ECE 65600 (Electron Transport in Semiconductors) HW #6
0037735308 In Huh

1) What are the special properties of a contact in the Landauer model?

a) Strong inelastic scattering keeps them near equilibrium.

b) Any electron incident upon the contact is completely absorbed (no reflections).
c) Each contact is described by its own Fermi level.

d) Contacts have a very large number of channels (modes) compared to the device.
e) All of the above.

The assumptions (a - d) describe the fundamental conditions for an ideal Landauer contact, as shown in Figure 1.
These conditions ensure that the left and right contacts function as ideal reservoirs for electron transport in the
channel. Therefore, the correct answer is (e).

2)  Which of the follow is true about the Landauer expression for current:

1=(2q/h)[T (E)M(E)(f,- £,)dE?

a) It applies to electrons in the conduction band.

b) It applies to electrons in the valence band.

c) It applies to holes in the valence band.

d) It applies to both electrons in the conduction band and holes in the valence band.

e) It applies to both electrons in the conduction band and electrons in the valence
band.

The Landauer model describes n-type current flow as electron transport in the conduction band, and p-type
current flow as electron transport in the valence band. The expressions are identical, differing only in the
integration range. Please refer Figure 2 for details. In summary, the correct answer is (e).
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3) What are the units of the quantity, 4(v} (E)) D(E)/4? The units of D(E) are .

a) Energy

b) One over energy

c) Ohms

d) One over Ohms or Siemens.
e) The quantity is unitless.

I believe that D(E) denotes the 1D DOS, which has units of [J™! - m™1]; since it is the density of states in energy
space, its units should be normalized by the energy and hyper-volume (in this case, length). Then, the Planck
constant, velocity, and 1D DOS has units of [J-s], [m-s™!], and [J-!-m™!], respectively. By using them, one



can compute the units of M(E) as follows:

[M]=1]-s] [?] []Lm] = unitless (1

Therefore, M(E) is a dimension-less quantity, thus the correct answer is (e).

4)

What is meant by the term “near-equilibrium” transport?

a) The contacts stay very close to equilibrium.

b) The Fermi level in the contact is close to its equilibrium value.

c) The Fermi levels of the two contacts, f and f;, can be replaced by the equilibrium
Fermi level.

d) The difference in Fermi levels between the two contacts can be replaced by a first
order Taylor series expansion of f - f;.

e) The temperature of the two contacts is the same.

"Near-equilibrium transport" refers to a condition where current flows due to a slight difference in the Fermi levels
between the right and left contacts. Mathematically, it means that the difference in Fermi Dirac distributions in
these contacts, i.e., the Fermi window f; — f,, can be approximated by using the first order Taylor expansion, i.c.,
fo=fi+ (@fi/OEY(QV) = fi — fo, = (—0f1/OE)(qV). Thus, the correct answer is (d).

5) Consider a small nano-device under bias with a steady-state current flowing. Which

of the following is true?

a) One contact tries to fill states in the device and the other one tries to empty them.

b) Both contacts try to fill states in the device.

c) Both contacts try to empty states in the device.

d) All of the above.

e) None of the above.
The device is biased thus current flows. The electron that exits (f#/,) “Fermiwindow"
from one contact (the left or “source” contact) must travel the B
channel and enter the other contact (the right or “drain” contact). o™=l _
Thus, the correct answer is (a); the source contact tries to fill = £x 4 { Sl \\\
states in the device, and the other one tries to empty them. Please T B f o
refer Figure 3 for details. =1 { =g

= k
o —@

6)

Figure 3. Visualization of electron transport.

Mathematically, the number of modes (channels) at energy, E, is proportional to
what?

a) The density of states.

b) The velocity.

c) The density of states times velocity.

d) The density of states divided by velocity.
e) The deBroglie wavelength.

The number of modes is given by h(v; (E))D(E)/4, i.e., the density of states times velocity, thus the correct
answer is (c).



How is the transmission, 7, related to the mean-free-path for backscattering, A, and
the length of the resistor, L?

a) 7=,
b) 7=e"
¢ T=A/L.
d) 7=L/A.
e) T=4af(A+L).

The transmission T = A/(A 4+ L) is a unified expression that can describe diffusive, ballistic, and quasi ballistic
transports as shown in Figure 4. Thus, the correct answer is (e).

8)

For parabolic band semiconductors, M ('E ) is independent of energy (above the

bottom of the conduction band) for which of the following cases?

a) 1D
b) 2D
c) 3D
d) 1Dand 2D
e) 2Dand 3D

Figure 5 shows the computed M(E) profiles for 1D, 2D, and 3D cases. The 1D case is a unit function in the
energy space, meaning the 1D M(E) is independent of energy. Thus, the correct answer is (a).
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Figure 4. Transmission model based on the mean free path Figure 5. Comparison of M(E) for ID, 2D, and 3D

A and device length L.

cases, with parabolic energy bands.

3) Determine the limits of integration, E, and E,, for the integral in the Landauer

expression:
E o
1=(2q/h) [T (E)M(E)(£,- £)dE
El

for the case of T= 0 K. Assume that contact one is grounded and that a positive voltage
(not necessarily small) has been applied to contact 2.

For T = 0K, the Fermi window f; — f, is simply given by a /(E)T i o ”E’T P
rectangular filter, as shown in Figure 6. It equals 1 if E lies within 1 sl B

the difference between the two contact Fermi levels, and 0 otherwise, AE)] | AE) \

thus the integration range is also determined based on the Fermi ()J—EIL,_.‘Eﬁ 0 EF:\‘E“ >
levels. Let the Fermi level of the contact 1 be 0; then the Fermi level - o

of the contact 2 is simply given by qV. Therefore, the integration

range extends from E; = qV to E, = 0 (because a positive bias
is applied, qV is negative and smaller than 0).

Figure 6. Fermi window at T = 0K and
T > OK.



4) The ballistic conductance is often derived from a k-space treatment, which writes the
current from left to right as

.1 b 18
=72 qv.fo(En)
k-0
and the current from right to left as
1 o
I =_z‘lvxfo(_Er:)
L=

The net current is the difference between the two. In the ballistic limit, the Landauer
expression for the current is

1=(’2q,."hj)f.‘\1(E)1' f,- f,)dE

4a) Assume parabolic energy bands, evaluate the net current from the k-space
approach, and show that it is the same as the Landauer expression.

4b) Assume parabolic energy bands, but now assume 2D electrons. Evaluate the net
current from the k-space approach, and show that it is the same as the Landauer
expression.

4c) Assume parabolic energy bands, but now assume 3D electrons. Evaluate the net
current from the k-space approach, and show that it is the same as the Landauer
expression.

Without loss of generality, E; = 0, g; = 2,and g, = 1 are assumed for sake of simplicity.

(4a) The 1D Landauer equation is given by

2 2
Lo =+ [ dEM@Y G - £ =2 [ B G- £, &

because the number of modes M(E) for 1D is equal to 1, as shown in Figure 5. Next, let me derive the ballistic
current from the k-space approach. For 1D electrons, ), = 2 i [2dk and v, = %Z—i. From this, I, is

expressed as

1 1L 1\ 10E q 2q
I1p = Zz quefi = Z;j (de 5) Q3o 1 = %f dEfy = 7] dEf, 3)
k>0
where 1/2 is multiplied to 2dk to consider k > 0 only. Similarly, I_ is expressed as
2q
Lap = [ a5t @)
Therefore, the net current derived from the k-space approach is given by
2q
Iyap = Iiip —1-1p = Tf dE(f1 — f2)- (5)
Thus, one can conclude
2q
o = 5 | 4G = £2) = | ©)

(4b) The 2D Landauer equation is given by

V2m*E
mh

2 2 vaZm*
o = [ dEM@)f~ ) = 5o | dB (W ) (hi=f) =T w [aVEG - £, O



by using the M(E) for 2D shown in Figure 5. Next, to derive the ballistic current from the k-space approach, let

i ) = %kx = %kcos@. Then,

me consider Y, = Zi%ffkdk d6 and v, = ~2£ = 31( hz*
/2
kzdkflf cosfdo

hoky  hoky\2m
1 w h
Liop = I Z quefi = ﬁfffl — e

kx>0,ky )
qW h
- f k2dkf,,

where the integration range in 6 space is limited to [—m/2,7/2] in order to consider only k, > 0. Now, using

E = i = k= Zh—"fE,k = sz\/E and kdk = 7;:—Z*dE, one can simplify (8) as follows:
qW & 2m* me qW~2m
420 = 7= T\/E w2 dEh =" f\/_ dEf;. ©)

Similarly, I_ is expressed as

W ~2m*
=130 f JE dEf,. (10)
Therefore, the net current derived from the k-space approach is given by
qv2m*
han =1 = L= 20w [VEdB (- 1) (1n
Thus, one can conclude
qVv2m*
Ix2p ZWWJ-\/EdE(fl—fz) =1I2p}| (12)

(4¢) The 3D Landauer equation is given by

gm’
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where the integration range in ¢ space is limited to [—m/2, /2] in order to consider only k, > 0. Now, using

27,2 * *
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Similarly, I_ is expressed as

A qm*
I—,3D ZWFJ-fZEdE (16)

Therefore, the net current derived from the A-space approach is given by

*

qam
on = 1 = 1 = gz [ BAB G = £,). (17)
Thus, one can conclude
qm’
lsn = 5ozs A | BAEGE = £) = Lol (18)

5) The quantity,
- 24)

E

is the number of conduction band channels in the Fermi-Window. Answer the following
questions.

5a) Evaluate { M for an arbitrary temperature and location of the Fermi level

assuming a 2D semiconductor with parabolic energy bands.

5b) Evaluate / M for an arbitrary temperature and location of the Fermi level above

the Dirac point, E,, assuming graphene.

5c) Assumethat E. =E_,+0.1eV=E +0.1eV. For 5a), assume Si with m =0. 19m,
and a valley degeneracy of 2. For 5b), assume graphene parameters, v, = 10

cm/s and a valley degeneracy of 2. Compare the numerical values of (: M 1 for
these two cases assuming T=300 K

(5a) By using the definition of (M) given in the problem and M(E) for 2D semiconductors shown in Figure 5,
the full expression of (M) is

(M) = f(W—M>( afO)dE WmeE—ffc( afo) dE. (19)

h h 5))

Ec Ec

For the sake of simplicity, let Wi—hm* = C. Note that for the Fermi-Dirac distribution, —df,/0E = df,/0Er

holds. Using this identity, the above becomes

r JE—E,
(M) = f(,/E EC) dE C—f(,/E E.)f,dE = C_f1+exp((E AV dE.  (20)

To covert this equation as a usual Fermi-Dirac integral form, let n = (E — E;)/kgT and np = (Er — E¢)/kgT.
Then, (20) is equal to

— kB
My=cC f — VB k,Tdy=CksT anpf 1)

—d
1+exp (n—nF) 1+exp (n—nFp)



Note that for the Fermi-Dirac integral, fo W(]nn) n=T@{+DF and T Fj_1. Thus (21) is a derivative
of the Fermi-Dirac integral of order 1/2 and should be the Fermi-Dirac integral of order —1/2. Because I'(1/2+ 1) =

YT (21)is finally given by

a (Vm \2m* [k, T J2mm kT J2mm kT
(My=_C kBTE(TTm) =W-— zB F_1/z =WTth:_1/2 = WTBT_HZ. (22)

(5b) From the lecture note, M(E) for graphene is given by

2E
whyg’

M(E) =W 23)

for the case where the Fermi level is above the Dirac point, i.e., E > 0. Then, similar to the previous case, the
full expression of (M) is

o= 2 (2w (e

0

Again, let W % = (C for simplicity. Using the technique —df,/0F = df,/0Er gives
VF

[oe] [oe]

(M) = CfE—dE Cif EfydE = C— 9 f £ dE. 25)
0ER 0ER 0Er) 1+ exp((E — Eg) /kgT)

To covert this equation as a usual Fermi-Dirac integral form, let n = E/kgT and np = Eg/kgT, then (25) is
equal to

(M)=C

d f kgTn 26)

d r n
0Er ) 1+ exp(n—ng) kpTdn = CkBT(') f
0

M 1+exp(m—ngp)

Again, this equation can be considered as the derivative of the Fermi-Dirac integral of order 1, which results in
the Fermi-Dirac integral of order 0, as follows:

9 2T
(M) = CkB Tl = CkBTTO = W_TO - (27)
ong Thvg

Although (27) already provides a compact expression for (M) in graphene, further progress can be made since
the Fermi-Dirac integral of order 0 is analytically solvable.

(M)—WZkBTfF _ 2T (1 + exp(np)) = w 2T (1+ (EF)) 28
TV nhvy T mhog t expiE)) =W ke Vg " exp kgT))| (28)

(5¢) First, let me consider the normalized (M), thus neglecting the width W. Note that the expression (22) is
derived with g, = 1 while the expression (22) is derived with g, = 2. So, to satisfy the statement of the problem,
(22) should be multiplied by 2. Using these expressions and given constants, the numerical results are given by

2/ 2mm*kgT

h

F_12(Mr = 0.1/0.0259) = [4.35 x 108[m~]| (29)

m*=0.19,T=300K

(M)si =

where F_;,, is computed by using [3], and

2kgT 0.1 —
(M)graphne = —5— In (1 + exp (0 0259)) =[9.7 x 107 [m™1]| (30)

mhvyg vr=100m/sT=300K




Therefore, the number of modes of Si is approximately four times larger than that of graphene.
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