β-Ga$_2$O$_3$ on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect

Hong Zhou, Kerry Maize, Gang Qiu, Ali Shakouri, and Peide D. Ye

Citation: Appl. Phys. Lett. 111, 092102 (2017); doi: 10.1063/1.5000735

View online: http://dx.doi.org/10.1063/1.5000735

View Table of Contents: http://aip.scitation.org/toc/apl/111/9

Published by the American Institute of Physics

Articles you may be interested in

- Modulation-doped β-(Al$_{0.2}$Ga$_{0.8}$)$_2$O$_3$/Ga$_2$O$_3$ field-effect transistor

- Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga$_2$O$_3$ crystals
 Applied Physics Letters 111, 072102 (2017); 10.1063/1.4990454

- Terahertz spectroscopy of an electron-hole bilayer system in AlN/GaN/AlN quantum wells
 Applied Physics Letters 111, 073102 (2017); 10.1063/1.4996925

- High responsivity in molecular beam epitaxy grown β-Ga$_2$O$_3$ metal semiconductor metal solar blind deep-UV photodetector
 Applied Physics Letters 110, 221107 (2017); 10.1063/1.4984904

- Improved interface properties of GaN-based metal-oxide-semiconductor devices with thin Ga-oxide interlayers
 Applied Physics Letters 110, 261603 (2017); 10.1063/1.4990689

- Highly conductive homoepitaxial Si-doped Ga$_2$O$_3$ films on (010) β-Ga$_2$O$_3$ by pulsed laser deposition
β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect

Hong Zhou, Kerry Maize, Gang Qiu, Ali Shakouri, and Peide D. Yeo

School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

(Received 12 April 2017; accepted 17 August 2017; published online 28 August 2017)

We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 10^10 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low R_c, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5000735]

Recently, β-Ga2O3 has shown its great promise for next generation high power device applications due to its ultra-wide bandgap of 4.6–4.9 eV. This allows β-Ga2O3 to possess a corresponding empirical estimated electrical breakdown field (E_br) of 8 MV/cm, which is several times higher than GaN and SiC. Despite the very early development stage, depletion-mode (D-mode) β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) have demonstrated a high blocking voltage of 750 V and an E_br of 3.8 MV/cm (Refs. 2 and 3) and enhancement-mode (E-mode) MOSFET has shown a breakdown voltage (BV) of more than 600 V. β-Ga2O3 metal-semiconductor field-effect transistors (MESFETs) and Schottky barrier diodes (SBDs) have also demonstrated a BV of 257 V and 1000 V, respectively. In addition to the excellent direct current (DC) breakdown characteristic, a high pulsed drain current (I_p) of 478 mA/mm has also been achieved for β-Ga2O3 MOSFETs. Until very recently, radio frequency (RF) performance of β-Ga2O3 MOSFET was demonstrated, yielding cut off frequency and maximum oscillation frequency (f_T and f_max) of 3.3 GHz and 12.9 GHz, respectively.8,9,10

β-Ga2O3 also has the advantage of a low-cost native bulk substrate that can be synthesized in large size through melt-grown Czochralski, edge defined film fed growth, and floating zone method.9,14 However, a crucial disadvantage of this material is its low thermal conductivity of 0.1–0.3 W/cm·K depends on its various crystal orientation.15,16 One of the approaches to solve the low thermal conductivity issue of β-Ga2O3 is to introduce a high thermal conductivity substrate rather than the β-Ga2O3 native substrate. Our previous study has demonstrated a high performance β-Ga2O3 on insulator field-effect transistors (GOOI FETs) by transferring β-Ga2O3 nano-membrane or nano-belts to SiO2/Si substrate with SiO2 thickness of 300 nm to mitigate gate-drain overlap breakdown and serve as gate dielectric as well.17 The monoclinic structure of bulk β-Ga2O3 crystallites would allow a facile cleavage into nano-membrane along the [100] direction even though β-Ga2O3 is not a van der Waals 2D material, possibly due to its large lattice constant of 12.23 Å along this [100] direction.18

To realize all merits of β-Ga2O3 as a power device, there are still some challenges to be encountered ahead. The reported D/E mode maximum drain current density (I_DMAX) for GOOI FETs are 600/450 mA/mm and continuous wave DC of 200 and 2 mA/mm for β-Ga2O3 homoepitaxial D/E mode MOSFETs, respectively.19,20 How to further enhance the device performance in terms of higher I_DMAX and lower on-resistance (R_c) and make them comparable to GaN and SiC technologies remained to be demonstrated. In this letter, we have shown that by increasing the doping concentration of the β-Ga2O3 nano-membrane and further scale the device, the I_DMAX of D/E-mode GOOI FETs can achieve a record value of 1.5/1.0 A/mm, which is around twice of previous record IDMAX. Our results reveal that the contact resistance (R_c) can also be reduced by highly doped channel. Finally, we have evaluated the thermal effect of GOOI FETs and observed the pronounced self-heating effect by using an ultra-fast, high resolution thermo-reflectance (TR) imaging technique.

In our experiment, n-type Sn doping concentration (n) of β-Ga2O3 is determined to be 8.0 × 10^18 cm^-3 from Capacitance-Voltage (C-V) measurement.21 The thickness of (100) β-Ga2O3 nano-membranes vary from 50 to 70 nm determined by atomic force microscopy (AFM) measurements with surface roughness of 0.33 nm, and the D/E-mode devices are achieved based on the thickness of the nano-membranes. More details about the device fabrication can be found in our previous work.17 For comparison, devices with lower doping concentration of 3.0 × 10^18 cm^-3 were also fabricated. Figures 1(a) and 1(b) are device schematic and AFM image of a fabricated device, respectively. The device electric characterizations were carried out with Keithley 4200 Semiconductor Parameter Analyzer. A Microsanj TR system with a high-speed light-emitting diode (LED) pulse and a synchronized charge coupled device (CCD) camera was used for the thermal measurement.22–25

Figure 2(a) presents the DC output characteristics (I_D-V_DSS) of D-mode GOOI FETs. Devices have a channel

8Author to whom correspondence should be addressed: yep@purdue.edu

111, 092102-1

Published by AIP Publishing.
lower R_{on} is mostly from the much reduced R_C of 1.7 Ω mm. At low V_{DS} regime, high doping I_D-V_{DS} shows linear behavior with lower R_C while the lower doping counterpart displays a Schottky-like contacts with higher R_C. Figure 2(b) is the log-scale $I_{D\text{-}E\text{-}max}$ transfer characteristics of the same D-mode GOOI FET with 8.0×10^{18} cm^{-3} doping concentration. This D-mode GOOI FET has a threshold voltage (V_T) of ~ 135 V, extracted from the log-scale I_D-V_{GS} at $V_{DS} = 1 V$ and $I_D = 0.1$ mA/mm. A peak transconductance (g_{max}) of 9.2 mS/mm is achieved which is 2 times of the g_{max} with lower doping concentration, showing the much improved R_C of the higher doping concentration device. Figures 2(c) and 2(d) depict the I_D-V_{DS} output and I_D-g_{max}-V_{GS} transfer characteristics of an E-mode GOOI FET with $L_{CH} = 0.3$ μm, $t = 55$ mm, and $W = 0.17$ μm for 8.0×10^{18} cm^{-3}, and $t = 75$ mm and $W = 0.45$ μm for 3.0×10^{18} cm^{-3} device also shown in Fig. 2(e) as black dashed curves for comparison. Similar to D-mode devices, lower doped E-mode GOOI FETs have an increased $I_{D\text{-}max}$ from 450 mA/mm to 550 mA/mm when the L_{CH} is scaled from 1.5 μm to 0.3 μm. Higher E-mode $I_{D\text{-}max}$ is also achieved with higher doping concentration induced lower R_C of 0.75 Ω mm compared to that of 1.2 Ω mm with lower doping concentration. A record high $I_{D\text{-}max} = 1.0$ A/mm for higher doping channel is obtained, which is more than 80% higher than lower doping channel. E-mode GOOI FET has a V_T of 2 V determined from the I_D-V_{GS} at $V_{DS} = 1 V$ and $I_D = 0.1$ mA/mm. Unfortunately, no I_D saturation is observed since applying higher V_{DS} will lead to an abrupt I_D increase and then device breakdown. The drain induced barrier lowering (DIBL) is extracted to be 0.73 and 0.38 V/V for D/E-modes devices, respectively. Finally, benefited from its wide-bandgap and high quality interface between β-Ga$_2$O$_3$ and SiO$_2$, both D/E-mode devices have achieved high on/off ratio of 1010 and low subthreshold slope (SS) of 150–165 mV/dec for 300 nm SiO$_2$.

The significant V_T shift with respect to different β-Ga$_2$O$_3$ nano-membrane thickness is due to the surface depletion effect of the unpassivated GOOI FET surface. This is because Sn-doped β-Ga$_2$O$_3$ is a 3D semiconductor, which has dangling bonds and surface states on the device surface. Surface depletion could deplete the whole β-Ga$_2$O$_3$ nano-membrane tens of nanometers thick. This is the reason why E-mode GOOI FETs can also be realized in high doping β-Ga$_2$O$_3$ nano-membrane. The surface depletion effect is verified by using atomic layer deposition (ALD) to deposit 15 nm Al$_2$O$_3$ on top to passivate the top surface. As shown in Fig. 1, the V_T is significantly shifted to the left for more than 70 V after the ALD passivation, showing the existence of top and bottom surface depletion on unpassivated GOOI FET surfaces. Similar surface or interface charges induced depletion effect was also observed by Moser et al. Based on the surface depletion, we can obtain each surface depleted charge density (n_s) by using the technology computer aided design (TCAD) C-V simulation to match the measured and simulated V_T from E-mode devices with V_T near zero. The n_s is determined and simulated to be 1.2×10^{13} cm$^{-2}$ and 2.2×10^{13} cm$^{-2}$ for 3.0×10^{18} cm$^{-3}$ and 8.0×10^{18} cm$^{-8}$ nano-membranes with thickness of 80 nm and 55 nm, respectively. Therefore, the flat-band voltage (V_{FB}) for lower doped and high doped devices are determined to be 135 V and 235 V through the equation.
V_{FB} = \Phi_{MS}/e - 2n_s/C_{ox}, \text{ where } \Phi_{MS}, e, \text{ and } C_{ox} \text{ are gate-semiconductor work function difference, electron charge quantity, and oxide capacitance, respectively. Higher } n_s \text{ for higher doping } \beta\text{-Ga}_2\text{O}_3 \text{ nano-membrane is most likely related to the higher surface states with more Sn^{4+} dopants. Therefore, the actual C-V curve and } I_DV_{GS} \text{ curve are significantly shifted to the right compared with the ideal case without considering surface depletion. Figure 2 shows the simulated C-V curve for E-mode GOOI FET and the } V_T \text{ from C-V simulation is in good agreement with the } I_DV_{GS} \text{ characterization. Figure 3 is the simulated band diagram of the E-mode GOOI FET and the VT from C-V simulation is in} \quad

As a low thermal conductivity material and also its substrate, the heat dissipation is a big issue for } \beta\text{-Ga}_2\text{O}_3 \text{ devices which needs to be seriously considered. We have used an ultra-fast TR set-up to study its thermal property. The system has a high-speed LED pulse illumination and a CCD camera to image temperature dependent reflectance change. Briefly, the source/drain Au pads are illuminated through an LED (\lambda = 530 nm), and the change in reflectance under bias is calibrated with Au thermo-reflectance coefficient to translate into temperature change. Figure 4(a) is the CCD camera and TR image merged view of another D-mode GOOI FET device with } V_{DS} = 4 \text{ V and } V_{GS} = 0 \text{ V with } I_D = 0.3 \text{ A/mm. Figure 4(b) shows the 3D view of the TR image along the channel length and channel width directions. Even at a low bias power regime (P = } V_{DS} \times I_D = 1.2 \text{ W/mm}, \text{ the local temperature has increased by } 35^\circ \text{C compared to room temperature or unbiased devices. It seems that there is a “cold” channel between source and drain contact. This is because the thermal reflectance coefficient of } \beta\text{-Ga}_2\text{O}_3 \text{ channel is more than 10 times lower than that of Au electrodes. The temperature measurement is only calibrated with Au surface and we use Au electrodes as the thermometer of the device. Higher power bias will increase device temperature more significantly, and lead to degrade electron mobility and reliability, and eventually breakdown the device. Other self-heating effects induced } I_D \text{ reduction was observed by Moser and Wong et al.}^{27,28} \text{ The work by applying large thermal conductivity substrates and advanced device structures to mitigate the self-heating effect for } \beta\text{-Ga}_2\text{O}_3 \text{ FETs is on-going and will be reported elsewhere.}

We have demonstrated record high } I_{DMAX} \text{ of } 1.5/1.0 \text{ A/mm for D/E-mode GOOI FETs by increasing the } \beta\text{-Ga}_2\text{O}_3 \text{ doping concentration from } 3.0 \times 10^{18} \text{ to } 8.0 \times 10^{18} \text{ cm}^{-3} \text{ and further scaling the channel length. The significant } V_T \text{ shift with respect to different } \beta\text{-Ga}_2\text{O}_3 \text{ nano-membrane thicknesses is due to the surface depletion effect of the unpassivated GOOI FET surface. High on/off ratio of } 10^{10} \text{ and low SS of } 150 \text{ mV/dec are achieved. Self-heating effect is also directly observed with the TR measurement. GOOI FETs with wide bandgap, high } I_{DMAX}, \text{ and low } R_c \text{ offer the promise in the power device applications if the low thermal conductivity issue can be solved.}

The authors thank the technical guidance from the Sensors Directorate of Air Force Research Laboratory.

