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The assumptions (a - d) describe the fundamental conditions for an ideal Landauer contact, as shown in Figure 1. 
These conditions ensure that the left and right contacts function as ideal reservoirs for electron transport in the 
channel. Therefore, the correct answer is (e). 

 

The Landauer model describes n-type current flow as electron transport in the conduction band, and p-type 
current flow as electron transport in the valence band. The expressions are identical, differing only in the 
integration range. Please refer Figure 2 for details. In summary, the correct answer is (e). 

 

I believe that 𝐷(𝐸) denotes the 1D DOS, which has units of [Jିଵ ∙ mିଵ]; since it is the density of states in energy 
space, its units should be normalized by the energy and hyper-volume (in this case, length). Then, the Planck 
constant, velocity, and 1D DOS has units of [J ∙ s], [m ∙ sିଵ], and [Jିଵ ∙ mିଵ], respectively. By using them, one 

 

Figure 1. Conditions for the ideal Landauer contacts. 

 

Figure 2. N-type and p-type Landauer transport. 



can compute the units of 𝑀(𝐸) as follows: 

[𝑀] = [J ∙ s] ቂ
m

s
ቃ ൤

1

𝐽 ∙ m
൨ ⟹ unitless (1) 

Therefore, 𝑀(𝐸) is a dimension-less quantity, thus the correct answer is (e). 

 

"Near-equilibrium transport" refers to a condition where current flows due to a slight difference in the Fermi levels 
between the right and left contacts. Mathematically, it means that the difference in Fermi Dirac distributions in 
these contacts, i.e., the Fermi window 𝑓ଵ − 𝑓ଶ, can be approximated by using the first order Taylor expansion, i.e., 
𝑓ଶ ≈ 𝑓ଵ + (𝜕𝑓ଵ/𝜕𝐸)(𝑞𝑉) ⟹ 𝑓ଵ − 𝑓ଶ ≈ (−𝜕𝑓ଵ/𝜕𝐸)(𝑞𝑉). Thus, the correct answer is (d). 

 

The device is biased thus current flows. The electron that exits 
from one contact (the left or “source” contact) must travel the 
channel and enter the other contact (the right or “drain” contact). 
Thus, the correct answer is (a); the source contact tries to fill 
states in the device, and the other one tries to empty them. Please 
refer Figure 3 for details. 

 

The number of modes is given by ℎ〈𝑣௫
ା(𝐸)〉𝐷(𝐸)/4, i.e., the density of states times velocity, thus the correct 

answer is (c). 

Figure 3. Visualization of electron transport. 



 

The transmission 𝑇 = 𝜆/(𝜆 + 𝐿) is a unified expression that can describe diffusive, ballistic, and quasi ballistic 
transports as shown in Figure 4. Thus, the correct answer is (e). 

 

Figure 5 shows the computed 𝑀(𝐸) profiles for 1D, 2D, and 3D cases. The 1D case is a unit function in the 
energy space, meaning the 1D 𝑀(𝐸) is independent of energy. Thus, the correct answer is (a). 

 

For 𝑇 =  0𝐾 , the Fermi window 𝑓ଵ − 𝑓ଶ  is simply given by a 
rectangular filter, as shown in Figure 6. It equals 1 if 𝐸 lies within 
the difference between the two contact Fermi levels, and 0 otherwise, 
thus the integration range is also determined based on the Fermi 
levels. Let the Fermi level of the contact 1 be 0; then the Fermi level 
of the contact 2 is simply given by 𝑞𝑉. Therefore, the integration 
range extends from 𝑬𝟏 = 𝒒𝑽 to 𝑬𝟐 = 𝟎 (because a positive bias 
is applied, 𝑞𝑉 is negative and smaller than 0). 

 

Figure 4. Transmission model based on the mean free path 
𝜆 and device length 𝐿. 

 

Figure 5. Comparison of 𝑀(𝐸) for 1D, 2D, and 3D 
cases, with parabolic energy bands. 

 
Figure 6. Fermi window at 𝑇 =  0𝐾 and 
𝑇 >  0𝐾. 



 

Without loss of generality, 𝐸஼ = 0, 𝑔௦ = 2, and 𝑔௩ = 1 are assumed for sake of simplicity. 

(4a) The 1D Landauer equation is given by 

𝐼௅,ଵୈ =
2𝑞

ℎ
න 𝑑𝐸𝑀(𝐸)(𝑓ଵ − 𝑓ଶ) =

2𝑞

ℎ
න 𝑑𝐸(𝑓ଵ − 𝑓ଶ),   (2) 

because the number of modes 𝑀(𝐸) for 1D is equal to 1, as shown in Figure 5. Next, let me derive the ballistic 

current from the k-space approach. For 1D electrons,  ∑ ⟹௞ 2
௅

ଶగ
∫ 2𝑑𝑘  and 𝑣௫ =

ଵ

ℏ

డா

డ௞
 . From this, 𝐼ା  is 

expressed as 

𝐼ା,ଵୈ =
1

𝐿
෍ 𝑞𝑣௫𝑓ଵ

௞வ଴

=
1

𝐿

𝐿

𝜋
න ൬2𝑑𝑘 ∙

1

2
൰ 𝑞

1

ℏ

𝜕𝐸

𝜕𝑘
𝑓ଵ =

𝑞

𝜋ℏ
න 𝑑𝐸𝑓ଵ =

2𝑞

ℎ
න 𝑑𝐸𝑓ଵ,   (3) 

where 1/2 is multiplied to 2𝑑𝑘 to consider 𝑘 > 0 only. Similarly, 𝐼ି is expressed as 

𝐼ି,ଵୈ =
2𝑞

ℎ
න 𝑑𝐸𝑓ଶ.  (4) 

Therefore, the net current derived from the k-space approach is given by 

𝐼௞,ଵୈ = 𝐼ା,ଵୈ − 𝐼ି,ଵୈ =
2𝑞

ℎ
න 𝑑𝐸(𝑓ଵ − 𝑓ଶ).   (5) 

Thus, one can conclude 

𝐼௞,ଵୈ =
2𝑞

ℎ
න 𝑑𝐸(𝑓ଵ − 𝑓ଶ) = 𝐼௅,ଵୈ .   (6) 

 

(4b) The 2D Landauer equation is given by 

𝐼௅,ଶୈ =
2𝑞

ℎ
න 𝑑𝐸𝑀(𝐸)(𝑓ଵ − 𝑓ଶ) =

2𝑞

2𝜋ℏ
න 𝑑𝐸 ቆ𝑊

√2𝑚∗𝐸

𝜋ℏ
ቇ (𝑓ଵ − 𝑓ଶ) =

𝑞√2𝑚∗

𝜋ଶℏଶ
𝑊 න 𝑑𝐸√𝐸(𝑓ଵ − 𝑓ଶ),   (7) 



by using the 𝑀(𝐸) for 2D shown in Figure 5. Next, to derive the ballistic current from the k-space approach, let 

me consider ∑ ⟹௞ 2
௅

ଶగ

ௐ

ଶగ
∫ ∫ 𝑘𝑑𝑘 𝑑𝜃 and 𝑣௫ =

ଵ

ℏ

డா

డ௞ೣ
=

ଵ

ℏ

డ

డ௞ೣ
ቆ

ℏమ

ଶ௠∗ ൫𝑘௫
ଶ + 𝑘௬

ଶ൯ቇ =
ℏ

௠∗ 𝑘௫ =
ℏ

௠∗ 𝑘cos𝜃. Then, 

𝐼ା,ଶୈ =
1

𝐿
෍ 𝑞𝑣௫𝑓ଵ

௞ೣவ଴,௞೤

=
𝑊

2𝜋ଶ
න න 𝑓ଵ

ℏ

𝑚∗
𝑞(𝑘cos𝜃)𝑘𝑑𝑘𝑑𝜃 =

𝑞𝑊

2𝜋ଶ

ℏ

𝑚∗
න 𝑘ଶ𝑑𝑘𝑓ଵ න cos𝜃𝑑𝜃

గ/ଶ

ିగ/ଶ

=
𝑞𝑊

𝜋ଶ

ℏ

𝑚∗
න 𝑘ଶ𝑑𝑘𝑓ଵ,   

(8) 

where the integration range in 𝜃 space is limited to [−𝜋/2, 𝜋/2] in order to consider only 𝑘௫ > 0. Now, using 

𝐸 =
ℏమ௞మ

ଶ௠∗ ⟹ 𝑘ଶ =
ଶ௠∗

ℏమ 𝐸, 𝑘 =
√ଶ௠∗

ℏ
√𝐸 and 𝑘𝑑𝑘 =

௠∗

ℏమ 𝑑𝐸, one can simplify (8) as follows: 

𝐼ା,ଶ஽ =
𝑞𝑊

𝜋ଶ

ℏ

𝑚∗
න

√2𝑚∗

ℏ
√𝐸  

𝑚∗

ℏଶ
𝑑𝐸𝑓ଵ =

𝑞𝑊

𝜋ଶ

√2𝑚∗

ℏଶ
න √𝐸 𝑑𝐸𝑓ଵ.   (9) 

Similarly, 𝐼ି is expressed as 

𝐼ି,ଶ஽ =
𝑞𝑊

𝜋ଶ

√2𝑚∗

ℏଶ
න √𝐸 𝑑𝐸𝑓ଶ.  (10) 

Therefore, the net current derived from the k-space approach is given by 

𝐼௞,ଶୈ = 𝐼ା − 𝐼ି =
𝑞√2𝑚∗

𝜋ଶℏଶ
𝑊 න √𝐸 𝑑𝐸(𝑓ଵ − 𝑓ଶ).   (11) 

Thus, one can conclude 

𝐼௞,ଶୈ =
𝑞√2𝑚∗

𝜋ଶℏଶ
𝑊 න √𝐸 𝑑𝐸(𝑓ଵ − 𝑓ଶ) = 𝐼௅,ଶୈ .   (12) 

 

(4c) The 3D Landauer equation is given by 

𝐼௅,ଷୈ =
2𝑞

ℎ
න 𝑑𝐸𝑀(𝐸)(𝑓ଵ − 𝑓ଶ) =

2𝑞

2𝜋ℏ
න 𝑑𝐸 ൬𝐴

𝑚∗

2𝜋ℏଶ
𝐸൰ (𝑓ଵ − 𝑓ଶ) =

𝑞𝑚∗

2𝜋ଶℏଷ
𝐴 න 𝐸𝑑𝐸(𝑓ଵ − 𝑓ଶ),   (13) 

by using the 𝑀(𝐸) for 2D shown in Figure 5. Next, to derive the ballistic current from the k-space approach, let 

me consider ∑ ⟹௞ 2
௅

ଶగ

ௐ

ଶగ

ு

ଶగ
∫ ∫ ∫ 𝑘ଶsin𝜃𝑑𝑘𝑑𝜃𝑑𝜑  and 𝑣௫ =

ଵ

ℏ

డா

డ௞ೣ
=

ଵ

ℏ

డ

డ௞ೣ
ቆ

ℏమ

ଶ௠∗ ൫𝑘௫
ଶ + 𝑘௬

ଶ + 𝑘௭
ଶ൯ቇ =

ℏ

௠∗ 𝑘௫ =

ℏ

௠∗ 𝑘sin𝜃cos𝜑. Then, 

𝐼ା,ଷୈ =
1

𝐿
෍ 𝑞𝑣௫𝑓ଵ

௞ೣவ଴,௞೤,௞೥

=
(𝑊𝐻)

4𝜋ଷ
න න න 𝑓ଵ𝑞 ൬

ℏ

𝑚∗
𝑘sin𝜃cos𝜑൰ 𝑘ଶsin𝜃𝑑𝑘𝑑𝜃𝑑𝜑

=
𝐴

4𝜋ଷ

𝑞ℏ

𝑚∗
න න න 𝑓ଵ𝑘ଷsinଶ𝜃cos𝜑𝑑𝑘𝑑𝜃𝑑𝜑

=
𝐴

4𝜋ଷ

𝑞ℏ

𝑚∗
න 𝑑𝜑cos𝜑

గ/ଶ

ିగ/ଶ
ୀଶ

න 𝑑𝜃sinଶ𝜃

గ

଴
ୀగ/ଶ

න 𝑓ଵ𝑘ଷ𝑑𝑘 =
𝐴

4𝜋ଶ

𝑞ℏ

𝑚∗
න 𝑓ଵ𝑘ଷ𝑑𝑘,   

(14) 

where the integration range in 𝜑 space is limited to [−𝜋/2, 𝜋/2] in order to consider only 𝑘௫ > 0. Now, using 

𝐸 =
ℏమ௞మ

ଶ௠∗ ⟹ 𝑘ଶ =
ଶ௠∗

ℏమ 𝐸 and 𝑘𝑑𝑘 =
௠∗

ℏమ 𝑑𝐸, one can simplify (14) as follows: 

𝐼ା,ଷୈ =
𝐴

4𝜋ଶ

𝑞ℏ

𝑚∗
න 𝑓ଵ

2𝑚∗

ℏଶ
𝐸

𝑚∗

ℏଶ
𝑑𝐸 =

𝐴

2𝜋ଶ

𝑞𝑚∗

ℏଷ
න 𝑓ଵ𝐸𝑑𝐸.   (15) 



Similarly, 𝐼ି is expressed as 

𝐼ି,ଷୈ =
𝐴

2𝜋ଶ

𝑞𝑚∗

ℏଷ
න 𝑓ଶ𝐸𝑑𝐸.  (16) 

Therefore, the net current derived from the k-space approach is given by 

𝐼௞,ଷୈ = 𝐼ା − 𝐼 =
𝑞𝑚∗

2𝜋ଶℏଷ
𝐴 න 𝐸𝑑𝐸(𝑓ଵ − 𝑓ଶ).   (17) 

Thus, one can conclude 

𝐼௞,ଷୈ =
𝑞𝑚∗

2𝜋ଶℏଷ
𝐴 න 𝐸𝑑𝐸(𝑓ଵ − 𝑓ଶ) = 𝐼௅,ଷୈ .   (18) 

 

 

(5a) By using the definition of 〈𝑀〉 given in the problem and 𝑀(𝐸) for 2D semiconductors shown in Figure 5, 
the full expression of 〈𝑀〉 is 

〈𝑀〉 = න ቆ𝑊
ඥ2𝑚∗(𝐸 − 𝐸஼)

𝜋ℏ
ቇ ൬−

𝜕𝑓଴

𝜕𝐸
൰

ஶ

ா಴

𝑑𝐸 = 𝑊
√2𝑚∗

𝜋ℏ
න ඥ𝐸 − 𝐸஼ ൬−

𝜕𝑓଴

𝜕𝐸
൰

ஶ

ா಴

𝑑𝐸.  (19) 

For the sake of simplicity, let 𝑊
√ଶ௠∗

గℏ
= 𝐶. Note that for the Fermi-Dirac distribution, −𝜕𝑓଴/𝜕𝐸 = 𝜕𝑓଴/𝜕𝐸ி  

holds. Using this identity, the above becomes 

〈𝑀〉 = 𝐶 න൫ඥ𝐸 − 𝐸஼൯ ൬
𝜕𝑓଴

𝜕𝐸ி

൰

ஶ

ா಴

𝑑𝐸 = 𝐶
𝜕

𝜕𝐸ி

න൫ඥ𝐸 − 𝐸஼൯𝑓଴

ஶ

ா಴

𝑑𝐸 = 𝐶
𝜕

𝜕𝐸ி

න
ඥ𝐸 − 𝐸஼

1 + exp((𝐸 − 𝐸ி) /𝑘஻𝑇)

ஶ

ா಴

𝑑𝐸.  (20) 

To covert this equation as a usual Fermi-Dirac integral form, let 𝜂 = (𝐸 − 𝐸஼)/𝑘஻𝑇 and 𝜂ி = (𝐸ி − 𝐸஼)/𝑘஻𝑇. 

Then, (20) is equal to 

〈𝑀〉 = 𝐶
𝜕

𝜕𝐸ி

න
ඥ𝑘஻𝑇𝜂

1 + exp (𝜂 − 𝜂ி)

ஶ

଴

𝑘஻𝑇𝑑𝜂 = 𝐶ඥ𝑘஻𝑇
𝜕

𝜕𝜂ி

න
ඥ𝜂

1 + exp (𝜂 − 𝜂ி)

ஶ

଴

𝑑𝜂.  (21) 



Note that for the Fermi-Dirac integral, ∫
ఎೕ

ଵାୣ୶୮ (ఎିఎಷ)

ஶ

଴
𝑑𝜂 = Γ(𝑗 + 1)ℱ௝ and 

డ

డఎಷ
ℱ௝ = ℱ௝ିଵ. Thus (21) is a derivative 

of the Fermi-Dirac integral of order 1/2 and should be the Fermi-Dirac integral of order – 1/2. Because Γ(1/2 + 1) =
√గ

ଶ
, (21) is finally given by 

〈𝑀〉 = 𝐶ඥ𝑘஻𝑇
𝜕

𝜕𝜂ி

ቆ
√𝜋

2
ℱଵ/ଶቇ = 𝑊

√2𝑚∗

𝜋ℏ

ඥ𝜋𝑘஻𝑇

2
ℱିଵ/ଶ = 𝑊

ඥ2𝜋𝑚∗𝑘஻𝑇

2𝜋ℏ
ℱିଵ/ଶ = 𝑊

ඥ2𝜋𝑚∗𝑘஻𝑇

ℎ
ℱିଵ/ଶ .  (22) 

 

(5b) From the lecture note, 𝑀(𝐸) for graphene is given by 

𝑀(𝐸) = 𝑊
2𝐸

𝜋ℏ𝑣ி

,  (23) 

for the case where the Fermi level is above the Dirac point, i.e., 𝐸 > 0. Then, similar to the previous case, the 
full expression of 〈𝑀〉 is 

〈𝑀〉 = න ൬𝑊
2𝐸

𝜋ℏ𝑣𝐹

൰ ൬−
𝜕𝑓଴

𝜕𝐸
൰

ஶ

଴

𝑑𝐸 = 𝑊
2

𝜋ℏ𝑣𝐹

න 𝐸 ൬−
𝜕𝑓଴

𝜕𝐸
൰

ஶ

଴

𝑑𝐸.  (24) 

Again, let 𝑊
ଶ

గℏ𝑣𝐹
= 𝐶 for simplicity. Using the technique −𝜕𝑓଴/𝜕𝐸 = 𝜕𝑓଴/𝜕𝐸ி  gives 

〈𝑀〉 = 𝐶 න 𝐸
𝜕𝑓଴

𝜕𝐸ி

ஶ

଴

𝑑𝐸 = 𝐶
𝜕

𝜕𝐸ி

න 𝐸𝑓଴

ஶ

଴

𝑑𝐸 = 𝐶
𝜕

𝜕𝐸ி

න
𝐸

1 + exp((𝐸 − 𝐸ி) /𝑘஻𝑇)

ஶ

଴

𝑑𝐸.  (25) 

To covert this equation as a usual Fermi-Dirac integral form, let 𝜂 = 𝐸/𝑘஻𝑇 and 𝜂ி = 𝐸ி/𝑘஻𝑇, then (25) is 

equal to 

〈𝑀〉 = 𝐶
𝜕

𝜕𝐸ி

න
𝑘஻𝑇𝜂

1 + exp (𝜂 − 𝜂ி)

ஶ

଴

𝑘஻𝑇𝑑𝜂 = 𝐶𝑘஻𝑇
𝜕

𝜕𝜂ி

න
𝜂

1 + exp (𝜂 − 𝜂ி)

ஶ

଴

𝑑𝜂.  (26) 

Again, this equation can be considered as the derivative of the Fermi-Dirac integral of order 1, which results in 
the Fermi-Dirac integral of order 0, as follows: 

〈𝑀〉 = 𝐶𝑘஻𝑇
𝜕

𝜕𝜂ி

ℱ1 = 𝐶𝑘஻𝑇ℱ0 = 𝑊
2𝑘஻𝑇

𝜋ℏ𝑣𝐹

ℱ0 .  (27) 

Although (27) already provides a compact expression for 〈𝑀〉 in graphene, further progress can be made since 
the Fermi-Dirac integral of order 0 is analytically solvable. 

〈𝑀〉 = 𝑊
2𝑘஻𝑇

𝜋ℏ𝑣𝐹

ℱ0 = 𝑊
2𝑘஻𝑇

𝜋ℏ𝑣𝐹

ln(1 + exp(𝜂ி)) = 𝑊
2𝑘஻𝑇

𝜋ℏ𝑣𝐹

ln ൬1 + exp ൬
𝐸ி

𝑘஻𝑇
൰൰ .  (28) 

 

(5c) First, let me consider the normalized 〈𝑀〉, thus neglecting the width 𝑊. Note that the expression (22) is 
derived with 𝑔௩ = 1 while the expression (22) is derived with 𝑔௩ = 2. So, to satisfy the statement of the problem, 
(22) should be multiplied by 2. Using these expressions and given constants, the numerical results are given by 

〈𝑀〉ୗ୧ =
2ඥ2𝜋𝑚∗𝑘𝐵𝑇

ℎ
ቤ

𝑚∗=0.19,𝑇=300K

ℱ−1/2(𝜂ி = 0.1/0.0259) = 4.35 × 10଼[mିଵ] ,  (29) 

where ℱିଵ/ଶ is computed by using [3], and 

〈𝑀〉୥୰ୟ୮୦୬ୣ =
2𝑘஻𝑇

𝜋ℏ𝑣𝐹

ฬ
𝑣𝐹=106m/s,𝑇=300K

ln ൬1 + exp ൬
0.1

0.0259
൰൰ = 9.7 × 10଻[mିଵ] . (30) 



Therefore, the number of modes of Si is approximately four times larger than that of graphene. 
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