MOSFETs.

InGaAs FinFET

With the continuous request of carrier transport boosting in CMOS devices, very recently, much progress has been made on achieving on-state performance of inversion-mode In-rich InGaAs MOSFETs using high-k gate dielectrics [2, 12, 17-18]. However, the off-state performance of InGaAs MOSFETs is far from satisfactory according to ITRS requirement. The short-channel effect (SCE) of InGaAs MOSFETs deteriorates more quickly than Si MOSFETs due to its nature of narrower bandgap and higher semiconductor dielectric constant [15]. In order to achieve better gate control capability, new structure design like FinFET demonstrated successfully in Si devices [19-23], is strongly needed for short-channel III-V MOSFETs. However, unlike Si, the dry etching of III-V semiconductor surface has been believed to be difficult and uncontrollable [20], especially related with surface damage and integration with high-k dielectrics. In this paper, we report for the first experimental demonstration of inversion-mode In$_{0.53}$Ga$_{0.47}$As tri-gate FinFET using damage-free etching and ALD Al$_2$O$_3$ as gate dielectric. The SCE is greatly suppressed in terms of SS, DIBL and V_T roll-off. Detailed analysis and comparison are performed on the FinFETs with channel length (L_{ch}) from 200 nm to 100 nm, fin width (W_{Fin}) from 100 nm to 40 nm, and fixed fin height (H_{Fin}) of 40 nm. The reduction in the SCE shows the great promise for InGaAs transistors to continue scale into the sub-100nm regime. Fig. 27 shows the schematic cross section of the uniform device structure and the device fabrication flow. A 500 nm p-doped 2×10^{18} cm$^{-3}$ InP layer, a 300 nm p-doped 2×10^{16} cm$^{-3}$ and a 40 nm 2×10^{16} cm$^{-3}$ In$_{0.53}$Ga$_{0.47}$As channel layer were sequentially grown by MBE on a 2-inch InP p+ substrate. The heavily doped InP layer beneath the channel was chosen to prevent punch through and reduce substrate leakage because of its higher bandgap.
Due to the non-optimized source/drain junctions, the heavily doped InP layer resulted in worsened junction leakage. After surface degreasing and ammonia-based native oxide etching, the wafers were transferred via room ambient to an ASM F-120 ALD reactor. A 10 nm thick Al_2O_3 layer was deposited at a substrate temperature of 300°C as an encapsulation layer. Source and drain regions were selectively implanted with a Si dose of 1×10^{14} cm$^{-2}$ at 20 keV through the 10 nm thick Al_2O_3 layer. The implantation condition was chosen carefully to achieve the desired junction depth and S/D doping concentration. Implantation activation was achieved by RTA at 600°C for 15 s in a nitrogen ambient. The reduction of activation temperature from 750°C to 600°C resulted in much improved S/D junction leakage while achieving similar activation efficiency [15].

![Fig. 27 Cross-section schematic view of the InGaAs FinFET.](image)

![Fig. 28 Three-dimensional schematic view of the In$_{0.53}$Ga$_{0.47}$As FinFET.](image)

Fig. 27 Cross-section schematic view of the InGaAs FinFET.

Fig. 28 Three-dimensional schematic view of the In$_{0.53}$Ga$_{0.47}$As FinFET.

Fig.29 Tilted SEM image of a finished FinFET device. (b) Zoomed-in image of the channel region covered with gate dielectric and gate metal. (c) SEM image of the Fin structure after dry etching. (d) Cross section SEM image of a fin after dry etching.
A combined dry and wet etching was used to pattern the fin structures. High-density plasma etcher (HDPE) BCl$_3$/Ar was used for dry etching at the chamber pressure of 2 mTorr. The gas flow of BCl$_3$/Ar is 15 sccm / 60 sccm and the RF source power and bias power is 100 w and 50 w, respectively. The achieved etching rate for InGaAs under this condition is estimated to be 20 nm / min. The positive E-beam resist ZEP-520A was used as an etching mask in this case. To achieve the desired small feature of 40 nm, the original ZEP 520A resist was diluted with A-thinner (anisole) at the ratio of 1:0.7. The resist thickness of the diluted ZEP 520A is around 200 nm at a spinning speed of 2000 rpm. A short dip of 3 seconds in diluted H$_2$SO$_4$:H$_2$O$_2$:H$_2$O (1:8:400) solution was carried out immediately after the dry etching to remove the damaged surface layer. The resulted fin channels have a depth of 40 nm which can be seen from the last SEM image in Fig. 29.

More sophisticated process is needed to make the fin side-walls perfectly vertical. A 5 nm Al$_2$O$_3$ film was regrown by ALD after removing the encapsulation layer by BOE solution and (NH$_4$)$_2$S surface preparation. After 400-500 °C PDA process, the source and drain ohmic contacts were made by an electron-beam evaporation of a combination of AuGe/Ni/Au and a lift-off process, followed by a RTA process at 320 °C for 30 s also in a N$_2$ ambient. The gate electrode was deposited by electron-beam evaporation of Ni/Au and a lift-off process. The fabricated MOSFETs have a nominal gate length varying from 100 nm to 150 nm and fin widths from 40 nm to 100 nm. From the SEM images of Fig. 29 (a) and (b), the gate metal covers uniformly on the parallel multi-fin channels. All patterns were defined by a Vistec VB-6 UHR electron-beam lithography (EBL) system. A Keithley 4200 was used for MOSFET output characteristics. The combined dry and wet etching for the formation of fin channels results in damage-free sidewalls. It is verified by the carrier transport through the fin channels without any significant degradation, compared to the planar devices. Fig. 30 and Fig. 31 depict the well-behaved output characteristic of a FinFET with 40 nm and 100 nm W$_{\text{Fin}}$ at same channel length of 100 nm. There is no significant reduction of drain current even when the fin width is reduced down to 40 nm dimension. Note the current density is scaled by the fin width plus 2 x fin heights. Fig. 32 shows the typical output characteristics of a planar 100 nm-long MOSFET. It cannot be turned off at zero gate bias due to the SCE [15]. Fig. 33 depicts the well-behaved output characteristic of a FinFET with 40 nm W$_{\text{Fin}}$ at same
channel length. From the comparison, it clearly shows the FinFET has much better behaved output characteristics in terms of off-state while maintaining the on-state performance compared to the planar device.

In order to make sure the corner effect which is normally observed in the non-planar devices, the gate leakage current is measured for both FinFETs and planar devices and compared. The gate leakage current density (J_g) of 100 nm-long FinFET with W_{Fin} of 40 nm and 100 nm increases more than one order of magnitude but still remains in the range of 10^{-4} A/cm2, compared to the planar device at $V_{ds}=0.8$V on-state as shown in Fig.34. The J_g of FinFETs which is about 8-9 orders of magnitude smaller than the drain current. The 3D structure would generally result in higher gate leakage current mostly from the corner regions, where electric field line is mostly crowded. Although ALD dielectric should be quite conformal, corner regions could also be the weakest point of dielectric strength. The small degradation suggests that the 5 nm Al$_2$O$_3$ is good enough for this 3D structure and leaves room for further EOT reduction.

Fig. 32 I_s vs V_{ds} of a planar MOSFET with $L_{ch}=100$ nm. The channel cannot be pinched off at zero gate bias due to the severe SCE [5].

Fig. 33 I_s vs V_{ds} of a FinFET device with $L_{ch}=100$nm and $W_{\text{Fin}}=40$nm. The channel is much better pinched off compared to Fig. 5. I_{ds} is normalized by $W_{\text{Fin}}+2H_{\text{Fin}}$.

Fig. 34 Gate leakage current through 5nm ALD Al$_2$O$_3$ gate dielectric of the planar FET and FinFETs with two fin widths.

Fig. 35 Transfer characteristics of FinFETs and planar FET. Better electrostatic control of FinFETs reduces the SCE.
Fig. 35 compares the transfer characteristics of a 100nm-long channel planar FET and FinFETs with W_{Fin} of 40 nm and 100 nm. The FinFETs have better off-state performance over the planar one. The 40 nm W_{Fin} device has the best electro-static gate control of the channel. The on-off ratio of FinFETs improves almost by two orders of magnitude over the planar one. The positive V_T shift also suggests that the pinch-off characteristic for FinFET is better than the planar device.

SS from the saturation region as well as DIBL are compared among FinFETs with 4 different W_{Fin} from 40 nm to 100 nm and the planar FET in Fig. 36 and Fig. 37. The trend shows the device with narrower W_{Fin} has better SS and DIBL as expected. The SS of FinFET with 100 nm channel length improves more than 34% percent and degrades much slower when channel length gets shorter. The DIBL is greatly reduced from 440 mV/V for the planar device to 180 mV/V for the FinFET at 100 nm gate length.

V_T roll-off, another important metric for SCE is shown and compared in Fig. 38 among planar device, 40 nm W_{Fin} and 100 nm W_{Fin} devices, all with 100 nm channel
length. V_T is determined by $1 \mu A/\mu m$ metrics at $V_{ds}=0.8V$. The 40 nm W_{Fin} FinFET shows smallest V_T roll-off, which is only 30% of the planar FET and the degradation of V_T roll-off when channel length gets shorter is smaller compared with the planar FET. Fig. 39 shows V_T roll-off of the three FETs at different temperatures. V_T roll-off clearly show that FinFETs offer much better tolerance at raised temperatures. V_T of FinFETs with $W_{\text{Fin}}=40$ nm changed 0.2 V, compared to 0.48 V of the planar FET.

In order to evaluate the sidewall quality after the dry/wet etching, it is common to estimate the interface trap density (D_{it}) from SS. The channel surfaces of FinFET should be not better than the planar devices, if not worse after going through all the patterning and etching processes. From Fig. 36, it is clear that the SS is not only affected by interface trap density, but also by SCE. Simple estimation of D_{it} from SS would result in gross overestimation. The results show the linear region, similarly as in saturation region, SS of FinFETs are lower than those from the planar FET even in the 150 nm channel device which has small SCE. This indicates that the interface properties of Al_2O_3/InGaAs on the etched sidewalls are not degraded much by the Fin etching process, or D_{it} on the sidewalls is not much larger than that on the planar structures. It verifies that the newly developed dry/wet etching process is damage-free and suitable for 3D III-V device fabrication. The upper limit of average D_{it} on the top and sidewall surfaces in $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ FinFET is $1.7x10^{12}/\text{cm}^2\cdot\text{eV}$. The similar trend is also observed from the simple calculation of SS vs. W_{Fin}/L_{ch} as a function of D_{it}. The result confirms that the newly developed dry/wet etching process produces damage-free InGaAs sidewalls and the high-k/3D InGaAs interface is comparable to the 2D case.

Summary

In summary, we have demonstrated high-performance deep-submicron inversion-mode InGaAs MOSFETs with record G_m exceeding 1.1 mS/µm. HBr pre-cleaning, retrograde structure and halo-implantation processes are first time introduced into III-V MOSFETs to steadily improve high-k/InGaAs interface quality and on-state/off-state performance of the devices. We have also demonstrated the first well-behaved inversion-mode InGaAs FinFET with ALD Al_2O_3 as gate dielectric. Detailed analysis of SS, DIBL and V_T roll-off are carried out on FinFETs with L_{ch} down to 100 nm and W_{Fin} down to 40 nm. The SCE of planar InGaAs MOSFETs is greatly improved by the 3D structure design. Much more work on high-k/InGaAs interface and InGaAs ultra-shallow junction are needed to make III-V an alternative technology at CMOS 15 nm technology node.

Acknowledgments

The authors would like to thank D.A. Antoniadis, M.S. Lundstrom, and J. del Alamo for the valuable discussions. The work is supported in part by NSF and the SRC FCRP MSD Focus Center.

References

16. E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter and M. A. Koza, "Nearly Ideal InP/In$_{0.53}$Ga$_{0.47}$As Heterojunction Regrowth on Chemically Prepared In$_{0.53}$Ga$_{0.47}$As Surfaces," *Applied Physics Letters*, vol. 60, pp. 371-373, Jan 20 1992.

