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The given equation describes the semiclassical transport of 
electrons in k-space. It basically assumes that the conduction 
band profile, EC(x) varies slowly compared to the scale of the 
electron’s De Broglie wavelength (~ 10 nm for electrons in Si at 
300 K), as shown in Figure 1. Therefore, wave phenomena 
such as quantum mechanical reflections and tunneling are 
ignored in this model, and electron motion can be described by 
classical mechanics. Therefore, the correct answer is (c). 

 

The given equation is a special case of Boltzmann Transport Equation (BTE). It 
is basically derived by rearranging df/dt = 0, as shown in Figure 2, thus describes 
the distribution function f under the equilibrium condition (b). Note that it 
assumes the position-independent effective mass (d), thus ℏ𝑣 = ∇𝐤𝐸(𝐤, 𝐫) =

∇𝐤𝐸(𝐤), usually used in semi-classical transports (otherwise, one should solve 
the equation of motion for effective mass). Additionally, the equilibrium 
condition naturally means there is no scattering (c). Furthermore, it assumes 
there is no net recombination-generation (a). Note that if they exist, the 
generalized BTE is described as:  

 

where one can clearly check that the recombination-generation term 𝜕𝑓/𝜕𝑓|௚ି௥  and collision term (scattering) 

𝜕𝑓/𝜕𝑡|௖௢௟௟ are zero in the given equation. In summary, the given equation assumes all (a – d), thus the correct 
answer is (e). 

 

 

Figure 1. Assumed EC(x) condition 

 

Figure 2. Derivation of BTE 
under the equilibirum. 



 

 

Figure 3 shows that the given quantity is the in-
scattering rate from a state 𝒑’  to a state 𝒑 , as 
indicated by the direction of the arrow in the 
scattering potential S. Note that the 𝑓(𝑝’) and 1 −

𝑓(𝑝) respectively represent the probabilities that the 
initial state 𝑝’ is occupied and that the final state 𝑝 
is empty, which is a natural condition that the 
transition occurs. Thus, the correct answer is (b). 

 

It is the collision operator, but in the relaxation time approximation 
(RTA), thus the correct answer is (b). It approximates the collision 
integral 𝐶መ𝑓 = 𝜕𝑓/𝜕𝑡|௖௢௟௟   as a linear term governed by a momentum 
relaxation time 𝜏௠ , i.e., 𝜕𝑓/𝜕𝑡|௖௢௟௟ ≈ −(𝑓 − 𝑓ௌ)/𝜏௠ . Its underlying 
mechanism is based on the assumption that the perturbations from 
equilibrium decay exponentially with the relaxation time. 

 

It is called the Fermi window, as shown in Figure 5, thus the correct 
answer is (c). As the name suggests, an electron can transport through the 
Fermi window, but it can only do so when this window is open, i.e., 
−𝜕𝑓ௌ/𝜕𝐸 > 0.  

The term "Fermi window" becomes clearer in the context of the Landauer 
approach, as it actually refers to the difference between the Fermi-Dirac 
distributions of the source and drain contacts, i.e., 𝑓ଵ − 𝑓ଶ = −𝜕𝑓ଵ/𝜕𝐸 , 
under a small bias condition. 

 
Figure 3. In-scattering and out-scattering terms. 

 
Figure 4. RTA of collision operators.

 

 
Figure 5. Fermi window. 



 

The distribution function 𝑓 can be written as the summation of its 
symmetric and anti-symmetric part, i.e., 𝑓 = 𝑓ௌ + 𝑓஺, as shown in 
Figure 6. For the equilibrium case, 𝑓 = 𝑓ௌ = 𝑓଴. However, for the 
near-equilibrium case, 𝑓 = 𝑓ௌ + 𝑓஺ ≈ 𝑓଴ + 𝑓஺ , i.e., the symmetric 
part 𝑓ௌ is almost similar to 𝑓଴. Note that, in this case, 𝑓ௌ is not an 
equilibrium distribution itself; it is a symmetric part of the near-
equilibrium one. However, its shape is almost similar to the 
equilibrium distribution function. 

As a result, the collision operator acting on the non-equilibrium 𝑓 
is rewritten as 𝐶መ𝑓 = 𝜕𝑓/𝜕𝑡|௖௢௟௟ = 𝜕𝑓ௌ/𝜕𝑡|௖௢௟௟ + 𝜕𝑓஺/𝜕𝑡|௖௢௟௟  , and 
since 𝜕𝑓ௌ/𝜕𝑡|௖௢௟௟ ≈ 𝜕𝑓଴/𝜕𝑡|௖௢௟௟ = 0 , 𝜕𝑓/𝜕𝑡|௖௢௟௟ ≈ 𝜕𝑓஺/𝜕𝑡|௖௢௟௟ ≈

−𝑓஺/𝜏௠ ⟹ 𝐶መ𝑓 = 𝜕𝑓/𝜕𝑡|௖௢௟௟ ≈ −(𝑓 − 𝑓ௌ)/𝜏௠ . As mentioned previously, 𝒇𝑺  is not an equilibrium 
distribution, but the symmetric part whose shape is almost identical with the equilibrium distribution 
function. Thus, the correct answer is (c). 

 

Basically, the near-equilibrium average scattering time is defined as an energy average of the energy-dependent 
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correct answer is (d). 

 

It is Matthiessen’s rule, an empirical rule that used to describe how different scattering mechanisms contribute 
to the total mobility of charge carriers. Thus, the correct answer is (e). 

 

Figure 6. The symmetric and anti-
symmetric components of distribution 
functions. 



 

Without loss of generality, 𝐸஼ = 0 will be assumed. From the lecture note, one can find that the (area-normalized) 
number of modes for 3D semiconductors is 

𝑀(𝐸) =
ℎ
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Note that the (volume-normalized) DOS for 3D is 
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for the spin degeneracy 𝑔௦ = 2 and valley degeneracy 𝑔௩. The non-parabolic band structure gives 
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By putting (3) and (4) into (2), one can get 
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Finally, by putting (5) and (6) into (1), 𝑀(𝐸) is equal to:  
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If one considers the conduction band minimum is 𝐸஼  rather than 0, than (8) is expressed as 
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The code and plot are as follows. 𝐸஼ = 0 and 𝑔௩ = 1 is assumed.  

 

 

Figure 7. Used code and computation results. 



 

I assume that 𝐸ிଵ  and 𝐸ிଶ  in the paragraph refer to the Fermi levels of contract 1 (𝑓ଵ ) and contact 2 (𝑓ଶ ), 
respectively, while in the figure 𝐸ிଵ and 𝐸ிଶ simply represent different (channel) Fermi levels 𝐸ி . To avoid 
any ambiguity, I will denote the Fermi levels of contacts (𝐸ிଵ and 𝐸ிଶ in the paragraph) as 𝐸ிଵ = 𝐸ிௌ and 
𝐸ிଶ = 𝐸ி஽ , respectively. 

Also, I assume that all quantum mechanical transport phenomena such as tunneling can be ignored, and trap states 
within the band gap are also neglected. That is, it is assumed that 𝑀(𝐸) exists only above 𝐸஼  or below 𝐸௏ , and 
does not exist within the band gap. 

 

Because 𝐸ிଵ ≈ 𝐸ிଶ ≈ 𝐸ி, the small voltage approximation can be applied: 
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The Fermi window ቀ−
డ௙భ

డா
ቁ typically has a width of 5𝑘஻𝑇, as shown in Figure 5. Therefore, when estimating an 

appropriate integration range, the Fermi window function can be approximated as a symmetric rectangular filter 
with a width of 5𝑘஻𝑇 = 0.13eV (at 300 K).  

(1) Case 𝑬𝑭 = 𝑬𝑭𝟏 ≫ 𝑬𝑪 

Assume that 𝐸ி = 𝐸ிଵ is sufficiently higher than 𝐸஼  (by at least 𝐸ி − 𝐸஼ > 2.5𝑘஻𝑇). Then, within the 5𝑘஻𝑇 
range centered around 𝐸ி = 𝐸ிଵ, 𝑀(𝐸) is always greater than zero (since the DOS always exists). Therefore, 
the integration should be performed over the range 𝑬𝟏 = 𝑬𝑭 − 𝟐. 𝟓𝒌𝑩𝑻 and 𝑬𝟐 = 𝑬𝑭 + 𝟐. 𝟓𝒌𝑩𝑻. Please refer 
Figure 7 (a) for a graphical representation.  

(2) Case 𝑬𝑭 = 𝑬𝑭𝟐 ≤ 𝑬𝑪 

Assume that 𝐸ி = 𝐸ிଶ  is lower than 𝐸஼  but only slightly (i.e., 𝐸஼ − 𝐸ி < 2.5𝑘஻𝑇 ). In this case, the upper 
bound of the integral is determined by 𝐸ଶ = 𝐸ி + 2.5𝑘஻𝑇, while the lower bound is determined by 𝐸ଵ = 𝐸஼, 
because 𝑀(𝐸) = 0  below 𝐸஼   (i.e., DOS = 0 within the band gap). Therefore, the integration should be 
performed over the range 𝑬𝟏 = 𝑬𝑪  and 𝑬𝟐 = 𝑬𝑭 + 𝟐. 𝟓𝒌𝑩𝑻 . Please refer Figure 7 (b) for a graphical 
representation. 



(3) Case 𝑬𝑭 = 𝑬𝑭𝟑 = 𝑬𝒊 

In this case, current will not flow, because there is no available mode 𝑀(𝐸) that can be occupied. Therefore, 
defining the range of integration becomes meaningless. Please refer Figure 7 (c) for a graphical representation. 

(4) Case 𝑬𝑭 = 𝑬𝑭𝟒 ≥ 𝑬𝑽 

This is exactly the same case with (2), except that the sign should be changed because one must consider the p-
type transport. Therefore, the integration should be performed over the range 𝑬𝟐 = 𝑬𝑽 and 𝑬𝟏 = 𝑬𝑭 − 𝟐. 𝟓𝒌𝑩𝑻. 
Please refer Figure 7 (d) for a graphical representation. 

(5) Case 𝑬𝑭 = 𝑬𝑭𝟓 ≪ 𝑬𝑽 

This is exactly the same case with (1), except that the sign should be changed because one must consider the p-
type transport. Therefore, the integration should be performed over the range 𝑬𝟐 = 𝑬𝑭 + 𝟐. 𝟓𝒌𝑩𝑻 and 𝑬𝟏 =

𝑬𝑭 − 𝟐. 𝟓𝒌𝑩𝑻. Please refer Figure 7 (e) for a graphical representation. 

 

Figure 8. Graphical representation of each situation. Only the region where the Fermi window (red or blue area) 
overlaps with 𝑀(𝐸) (gray triangle) can be meaningful. 
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