ECE 65600 (Electron Transport in Semiconductors) HW #5
0037735308 In Huh

1) The equation of motion for an electron in k-space is d ( hk )dt = f; . What assumptions

are necessary for this equation to be valid?

a) Parabolic energy bands.

b) Non-degenerate conditions.

c) No quantum mechanical reflections.
d) No B-field.

e) No temperature gradients.

The given equation describes the semiclassical transport of . o T ——
electrons in k-space. It basically assumes that the conduction "
band profile, Ec(x) varies slowly compared to the scale of the {variles sk Ionctthe}
. . . scale o e electron's
electron’s De Broglie wavelength (~ 10 nm for electrons in Si at Ee® wavelength

2

300 K), as shown in Figure 1. Therefore, wave phenomena p:hk:hz

such as quantum mechanical reflections and tunneling are P

ignored in this model, and electron motion can be described by 2

classical mechanics. Therefore, the correct answer is (c). 47°n i *
A= 3m'k5T =~ 10nm (electrons in Si at 300K)

Figure 1. Assumed Ec(x) condition

2) Under what conditions is this equation valid? i—f +0eV f+ f" . fo =0
a) Norecombination-generation.
b) Equilibrium.
c) No scattering.
d) Position independent effective mass.
e) All of the above.

The given equation is a special case of Boltzmann Transport Equation (BTE). It £ (20t a _ 0
is basically derived by rearranging df/dt = 0, as shown in Figure 2, thus describes dt

the distribution function f under the equilibrium condition (b). Note that it

assumes the position-independent effective mass (d), thus Av = VyE(k,r) =  df _of - of dx . o dp, _
VkE (K), usually used in semi-classical transports (otherwise, one should solve dt ot oOxdt Op, dt
the equation of motion for effective mass). Additionally, the equilibrium

condition naturally means there is no scattering (c). Furthermore, it assumes i o of o

there is no net recombination-generation (a). Note that if they exist, the EZE’*a“ﬁan =0
generalized BTE is described as:

. . . : : Figure 2. Derivation of BTE
a;f =—0 a_f - F a_f id (a_jj il (a_j) under the equilibirum.
ot Yox  ap, \or ). \or),
where one can clearly check that the recombination-generation term df/df |4, and collision term (scattering)
df /0t oy are zero in the given equation. In summary, the given equation assumes all (a — d), thus the correct
answer is (e).



3) What is the quantity, 3 S(p’ *ﬁ)f(:p’)[l—f(,}—’)]?
F

a) The collision integral.
b) The in-scattering rate to state p.
c) The out-scattering rate from state p.

d) The relaxation time approximation.
e) The collision operator.

Figure 3 shows that the given quantity is the in-
scattering rate from a state p’ to a state p, as .
indicated by the direction of the arrow in the (iyi(F‘ﬁ"F;S(i"_)‘A’)-/(ﬁ')[l_f(ﬁ)]_;S(‘;_’[_")f(ﬁ)[l_f(i")]
scattering potential S. Note that the f(p’) and 1 — / \

f (p) respectively represent the probabilities that the

(in-scattering) - (out-scattering)

. , - . robability that robability that
initial state p’ is occupied and that the final state p tﬁe state a{ P is t?]e state gt pis
is empty, which is a natural condition that the occupied empty

transition occurs. Thus, the correct answer is (b).  Figure 3. In-scattering and out-scattering terms.

ﬂm—nww?

T

m

4) What is the quantity, —[

a) The collision operator.

b) The collision operator in the relaxation time approximation.

c) The solution to the steady-state Boltzmann equation.

d) The in-scattering term of the collision operator.

e) The out-scattering terms of the collision operator. y

j+u‘-V,j’+E-Vﬁf:—[

T,

f(ﬁ)—fo(ﬁ)]: 4(p)

assume:

It is the collision operator, but in the relaxation time approximation

. . L. V,f=0 FE=-gE=0 ;

(RTA), thus the correct answer is (b). It approximates the collision ' Pt
. A . I () _ filBr) exponentially with time.
integral Cf = df/0t|.ou as a linear term governed by a momentum a1, el )
relaxation time t,,, i.e., 0f/0t|cou ® —(f — fs)/Tm . Its underlying P R

. . . . fa(p.t)=£i(p.0)e
mechanism is based on the assumption that the perturbations from (a familiar example)
equilibrium decay exponentially with the relaxation time. Figure 4. RTA of collision operators.

5) In the solution to the steady-state Boltzmann equation, § f =7_(-9 fs‘/"aE ]17 «Z , what
is the term (-3 f; /9E) called?
a) The electrochemical potential.
b) The chemical potential.
c) The Fermi window.

d) The generalized force.
e) The electric field.

It is called the Fermi window, as shown in Figure 5, thus the correct

answer is (c). As the name suggests, an electron can transport through the “Fermi window"”
Fermi window, but it can only do so when this window is open, i.c., " z SI‘};T;
— . E

0fs/0E > 0 f(E) S-S
The term "Fermi window" becomes clearer in the context of the Landauer 1 N /
approach, as it actually refers to the difference between the Fermi-Dirac ] I
distributions of the source and drain contacts, i.e., f; — f, = —0df,/0E, /
under a small bias condition. 0 s 7

T> {I,K

Figure 5. Fermi window.



|, whatis f;(7)?

; (5)- £.(B))
6) Inthis equation, Cf =— M |

a) The distribution function.

b) The equilibrium distribution function.

c) Adistribution function with the shape of the equilibrium distribution function.
d) The Bose-Einstein distribution.

e) The anti-symmetric part of the distribution function.

The distribution function f can be written as the summation of its

symmetric and anti-symmetric part, i.e., f = fs + f,, as shown in 3P ey £(5)=F(P)
Figure 6. For the equilibrium case, f = f; = f;. However, for the even in momentum
near-equilibrium case, f = fs + f4 = fy + f4, 1.e., the symmetric 1 A
part fs is almost similar to f,,. Note that, in this case, fs is not an o P) = T T Srm——
equilibrium distribution itself; it is a symmetric part of the near- " (/',’)(;j;(_p::f:)p)
equilibrium one. However, its shape is almost similar to the & =-[MJ=-% o :,, mo;,;‘ent:]m

equilibrium distribution function. “anti-symmetric”

Lundstrom ECE-656 F17 5

As a result, the collision operator acting on the non-equilibrium f Figure 6. The symmetric and anti-
is rewritten as Cf = Of /0t|ooy = fs/0t| oy + 0f1/3¢]oon, and symmetric components of distribution

> functions.
since Ofs/0t|con = 0fo/0tlcon =0, 0f/0t|cou = 0fa/0t|con =

~fa)Tm = Cf = 0f J0t|cou = —(f — f5)/Tm . As mentioned previously, fg is not an equilibrium
distribution, but the symmetric part whose shape is almost identical with the equilibrium distribution
function. Thus, the correct answer is (c).

7)  For spherical bands, how is the near-equilibrium average scattering time, £ u
defined?
a) (vir,)/(v

b) ‘::U:T,-..,
c) «\( E-E, )Tm;:'.,“' t[ E-E, }l‘x .
d) All of the above.

e} None of the above.

Basically, the near-equilibrium average scattering time is defined as an energy average of the energy-dependent
(ETm)

@ 5 (c) is the most fundamental definition. However, for the

momentum relaxation time, ((7,,)) =

. R, 1 _ h I S S S 2 N 1, 2
spherical band case, E = 2m*k ,V = ngE = m*k =E= Jmve=-m (vx + vy, + vz) =.m Bvg) =
2 _2E 5 2E _ (Etm) _ 2(Etm)/m" _ QEtm/m*) _ (Viry) . _
Vi=— vy = holds. Therefore, ({7,,)) = B = amym = @Emn w0 e (b) = (¢), and
.. _(Etm) _ 2(ETtm)/3m* _ (2ETy/3m*) _ (vitg) . _ .
similarly ((t,,)) = B - aEam o @Esmy ) , 1.€., (a) = (¢), for the spherical band. Therefore, the

correct answer is (d).

8) Whatis L= i-+—i called?
Hy M My
a) The Thompson relation.
b) The Kelvin relation.
c¢) The Wiedemann-Franz law.
d) The Lorenz number.
e) Mathiessen's rule.

It is Matthiessen’s rule, an empirical rule that used to describe how different scattering mechanisms contribute
to the total mobility of charge carriers. Thus, the correct answer is (e).



1) We have discussed M ( E ) for a 3D semiconductor with parabolic energy bands.

Answer the following two questions about a 3D semiconductor with non-parabolic
energy bands.

a) Assume that the non-parabolicity can be described by
2 kl

m'(0) "

Derive an expression for the corresponding M ( E ) :

E(1+aE)

Without loss of generality, E. = 0 will be assumed. From the lecture note, one can find that the (area-normalized)
number of modes for 3D semiconductors is
hv(E)

—o— Dso(B). M

h
M(E) = Z(v;(E))D3D(E) =
Note that the (volume-normalized) DOS for 3D is

9v

1
D3p(E)dE = 9s9v g3 Amk?dk? = gsgv—kzdk2 kzdk 2)

for the spin degeneracy gs = 2 and valley degeneracy g,. The non-parabolic band structure gives

2m*(0 2m*(0)E(1 + aE
k? = m()E(1+ E)k_‘/m()( a), (€)
h? h
and similarly,
E o r2ary = ki =9 4 4 2agyas 4)
(12 )—m*(o). = aE)dE.
By putting (3) and (4) into (2), one can get
g
Dsp(E)dE = n—’;kzdkz = 2h3 \/2 “(0)E(1 + aE)(1 + 2aE)dE. (%)
Again, from (4), v(E) can be computed as
1dE hk V2m*(0)E(1 + aE)
v= = : (6)

hdk m*(O)(l + 2aE) m*(0)(1 + 2aE)

Finally, by putting (5) and (6) into (1), M(E) is equal to:

M) = hvéE) Dy (E) = ZZh\/ZT:l (0)E(1 + aE) g,m-(0) m I OVECL ¥ aB)Ct2eE) ™
Rearranging (7) gives
2rh gy ., . g,m"(0)
M(E) = —=—52m" (OE(L + aB) = ———E(1 + ak). (®)

If one considers the conduction band minimum is E, rather than 0, than (8) is expressed as

go,m"(0)
2mh?

M(E) = (E-E)(1+a(E—-Ep)| )




b) Using the following numbers for GaAs,
m’(0)=0.067m,
a=0.64,
plot M (E ] from the bottom of the I" valley to E =0.3 eV comparing results from
the non-parabolic expression derived in part a) to the parabolic expression.

The code and plot are as follows. E; =0 and g, =1 is assumed.

@ generate_nonparbolic_modes.py

import numpy as np
import matplotlib.pyplot as plt

m_e =
hbar =
q

ber_of jes(m_star, alpha, E_min=0, E_max= , hon_parabolic=Fa

m_star * m_e
= np.linspace(E_min, E_max,

if non_parabolic:

nE, (m/ (2% np.pi * hbar *x 2)) * (q * ( E_min)) * (1 + (alpha / q) * (q * (E - E_min)))

V E, (m / (2 * np.pi % hbar *x 2)) % (q E_min))

__name__ g
E, M_para = compute_number_of_modes (
E

M_nonpara = compute_number_of_modes(

plt.plot( E, M_para, c='k',
plt.plot( E, M_nonpara, c='r
plt.xlabel('Ener E 1')
plt.ylabel("’
plt.grid()
plt.legend()

.show()
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Figure 7. Used code and computation results.



2) The figure below shows a semiconductor with the Fermi level located in five different
locations. If we use the Landauer expression to compute the current:

I=(2q/h)FJ?7'(E)M(E)(fl - f,)dE

what are appropriate limits of integration, E, and E,, for each case? You may assume

room temperature and a bandgap of 1 eVand that £, = E_, = E|.

I assume that Er; and Ep, in the paragraph refer to the Fermi levels of contract 1 (f;) and contact 2 (f5),
respectively, while in the figure Ep; and Ep, simply represent different (channel) Fermi levels Er. To avoid
any ambiguity, I will denote the Fermi levels of contacts (Ep; and Ep, in the paragraph) as Ep; = Eps and
Ep, = Epp, respectively.

Also, I assume that all quantum mechanical transport phenomena such as tunneling can be ignored, and trap states
within the band gap are also neglected. That is, it is assumed that M (E) exists only above E. or below E},, and
does not exist within the band gap.

Because Ep; = Ep, = Ep, the small voltage approximation can be applied:

E; E;
of
T [ TEME S - £)E ~ [ TEME (-5E) e (10)
Eq Eq
The Fermi window (— %) typically has a width of 5kgT, as shown in Figure 5. Therefore, when estimating an

appropriate integration range, the Fermi window function can be approximated as a symmetric rectangular filter
with a width of 5kzT = 0.13eV (at 300 K).

(1) Case EF = EFl > EC

Assume that Ep = Ep is sufficiently higher than E; (by at least Er — E; > 2.5kT). Then, within the 5kzT
range centered around Ep = Ep;, M(E) is always greater than zero (since the DOS always exists). Therefore,
the integration should be performed over the range E; = Ep — 2.5kgT and E, = Ep + 2.5kgT. Please refer
Figure 7 (a) for a graphical representation.

(2) Case Ep = Ep, < E;

Assume that Er = Ep, is lower than E. but only slightly (i.e., E; — Er < 2.5kgT). In this case, the upper
bound of the integral is determined by E, = Ep + 2.5kzT, while the lower bound is determined by E; = E,
because M(E) =0 below E; (i.e., DOS = 0 within the band gap). Therefore, the integration should be
performed over the range E; = E; and E, = Ep + 2.5kpT . Please refer Figure 7 (b) for a graphical
representation.



(3) Case EF = EF3 = Ei

In this case, current will not flow, because there is no available mode M (E) that can be occupied. Therefore,
defining the range of integration becomes meaningless. Please refer Figure 7 (c) for a graphical representation.

(4) Case Ep = Epy = Ey

This is exactly the same case with (2), except that the sign should be changed because one must consider the p-
type transport. Therefore, the integration should be performed over the range E, = Ey and E; = Ep — 2.5kpT.
Please refer Figure 7 (d) for a graphical representation.

(5) Case EF = EFS < EV

This is exactly the same case with (1), except that the sign should be changed because one must consider the p-
type transport. Therefore, the integration should be performed over the range E; = Ep + 2.5kgT and E; =
Ep — 2.5kgT. Please refer Figure 7 (e) for a graphical representation.

(a) (b) (c) (d) (e)
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©Ep—25KsT B 25KeT Er-25KgT  Ep+2.5KsT Ep +25KsT Er +25KsT

m

Figure 8. Graphical representation of each situation. Only the region where the Fermi window (red or blue area)
overlaps with M(E) (gray triangle) can be meaningful.
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