
1

Pacifier: High-Throughput, Reliable Multicast
Without “Crying Babies” in Wireless Mesh

Networks
Dimitrios Koutsonikolas,Member, IEEE,Y. Charlie Hu,Senior Member, IEEE,

and Chih-Chun Wang,Member, IEEE

Abstract—In contrast to unicast routing, high-throughput re-
liable multicast routing in wireless mesh networks (WMNs) has
received little attention. There are two primary challenges to
supporting high-throughput, reliable multicast in WMNs. T he
first is no different from unicast: wireless links are inherently
lossy due to varying channel conditions and interference. The
second, known as the “crying baby” problem, is unique to
multicast: the multicast source may have varying throughput
to different multicast receivers, and hence trying to satisfy
the reliability requirement for poorly connected receivers can
potentially result in performance degradation for the rest of the
receivers.

In this paper, we proposePacifier, a new high-throughput reli-
able multicast protocol for WMNs. Pacifier seamlessly integrates
four building blocks, namely, tree-based opportunistic routing,
intra-flow network coding, source rate limiting, and round-robin
batching, to support high-throughput, reliable multicast routing
in WMNs, while at the same time effectively addresses the “crying
baby” problem. Our experiments on a 22-node 802.11 WMN
testbed show thatPacifier increases the average throughput over
a state-of-the-art reliable network coding-based protocol MORE
by up to 144%, while at the same time it solves the “crying
baby” problem by improving the throughput of well-connected
receivers by up to a factor of 14.

Index Terms—reliable multicast; wireless mesh networks
(WMNs); network coding.

I. I NTRODUCTION

W IRELESS mesh networks (WMNs) are increasingly
being deployed for providing cheap, low maintenance

Internet access (e.g. [1], [2], [3]). These networks have stati-
cally deployed mesh routers that are not energy constrained,
and hence the main design challenge is to improve applica-
tions’ performance, in particular, to provide high throughput
and reliability in network access. Indeed, recent years have
witnessed numerous “exotic” protocols that aim to improve
the throughput and reliability of unicast routing. These include
opportunistic routing (OR) protocols (e.g., [4]), protocols that
exploit inter-flow (e.g., [5]) or intra-flow (e.g., [6]) network
coding, as well as lower layer protocols (e.g., [7]).

In contrast to unicast routing, high-throughput, reliable
multicast routing has received relatively little attention. In
contrast to IP multicast in the wired Internet, we believe
multicast is and will be a fundamental mode of communication
in wireless networks due to the wireless multicast advantage

This work was supported in part by NSF grants CNS-0626703 andCCF-
0845968.

D. Koutsonikolas, Y. C. Hu and C. C. Wang are with the School ofElectrical
and Computer Engineering, Purdue University, West Lafayette, IN, 47907
USA e-mail: (dkoutson@purdue.edu, ychu@purdue.edu, chihw@purdue.edu).

(WMA) [8]. The use of 802.11 broadcast based multicast
instead of individual unicast sessions has been heavily studied
recently in the community in the context of 802.11 WLANs
(e.g., [9], [10]). Also, in [6], the proposed MORE protocol is
designed to to be a reliable unicast and multicast protocol to
support future applications in multihop WMNs.

We envision at least three important classes of applications
of high-throughput, reliable multicast in the context of com-
munity WMNs: (1) multicasting WMN-related software (e.g.,
a router software update or a security patch) hosted on a node
controlled by the WMN operator to the WMN routers. (2)
multicasting community-related audio/video files (e.g., alocal
football match that was held the day before) stored in a local
database to WMN clients. In both these scenarios, the WMN
node hosting the content serves as the multicast root. (3) a
large group of WMN users downloading a popular file from the
Internet (e.g., a new version of Windows); in that case, a proxy
at the WMN gateway serves as the multicast root. For all these
applications, using multicast instead of individual multihop
unicast sessions can lead to significant wireless bandwidth
savings due to the WMA.

A common characteristic of all these applications, in con-
trast to live streaming (another popular class of multicast
applications), is a strict requirement of100% Packet Delivery
Ratio (PDR), since every byte of the downloaded file has
to be received byall the receivers. This requirement makes
many of the reliable multicast protocols proposed in the past
(e.g., [11], [12], [13], [14]) inappropriate, since they cannot
guarantee 100% PDR. In addition, reliability for this classof
applications cannot come at the cost of significantly reduced
throughput, unlike in many military applications [15], since
Internet users always desire fast downloads.

The fundamental challenge in achieving reliable multicast
in WMNs is no different from that of reliable unicast – that
wireless links are lossy. To overcome this, researchers have
applied classic techniques such as Automatic Repeat reQuest
(ARQ), Forward Error Correction (FEC), or combinations of
the two. The majority of the works on reliable multicast in
multihop wireless networks either are solely based on ARQ
(e.g., [16], [17]) which suffer the feedback implosion problem,
or combine ARQ with congestion control (e.g., [18], [13]). A
recent work [19] studied the applicability of FEC and hybrid
ARQ-FEC techniques, borrowed from the wired Internet, to
WMNs, and showed that RMDP [20], a hybrid ARQ-FEC
protocol, can achieve both reliability and high throughput.

2

More recently, researchers have applied network coding
(NC), a technique originally developed for the wireline In-
ternet, to overcome the above challenge. [21] showed that
the operation of mixing packets resembles the operation of
rateless FEC codes. Actually, NC can be viewed as a technique
equivalent to performing hop-by-hop FEC, without the delay
penalty incurred by the decoding operations at each hop, that
would be required by hop-by-hop FEC. In [22], the authors
went one step further and showed that the reliability gain
(expressed as the expected number of transmissions) of NC
over end-to-end FEC for a wireless multicast tree of heighth

with link loss ratep is in the order ofΘ((1
1−p

)h).
Practical work that exploits the idea of utilizing NC for

reliable multicast is still at a preliminary stage. MORE [6]
is the only practical NC-based protocol that supports high-
throughput, reliable multicast. It combines NC with OR, with
the primary goal of removing the need for coordination re-
quired in opportunistic routing. However, the design of MORE
also guarantees reliability, i.e., MORE is a routing protocol for
reliable file transfer, for both unicast and multicast.

A second fundamental challenge in reliable multicast, which
is unique to multicast, is the “crying baby” problem as first
pointed out in [23] in the context of multicast in the Inter-
net. If one receiver has a particularly poor connection, then
trying to satisfy the reliability requirement for that receiver
may result in performance degradation for the rest of the
receivers. This problem also raises the interesting question of
what is a suitable definition of overall performance metric if
multiple receivers are allowed to achieve uneven throughput.
Regardless, a major challenge in the design of high throughput,
reliable multicast protocols is whether it is possible to develop
a protocol that improves the throughput of well-connected
receivers without worsening the already low throughput of
poorly connected receivers.

In spite of its significance, the “crying baby” problem
has been largely ignored by the majority of the wireless
reliable multicast protocols proposed in the past. To our best
knowledge, BMCC [13], a multicast protocol for mobile ad
hoc networks, was the first protocol to consider the problem
in the context of multihop wireless networks. BMCC allows a
router to drop packets on the path towards the worst receiver,
in order to prevent that receiver from holding back the rest of
the receivers. This solution is not applicable in file-download
applications where 100% PDR is required and hence dropping
packets for some receivers is not an option. Essentially, the
requirement for 100% PDR makes the problem much more
challenging.

In this paper, we proposePacifier, a high-throughput, reli-
able multicast protocol that systematically addresses theabove
two challenges for reliable file transfer applications.Pacifier
seamlessly integrates four building blocks, namely,tree-based
OR, intra-flow NC, source rate limiting, and round-robin
batching,to support high-throughput, reliable multicast routing
and at the same time solve the “crying baby” problem. First,
Pacifierbuilds an efficient multicast tree traditionally used by
multicast protocols and naturally leverages it for opportunistic
overhearing. Second,Pacifierapplies intra-flow, random linear
NC to overcome packet loss over lossy links which avoids

hop-by-hop feedback and the coordination of multicast tree
forwarders in packet forwarding. Third,Pacifier applies rate
limiting at the source, reducing the congestion level in the
network. Fourth,Pacifier solves the “crying baby” problem
by having the source send batches of packets in a round-
robin fashion. This functionality allowsPacifier to improve
the throughput of well-connected nodes drastically and often
times of poorly connected nodes.

To evaluatePacifier, we first compare its performance
against MORE, using extensive realistic simulations. Our
simulations use a realistic physical model, with random signal
variations due to fading, take into account the additional packet
header overhead introduced by the use of NC and OR, and are
conducted over a variety of network topologies and multicast
groups. Our simulation results show thatPacifier increases
the average throughput of multicast receivers over MORE
by 171%, while it solves the “crying baby” problem, by
increasing the maximum throughput gain for well-connected
receivers by up to 20x. Interestingly and importantly,Pacifier
also improves the throughput of the “crying babies”, i.e., the
poorly connected receivers, by up to 4.5x.

Second, sincePacifieruses the same type of NC as MORE,
and has the same memory requirements at the routers, hence,
like MORE, it can be easily implemented on commodity
hardware. To demonstrate this, we present an application-
layer implementation ofPacifier and MORE on Linux and
their performance evaluation on a 22-node 802.11 WMN
testbed deployed in two academic buildings on the Purdue
University campus. Our testbed results verify the simulation
results showing thatPacifier increases the average multicast
throughput over MORE by 83-114%, while the maximum
throughput gain for well-connected receivers can be as highas
14x, and the maximum throughput gain for the “crying baby”
itself can be as high as 5.4x.

In summary, we make the following contributions:
• We address the problem of high-throughput, reliable

multicast for file download applications in deployed
WMNs. We identify two challenges in supporting high-
throughput, reliable multicast (i.e. 100% PDR) in de-
ployed WMNs: high packet loss rates [24], and the “cry-
ing baby” problem. In particular, to our best knowledge,
this is the first work that addresses the well-known in
the wired Internet “crying baby” problem in the context
of file download applications in multihop WMNs. The
requirement for 100% PDR, posed by the nature of
the application into consideration, makes the problem
even more challenging, and existing solutions [13] not
applicable.

• We proposePacifier, the first practical multicast pro-
tocol that simultaneously addresses both challenges: it
guarantees 100% PDR for all multicast receivers, while
simultaneously solving the “crying baby” problem by
offering significant throughput improvements for both
well-connected and poorly-connected receivers over a
state-of-the-art protocol.

• We present the design ofPacifierwhich seamlessly inte-
grates four building blocks, namely,tree-based OR, intra-
flow NC, source rate limiting, and round-robin batching.

3

While the design ofPacifier is based on the numerous
principles and techniques developed over the past fifteen
years in the field of reliable multicast, the novelty of
Pacifier is in the use of NC to gracefully integrate all
four building blocks to develop a full-fledged multicast
protocol.

• We present extensive simulations with a realistic physical
model showing thatPacifieroffers significant throughput
improvements over the state-of-the-art MORE, and, un-
like MORE, it solves the “crying baby” problem. Starting
with a basic version ofPacifier and adding one building
block at a time, we show the additional benefits of each
building block.

• We present an application-layer implementation ofPaci-
fier and MORE and their evaluation on a 22-node 802.11
WMN testbed deployed in two academic buildings on
the Purdue University campus. Our testbed experiments
confirm the simulation findings.

• To facilitate further research of this subject, we have made
the source code of our implementation publicly avail-
able at https://engineering.purdue.edu/MESH/pacifier/.
The software has been downloaded by over 20 research
groups from 6 countries since September 2009.

II. RELATED WORK

In spite of the extensive research on reliable multicast in the
wired Internet, which went through the development of ARQ-
based schemes (e.g., [25], [23]), to FEC schemes (e.g., [26]),
to hybrid ARQ-FEC schemes (e.g., [27], [20], [28]), to rateless
codes [29], [30], [31], [32], the majority of the work on reliable
multicast in multihop wireless networks have used the tradi-
tional ARQ techniques. A survey on reliable multicast proto-
cols for ad hoc networks [33] classifies them into deterministic
and probabilistic ones, depending on whether data delivery
is fully reliable or not. Deterministic protocols (e.g., [16],
[34], [35], [15], [36], [18]) provide deterministic guarantees
for packet delivery ratio, but they can incur excessive high
overhead and drastically reduced throughput. On the other
hand, probabilistic protocols (e.g., [11], [12]) incur much less
overhead compared to the former, but they do not offer hard
delivery guarantees. Using rateless codes requires the source to
continuously send packets, which can cause congestion in the
bandwidth-limited wireless networks. Recently, [19] studied
the applicability of FEC and hybrid ARQ-FEC techniques,
borrowed from the wired Internet, to WMNs, and showed that
RMDP [20], a hybrid ARQ-FEC protocol, can provide both
reliability and high throughput.

Most recently, intra-flow network coding has been proposed
as a whole new approach to reliable routing. NC in theory
is equivalent to hop-by-hop FEC [21], [22], and hence the
maximum amount of redundancy injected from any node in
the network is determined by the lossiest link of the tree,
and not by the lossiest path from the source to any receiver,
unlike in end-to-end FEC. However, hop-by-hop FEC/NC
also has its practical drawbacks; it requires buffering packets
at each node for decoding/re-encoding (in case of FEC) or
only re-encoding (in case of NC). Due to the constraints
on the buffer size and on packet delay, NC needs to send

packets in batches, i.e., the source needs to wait till a batch is
received by all receivers before proceeding to the next batch.
This introduces the “crying baby” problem, where the poorly
connected receivers slow down the completion time of well-
connected receivers.

To our best knowledge, MORE is the only NC-based pro-
tocol for high-throughput, reliable multicast routing (though
it is also for unicast). Due to its significance, and since we
will comparePacifier against it in our evaluation, we present
a brief overview of MORE in Section II-A. To our knowl-
edge, the only other practical NC-based multicast protocol
is CodeCast [14], which exploits NC forimproving but not
guaranteeingreliability in multimedia multicast applications
in mobile ad hoc networks.

A. Overview of MORE

MORE [6] is an OR protocol for reliable file transfer.
MORE is implemented as a shim between the IP and the
802.11 MAC layer. In the following, we describe the main
functions of MORE, focusing on its multicast operation. We
briefly review its two major features: forwarding node (FN)
selection and packet batching.

FN selection. MORE uses the ETX metric [37], based on
loss rate measurements, to select the possible FNs. ETX is
equal to the expected number of transmissions required to
successfully transmit a packet from the source to a destination.
For each destination the source includes in the FN list the
nodes whose ETX distance to that destination is shorter than
the source’s distance. Also, for each FN the source includes
a TX credit in the FN list. TheTX credit is the expected
number of transmissions a node should make for every packet
it receives from a node farther from a destination in the ETX
metric, in order to ensure that at least one node closer to the
destination will receive the packet.

The algorithm for FN selection and TXcredit calculation
is run at the source. The algorithm starts by assuming that
every node is a candidate FN for a source-destination pair
and calculates the expected number of transmissions this
node would make. It then prunes nodes that are expected to
perform less than 10% of the total transmissions and assigns
TX credits to the remaining ones, which form a belt of FNs
that connect the source to the destination. The algorithm is
repeated for each destination; in the end the belts formed
for each destination are merged into the final FN set. If
an FN belongs to more than one belts, (i.e., for more than
one destination), the algorithm calculates a different expected
number of transmissions for each of the belts it belongs to. Its
final TX credit is then calculated using the maximum number
of transmissions among these belts.

Batching and Coded Packet Forwarding. In MORE, the
source breaks a file into batches ofk packets. Whenever the
MAC is ready to send a packet, the source creates a random
linear combination of thek packets of the current batch and
broadcasts the encoded packet. Each packet is augmented with
its code vector, the batch ID, the source and destination IP
addresses and the list of FNs for that multicast, with their
TX credits.

4

Packets are broadcast at the MAC layer, and hence they
can be received by all nodes in the neighborhood. When
a node hears a packet, it checks if it is in the packet’s
FN list. If so, the node checks if the packet islinearly
independentwith all the packets belonging to the same batch
that it has already received. Such packets are calledinnovative
packetsand are stored in a buffer. Non-innovative packets
are discarded. Every time a node receives a packet from an
upstream node, it increments itscredit counterby its assigned
TX credit included in the packet header. If itscredit counter
is positive, whenever the MAC is ready to send a packet, the
node creates a linear combination of the innovative packetsit
has received so far and broadcasts it. Broadcasting a packet
decrements thecredit counterby one unit.

A multicast receiver decodes a batch once it collectsk

innovative packets from that batch. It then sends an ACK
back to the source along the shortest ETX path in a reliable
manner. The source keeps sending packets from the same batch
until all receivers have decoded and acknowledged the current
batch; it then proceeds to the next batch. Whenever a receiver
acknowledges the current batch, the source removes the FNs
responsible for forwarding packets only towards that receiver
and recalculates the credits for the remaining FNs, using the
maximum number of transmissions taken only over FN belts
to receivers that have not yet acknowledged the batch.

III. Pacifier DESIGN

The design ofPacifier addresses several weaknesses of
MORE. In particular, the belt-based forwarding in MORE can
be inefficient for multiple receivers, MORE lacks source rate
limiting which can lead to congestion in data dissemination,
and MORE suffers the “crying baby” problem.

For clarity, we present the design ofPacifierin several steps.
We first present a basic version ofPacifier, which consists
of several building blocks: tree-based opportunistic multicast
routing, batching and NC-based forwarding, and credit cal-
culation. The basic version guarantees reliability and already
increases throughput compared to MORE, but does not solve
the “crying baby” problem. We then present two optimizations:
source rate limiting which reduces congestion and further
improves the throughput, and round-robin batching, which
solves the “crying baby” problem.

A. Tree-based Opportunistic Routing

We argue that the use of OR in the form used in MORE
is an overkill for multicast and it can lead to congestion, for
two reasons. First, even for a single destination, congestion
can occur if too many nodes act as FNs, or if the FNs are
far from each other and they cannot overhear each other’s
transmissions [38]. The situation is worsened when the number
of flows increases, since almost all nodes in the network may
end up acting as FNs. Such performance degradation was
observed in the evaluation of MORE in [6] for many unicast
flows; the situation for many hypothetical unicast flows is
not very different from a source to many multicast receivers.
Second, the benefit of overhearing of broadcast transmissions,
which is exploited by OR in MORE, is naturally exploited
in a fixed multicast tree, where the use of broadcast allows
nodes to receive packets not only from their parent in the

multicast tree, but also from ancestors or siblings, essentially
transforming the tree into a mesh. We note this property of
opportunistic reception of broadcast transmissions has been
previously exploited in the design of some of the first multicast
protocols for multihop wireless networks (e.g., ODMRP [39]),
for improving the PDR.

The above observation motivates a simple multicast-tree
based OR design. Specifically,Pacifier starts by building a
multicast tree to connect the source to all multicast receivers.
The tree is a shortest-ETX tree, constructed at the source by
taking the union of all the shortest-ETX paths from the source
to the receivers, which in turn are based on periodic loss rate
measurements.The multicast tree is reconstructed at the source
every time the number of active receivers changes.

1) Batching and Coded Forwarding:As in MORE, the
source and the FNs inPacifier use intra-flow random linear
NC. The source breaks a file into small batches of packets and
sends random linear combinations of the packets belonging
to the current batch. Intermediate FNs store all the innovative
packets of the batch and also send random linear combinations
of them. We selected a batch size ofk = 32 packets,
same as in [6], [40]. The random coefficients for each linear
combination are selected from a Galois Field of size28,
again same as in [6]. When a receiver receives anyk linearly
independent coded packets of a batch, it decodes the batch
and sends an ACK back to the source along the shortest ETX
path in a reliable manner.

To achieve reliability, this basic version ofPacifieruses the
following batch termination scheme: the source keeps trans-
mitting packets from the same batch, untilall the receivers
acknowledge this batch. Such a transmission scheme however
introduces the “crying baby” problem as the completion time
of each batch is limited by that of the worst receiver.

2) How many packets does an FN send?:Despite the use
of a multicast tree for data forwarding, the use of 802.11
broadcast effectively enables opportunistic routing, i.e., a node
can opportunistically receive packets from nodes other than
its parent in the multicast tree. If a node forwards every
packet it receives, a receiver could potentially receive each
packet originated from the source multiple times. To avoid
unnecessary transmissions, we need to carefully analyzehow
many (coded) packets an FN should send upon receiving a
data packet.

Our solution is inspired by the approach used in MORE,
and is based on the notion of TXcredits. Since, in practice,
an FN should be triggered to transmit only when it receives a
packet, we derive the number of transmissions each FN needs
to make for every packet it receives. We define this number
as the TX credit for that FN. Thus, inPacifier, an FN node
j keeps a credit counter. When it receives a packet from an
upstreamnode (defined below), it increments the counter by its
TX credit. When the 802.11 MAC allows the node to transmit,
the node checks whether the counter is positive. If yes, the
node creates a coded packet, broadcasts it, then decrementsthe
counter. If the counter is negative, the node does not transmit.
We note that opportunistic reception of data packets is always
allowed, even from downstream nodes. The credit calculation
is on how many packets to be transmitted by the FN upon

5

receiving a data packet from an upstream node.
In the analysis, we focus on disseminating one data packet

from the root down the multicast tree. Our analysis is based
on the simple principle that in disseminating a packet from
the root, each FN in the multicast tree should ensure that
each of its child nodes receives the packetat least once. Note
this principle slows down a parent node to wait for the worst
child and creates the “crying baby” problem at each FN, but
is consistent with the batch termination scheme of this basic
version ofPacifier.

We assume an FNj sends packets after receiving from
any nodes with lower ETX distance from the root to them,
i.e., j’s upstream nodes. These nodes are likely to receive
packets from the root beforej.1 We also assume that wireless
receptions at different nodes are independent, an assumption
that is supported by prior measurements [41].

Let N be the number of FNs in the multicast tree rooted
at s. Let ǫij denote the loss probability in sending a packet
from nodei to nodej. Let zj denote the expected number
of transmissions that FNj must make in disseminating one
packet (from the root) down the multicast tree. LetC(j)
denote the set of child nodes ofj in the multicast tree, and
A(j) denote the set ofj’s upstream nodes.

The expected number of packets thatj receives from
ancestor nodes is

∑
i∈A(j) zi(1 − ǫij). Recall j’s objective

is to make sure each of its child nodes receives at leastone
packet. Since each child nodek ∈ C(j) has already overheard∑

i∈A(j) zi(1 − ǫik) from nodej’s ancestors, the amount of
packets nodej actually needs to forward for childk is:

Ljk = min(
∑

i∈A(j)

zi(1− ǫij), 1)−
∑

i∈A(j)

zi(1 − ǫik) (1)

Themin operation ensures thatj does not forward the same
packet more than once, in case it receives it from more than
one FNs. Note for the source nodes, Lsk = 1 for all k ∈ C(s).

Since the expected number of times nodej has to transmit
a packet to ensure that its childk will receive one packet is

1
1−ǫjk

, the expected number of transmissions ofj for child k

to receiveLjk is:

zjk =
Ljk

1− ǫjk
(2)

Since packets are broadcast, they can be received by more
than one child nodes at a time. Hence, the expected number
of transmissions nodej has to make to ensure that each child
node hasonepacket is:

zj = maxk∈C(j)zjk (3)

zj and Ljk are inter-dependent, and can be calculated
recursively inO(N2) operations, i.e., by traversing the FNs
in the increasing order of their ETX values from the source.
Since the order of FNs is well-defined, there are no loops in
the credit calculation.

1In contrast, MORE’s credit calculation was based on the ordering of FNs
according to their ETX distance to the destination node. It is unclear that
nodes with larger ETX distance to the destination will receive the packet
from the root sooner.

For each data packet the source sends down the multicast
tree (which may require multiple transmissions), FNj receives∑

i∈A(j) zi(1− ǫij). Thus, the TXcredit of nodej is:

TX creditj =
zj∑

i∈A(j) zi(1− ǫij)
(4)

A fundamental difference between the TXcredit calculation
in MORE and inPacifier is that the latter decouples the credit
calculation from the routing process. Indeed, inPacifier, we
first build a multicast tree and then calculate the TXcredits
only for those FNs that are part of the tree. In contrast, in
MORE, FN selection and TXcredit calculation are tighly
coupled; TX credits are calculated for the whole network
and then some FNs are pruned based on this calculation.
As we will show in Section IV, this decoupling inPacifier
significantly improves the efficiency of both procedures.

B. Source Rate Limiting

Recent studies have shown the importance of adding rate
control to NC-based unicast routing protocols, which exploit
MAC layer broadcast [40], [42], [38], [43]. However, end-to-
end rate control in multicast is much more complex than in
unicast, and there is no widely accepted solution so far. In
the version ofPacifierpresented so far, the use of TXcredits
implements a form of rate control at which each intermediate
FN injects packets into the network. However, the source can
potentially send out all the packets in a batch unpaced.

To add rate control to the source, we exploit the broadcast
nature of the wireless medium and apply a simple form of
backpressure-based rate limiting, inspired by BMCC [13]. The
basic idea is to have the source wait until it overhears its child
nodes forward the previous packet it sent before it transmits the
next packet. Since the number of transmissions by the source
zs has already factored in packet losses to its child nodes,
the source does not need to worry about losses of individual
transmissions, i.e., it does not need to wait until all its child
nodes forward each packet it sends out. In fact, it is not even
sure that every of its transmissions will trigger a transmission
at each of its child nodes, as some nodes may have negative
credit counters. Instead, the source waits until it overhears a
transmission fromany of its child nodes or until a timeout
before it sends the next packet in the batch.

The work in [13] does not discuss how to set the timeout.
In [44], the authors suggested a heuristic timeout of3×Tp for
the backpressure-based unicast version of BMCC, whereTp

is the transmission time of one data packet, which depends on
the packet size and the MAC data rate. The factor of 3 is to
account for the contention time preceding each transmission.
Following the same reasoning, inPacifier, we set the timeout
to

∑
j∈C(s) TX creditj × 8× Tp. This choice for the timeout

reflects the fact that inPacifiera transmission from the source
will trigger on average

∑
j∈C(s) TX creditj transmissions

from its child nodes, which in the worst case can be sequential,
and also the fact that in multicast contention near the source
is in general higher.

C. Solving the “Crying Baby” Problem

In MORE, the source keeps transmitting packets from the
same batch until all the receivers acknowledge that batch, as

6

k

B−1
B

3
2
1

.

..

(a) Sequential batch transmis-
sion in MORE. Each batch is
acknowledged byall the re-
ceivers before the source moves
to the next batch.

k

B
B−1

3
2
1

...

(b) Round-robin batch trans-
mission inPacifier. The source
moves to the next batch every
time onereceiver acknowledges
the current batch.

Fig. 1. Two different ways of transmittingB batches ofk original packets
each: sequential (as in MORE), and round-robin (as inPacifier). For better
visualization, we assume here (not true in the actual operations of the
protocols) that the same total amount of redundancy is required to be sent for
each batch.

shown in Figure 1(a). This policy makes the protocol suscep-
tible to the “crying baby” problem, since if the connection to
one receiver is poor, that receiver can slow down the rest of
the receivers. The basic version ofPacifierwe have described
so far suffers from the same problem.

As an example, assume the source multicasts a file con-
sisting of B batches to two receiversR1 and R2. R1 can
download a batch (i.e., collect the required number of linearly
independent coded packets and decode the batch) in timeT ,
andR2 can download a batch in timeT ′ >> T . With MORE,
R1 will remain idle for timeT ′

−T after decoding each batch
and for a total time ofB · (T ′

− T), and both receivers will
finally complete the file download in timeB · T ′. We want a
solution that would allow the well-connected receiverR1 to
complete the download in timeB ·T and the poorly-connected
receiverR2 (i.e., the crying baby) in time no more thanB ·T ′.

Note the problem would not exist if the whole file could
be encoded into one batch. However, such an approach is not
realistic due to the prohibitively high computational overhead
(associated with coding operations), header overhead (from
including the random coding coefficients in packet headers)
and memory requirement at the intermediate routers. In the
following, we describe a practical solution to the problem,
which requires no more memory than MORE or our basic
version, i.e., FNs still maintain only one batch at a time in
their memory.

In the proposed scheme, the source iteratively sends the
batches of a file in around-robinfashion, for as many rounds
as required, until it has received ACKs for all batches from
all the receivers, as shown in Figure 1(b). In detail, the source
maintains a counterCsi for each batchi which is equal to
the number of remaining packets the source has to transmit
for that batch. The counter for batchi is initialized asCsi =
zs×k, wherezs is calculated in Equation (3) andk is the batch
size, and it is decremented every time a packet from batchi

is transmitted. Each intermediate FN forwards coded packets
according to its TXcredit, and only buffers packets belonging
to the current batch; when it receives the first packet from a
new batch, it flushes its buffer and starts buffering packets
from the new batch.

The source determines when to switch to work on the next

batch as follows. It sends packets from batchi until either
(1) Csi reaches zero or (2) it receives fromone receiver
acknowledging completion of this batch; it then moves to the
next batch for which there are still receivers that have not
acknowledged it. When the source finishes with the last batch
B, it starts the next round by going back to the first batch for
which it has not received ACKs from all receivers. For each
such batch it revisits, it recalculates the multicast tree (i.e.,
the FNs) and the TXcredit values for the FNs based on the
receivers that have not sent ACKs and resetsCsi = zs × k

using the newly calculatedzs.
The proposed approach effectively addresses the “crying

baby” problem. Back to our example, the source now stays
at each batch only for timeT , i.e., until it receives an ACK
from receiverR1. After a total time ofB · T , R1 completes
the whole file and leaves the multicast tree. The user can now
disconnect from the Internet and watch the movie or install
the software he/she just downloaded, or join another multicast
group and download a different file, or start a new unicast
session (e.g., browsing the web). The source recalculates the
multicast tree, keeping only those FNs responsible forR2,
and starts a second round, spending an additionalT ′

− T

time at each batch. At the end of the second round,R2
also completes the download and the total time forR2 is
B · T +B · (T ′

− T) = B · T ′.
In practice, things are a bit more complicated and the batch

switching policy is critical to achieving high throughput for
both well- and poorly connected receivers. On one hand, if one
receiver has already acknowledged the current batch before
the source sends all the scheduled packets for that batch,
not moving to the next batch at the source will reduce the
throughput of that receiver. On the other hand, after all the
scheduled packets have been sent out, allowing the source
to move to the next batch only when it receives an ACK
from one receiver can be inefficient, as ACKs may delay to
reach the source, due to congestion, or because they have to
traverse several hops to reach the source. This could result
in redundant packet transmissions from the current batch at
the source while waiting for an ACK. Instead, immediately
moving to the next batch after finishing the scheduled packets,
ensures that the “network pipe” is always filled with useful
packets, and delayed ACKs will have little impact on the
performance. Our evaluation in Sections IV-B, V-D shows that
switching batch wheneither of the two conditions is satisfied
results in significant throughput improvements over MORE
for both well-connected receivers and the worst ones (i.e.,
the “crying babies”). We note previously [45] also noticed
this “stop-and-wait” policy (also used in MORE) can result in
significantly low throughput, in the context of unicast, as the
network scales.

A round-robin batching scheme was also used in Fcast [28],
an FEC-based protocol for the wired Internet. However, there
are two major differences between the two protocols. First,
the use of NC inPacifier eliminates duplicate packet trans-
missions; the sourcesends different random combinations of
the original k packets in every round. In contrast, in Fcast,
each batch ofk packets is pre-encoded to produce a fixed
number ofn > k packets (typical values fork, n, are 32 and

7

255, respectively). Once the source finishes the transmission
of all n encoded packets from each of theB batches, it
starts a new round where itretransmits again the samen
encoded packetsfor each batch. Under high packet loss rates,
observed in WMNs [19], this policy may result in some
receivers receiving duplicate packets and may further delay
decoding. While rateless codes (e.g., [46]) can indeed helpto
avoid duplication as in these codesn is not limited, a second
difference still remains. InPacifier, both the source and the
FNs perform coding operations, which allows the protocol to
exploit the benefits of OR without the burden of coordination
overhead. In contrast, in Fcast (even with a rateless code),
only the source performs coding operations. This limits the
efficiency of OR with Fcast, since FNs need a coordination
mechanism [4] to avoid duplicate transmissions.

1) Adjusting TXcredit Calculation: In the basic version
of Pacifier (Section III-A2), we defined the TXcredit of an
FN as the expected number of packets it has to transmit for
every packet it receives from its upstream nodes, in order to
ensure thatall of its child nodes will receive one packet. This
definition is consistent with the batch termination scheme of
the basic scheme, i.e., the source completes a batch when it
receives ACKs from all receivers. However, it is inconsistent
with the round-robin batching scheme, which aims to prevent
poorly connected receivers from slowing down well-connected
receivers. Hence under the round-robin batching, we adjustthe
definition of TX credit of an FN to be the expected number
of packets it has to transmit for every packet it receives from
its upstream nodes, in order to ensure thatat least oneof its
child nodes will receive one packet. To realize this change,we
simply change themax operator tomin in Equation (3). We
note this new definition is also consistent with the policy of
moving to the next batch whenever any receiver acknowledges
the current batch.

2) Intricacies in TXcredit Calculation: There is a subtlety
in the above adjustment to the TXcredit calculation under the
round-robin batching scheme, i.e., changing themax operator
to min in Equation (3). The derivation of Equation (3) is
based on expected number of opportunistic packet receptions
(based on the ETX measurements). However, in the actual
dissemination of any given batchi, it is possible that the actual
packet reception is below or above the expected value. In the
later case, the best receiver will successfully receive allpackets
for that batch, and it is the correct thing to do for the source
to move on to the next batch. However, in the former case,
the best receiver could be a few packets short of receiving the
whole batchi, and hence if the source moves on to the next
batch, even the best receiver has to wait for a whole round
before the source transmits again packets from batchi. On
the other hand, if we had let the source send some additional
packets to those predicted by Equation (3), there is a good
chance that the best receiver would have finished in the current
round; this would increase the throughput of the best receiver.
The challenge here is that it is unknown beforehand whether
the opportunistic reception in any particular batch is above or
below the expectation, and hence those extra packets sent by
the source for a batch can potentially elongate each batch and
reduce the throughput of the best receiver.

To facilitate studying the above subtlety in the TXcredit
calculation under the round-robin batching scheme, we intro-
duce a tunable knob in Equation (3). Essentially, we define
the expected number of transmissions nodej makes to its
child nodes aszj = mink∈C(j)zjk+knob∗ (maxk∈C(j)zjk−

mink∈C(j)zjk). Setting knob to 1 changes the objective to
ensuring all child nodes receive a packet at least once, while
settingknob to 0 changes the objective to ensuring at least one
child node receives a packet at least once. In Section IV-B5,we
evaluate the impact of this knob by comparing the performance
of Pacifier under different values ofknob.

IV. SIMULATION STUDIES

We first evaluate the performance ofPacifierby comparing
it against MORE using extensive simulations. The use of a
simulator allowed us to evaluate the performance of the two
protocols in large networks, using a diverse set of topologies,
which are difficult to create in a testbed. We notePacifieruses
the same type of NC and has the same memory requirements
and the same fields in the packet header as MORE,2 and
hence it can be easily implemented in practice. We present
an implementation study ofPacifier in the next section.

A. Evaluation Methodology

Simulation Setup. We used the Glomosim simulator [47],
a widely used wireless network simulator with a detailed
and accurate physical signal propagation model. Glomosim
simulations take into account the packet header overhead
introduced by each layer of the networking stack, and also
the additional overhead introduced by MORE orPacifier. For
the implementation of MORE, we followed the details in [6].

We simulated a network of 50 static nodes placed randomly
in a 1000m × 1000m area. The average radio propagation
range was 250m, the average sensing range was 460m, and
the channel capacity was 2Mbps. TheTwoRaypropagation
model was used. To make the simulations realistic, we added
fading in our experiments. The Rayleigh model was used,
as it is appropriate for WMN environments with many large
reflectors, e.g., walls, trees, and buildings, where the sender
and the receiver are not in Line-of-Sight of each other. Because
of fading, the probability for a node to hear/sense another node
decreases with the distance and there is no clear cut off. For
example, at a distance of 250m, the probability of hearing a
neighbor node is very low. Although sometimes nodes can
hear each other even in distances larger than 250m, in most
cases, link quality is very low for distances larger than 150m.

We simulated each protocol on 10 different randomly gen-
erated topologies (scenarios), i.e., placement of the 50 nodes.
For each scenario, we randomly generated a multicast group
consisting of 1 source and 9 receivers. The source sent a
12MB file, consisting of 1500-byte packets, transmitting at
the maximum rate allowed by the MAC (in case of MORE)
or by the MAC and the backpressure-based rate limiting (in
case ofPacifier). We present the result for each scenario and
the average result over all 10 scenarios.

2Pacifier only includes the list of FN nodes in the header, sorted in
increasing ETX distance from the source. It does not requireinformation
about the edges of the tree.

8

TABLE I
VERSIONS OFMORE AND Pacifier EVALUATED IN OUR

STUDY. ALL VERSIONS INCLUDE INTRA-FLOW NC.
Name Description
MORE MORE [6] optimized with

scenario-specific pruning threshold
TREE Tree-based OR

TREE+RL Tree-based OR, source rate limiting
TREE+RL+RRB Tree-based OR, source rate limiting,

(Pacifier) and round-robin batching

Following the methodology in [6], [4], we implemented an
ETX measurement module in Glomosim which was run for 10
minutes prior to the file transfer for each scenario to compute
pairwise delivery probabilities. During these 10 minutes,each
node broadcasts a 1500-byte packet every second, and keeps
track of the packets it receives from its neighbors. At the end
of the 10-minute duration, all the measurements are distributed
to all the nodes. The source uses these measurements to
compute the forwarding lists and the transmission credits for
the two protocols. There was no overhead due to loss rate
measurements during the file transfer.

Evaluation Metrics. We used the following metrics:

Average Throughput:The file size (in bytes) divided by the
total time required for a receiver to collect the necessary
number of packets for decoding, averaged over all receivers.

Total number of data packet transmissions:3 The total number
of data packets broadcast by the source and the FNs.

Source Redundancy:The total number of encoded data packets
sent by the source divided by the file size. It gives an estimate
of the redundancy injected in the network by the source.

Download completion time:The total time required for a
receiver to collect the necessary amount of coded packets to
decode all the batches and recover the complete file.

Note that we did not use the PDR as a metric, since both
protocolsguarantee100% PDR.

B. Simulation Results

We start by optimizing MORE’s pruning strategy as the
default strategy appears to cause frequent network partition.
We then proceed to evaluate the incremental performance
benefit ofPacifier’s major components, i.e., the basic version,
adding source rate limiting, and adding round-robin batching.
Table I summarizes the different versions of MORE and
Pacifier evaluated.

1) Fixing MORE’s pruning threshold:Recall from Sec-
tion II-A that MORE prunes FNs that are expected to perform
less than 10% of the total number of transmissions. We found
using such a pruning threshold can result in disconnection of
some receivers. The probability for this to happen naturally
increases with the network size, since the larger the number
of nodes acting as FNs, the smaller the expected number of
transmissions each of them has to make. Recall also that in
MORE, the source proceeds to the next batch only when all
receivers acknowledge the current batch. When a receiver is

3The number of control packets (ACKs) is the same for both MOREand
Pacifier, equal toN × B, whereN is the number of receivers andB is the
number of batches the file is broken into.

(a) Number of FNs (b) Throughput

Fig. 2. Number of FNs and throughput with default pruning threshold
(MORE orig) and the largest pruning threshold that does not cause any
disconnection (MOREnew), for 10 different scenarios. For MOREnew, the
labels above the bars show the pruning threshold used for each scenario.

disconnected, the source will never leave the first batch, and
all the receivers will receive zero throughput.

One solution to the problem is to use a much lower pruning
threshold than 0.1. However, using a very low threshold can
lead to too many FNs in dense WMNs which increases
the contention for the channel. To be fair in our evaluation
and not cause performance degradation for MORE, we used
the following approach, which favors MORE, instead of a
common threshold for all 10 scenarios: for each scenario,
we repeated the simulation for different values of the pruning
thresholdα, starting with the default value of 0.1, and lowering
it by 0.01 until no receiver was disconnected. This last value
was the one we used for the comparison againstPacifier.

Figure 2 shows the number of FNs, and the throughput, with
the default threshold of 0.1 (MOREorig), and with the best
threshold for each scenario (MOREnew), in each of the 10
scenarios. Figure 2(a) shows that using the default threshold
resulted in a very low number of FNs; on average only 11.2
FNs were used in a network of 50 nodes. However, this low
number of FNs caused disconnection of at least one receiver
and resulted in zero throughput in 8 out of 10 scenarios, as
shown in Figure 2(b). For the 10 scenarios studied, the largest
pruning threshold that does not cause any disconnection varies
from 0.1 to 0.03.

In the following, we compare various versions ofPacifier
to MORE new. For simplicity, we will call it MORE.

2) Impact of tree-based OR:We start the evaluation of
Pacifier by examining the impact of its tree-based OR, by
comparing the basic version ofPacifier (TREE), with MORE.
The only difference between the protocols is the algorithm
used for selecting FNs and assigning TXcredits to them. The
results for 10 different scenarios are shown in Figure 3.

Figure 3(a) shows TREE achieves higher throughput than
MORE in 8 out of 10 scenarios. The gain ranges from
20% (Scenario 7) up to 199% (Scenario 4), with an average
throughput gain over all 10 scenarios equal to 42%. Only in
two scenarios (2 and 3), there is a small throughput reduction
with TREE, about 16%.

The higher throughput achieved by TREE compared to
MORE can be explained by the fewer FNs and lower total
number of transmissions in the former compared to the latter.
In particular, Figure 3(b) shows that the use of a tree instead of
a union of belts results in on average 36% fewer FNs in TREE
than in MORE. Note that in some cases, TREE uses equal or

9

(a) Throughput (b) Number of FNs

(c) Total # of Transmissions (d) Source Redundancy

Fig. 3. Throughput, number of FNs, total number of transmissions, and
source redundancy with MORE and TREE for 10 different scenarios.

(a) Throughput (b) Total # of Transmissions

(c) Source Redundancy

Fig. 4. Throughput, total number of transmissions, and source redundancy
with MORE and TREE+RL for 10 different scenarios.

even fewer FNs compared to MORE with the default pruning
threshold (e.g., in Scenarios 2, 4, 6). However, the FN selection
algorithm ensures that no receiver is disconnected from the
source, unlike in MORE, since there is no random, threshold-
based pruning. Figure 3(c) shows the use of a tree combined
with the new algorithm for TXcredit calculation results in on
average 44% reduction in the total number of transmissions
in TREE, compared to MORE. Finally, Figure 3(d) shows
MORE has a high source redundancy; the source sends on
average 17 times the file size. TREE reduces the average
source redundancy to 12. The difference in source redundancy
suggests TREE is more efficient in selecting FNs and more
accurate in calculating the TXcredit values for the FNs.

3) Impact of source rate limiting:We next evaluate the
impact of backpressure-based rate limiting at the source, as
implemented in the TREE+RL version ofPacifier. Figure 4(a)

Fig. 5. Throughput with TREE+RL
and TREE+RL+RRB (Pacifier) for
10 different scenarios. The error bars
show throughput of the best and the
worst receiver.

Fig. 6. Average throughput with
Pacifier as a function ofknob, over
10 scenarios. The error bars show
average max and min values over the
10 scenarios.

shows that the use of rate limiting at the source improves the
throughput by 5% (Scenario 6) to 94% (Scenario 1), with an
average of 20%, compared to TREE. Figure 4(c) shows that
TREE+RL on averages reduces the source redundancy to 5.84,
a 52% reduction compared to the value of 12.15 for TREE.
The reduction in the source redundancy in turn reduces the
total number of transmissions by 28% on average, as shown in
Figure 4(b). We found that this reduction comes not only from
the contribution of the source but also from the majority of the
FNs. This confirms that, by pacing the source’s transmissions,
the source’s children and grandchildren get better chancesto
successfully transmit packets and make progress down the tree.

4) Solving the “crying baby” problem: The above re-
sults have shown that TREE and TREE+RL already offer
significant throughput improvement over MORE. However,
these two versions ofPacifier still suffer from the “crying
baby” problem. We next evaluate the effectiveness of round-
robin batching on solving the “crying baby” problem, by
comparing TREE+RL+RRB (the completePacifier protocol)
with TREE+RL.

Figure 5 shows the average throughput achieved with
TREE+RL+RRB and TREE+RL in each of the 10 scenar-
ios, as well as the throughput of the best and the worst
receiver (top and bottom of error bars) in each scenario
under TREE+RL+RRB. We make three observations. First,
with TREE+RL, which uses sequential batch transmission,
all 9 receivers in each scenario achieve the same throughput,
which is determined by the worst receiver. In contrast, with
TREE+RL+RRB, well-connected receivers get much higher
throughput than the average, as shown by the large gap
between the top of the error bars and the average in most sce-
narios. Averaging over 10 scenarios, the best receiver achieves
58% higher throughput than the average throughput by all
receivers. Second, allowing receivers to proceed independently
in TREE+RL+RRB also increases the average throughput by
47% on average over all 10 scenarios, compared to TREE+RL.
Third, importantly, the throughput improvement for the best
receivers comes at almost no penalty to the worst receivers.
In particular, compared to with TREE+RL, the throughput of
the worst receiver with TREE+RL+RRB gets slightly worse
in 3 scenarios (Scenario 7, 8, and 9 by 10%, 7%, and 3%,
respectively), remains unaffected in 2 scenarios (Scenarios
2 and 3), and increases by 26%-146% for the remaining 5
scenarios.

10

(a) Average, max, and min
throughput with each protocol
for each of the 10 scenarios.

(b) CDF of the 90 throughput
measurements obtained with
each protocol for 10 scenarios
with 9 receivers each.

Fig. 7. Overall throughput comparison of MORE, TREE, TREE+RL, and
TREE+RL+RRB (Pacifier).

5) Tuning the knob in TXcredit Calculation: Finally, we
study the intricacies in calculating TXcredit values by varying
theknob value introduced in Section III-C2. We vary the value
of knob from 0 (the version evaluated in Section IV-B4) to
1. Intuitively, asknob increases, the throughput of the best
receiver is expected to decrease and the throughput of the
worst receiver is expected to increase, since we spend more
time on each batch in every round.

Figure 6 shows the average, max, and min throughput with
Pacifier, asknob varies from 0 to 1. Every point is the average
over 10 scenarios.knob = 1 improves the min throughput and
maximizes the average, and, somewhat surprisingly, the max
throughput as well. On the other hand,knob = 0 achieves
the lowest max, average, and min throughput, compared to
all the otherknob values. This confirms our speculation in
Section III-C that settingknob = 0 may not give the best result
as the TX credit calculation is fundamentally based on the
expected opportunistic receptions, and a lower than expected
number of receptions in any given batch can cause the best
receiver to be a few packets short of decoding a batch and
wait for a whole round. In the remaining of the paper, we use
knob = 1.

6) Overall Comparison:Figure 7(a) summarizes the aver-
age, maximum and minimum throughput comparison among
MORE, TREE, TREE+RL, and TREE+RL+RRB (Pacifier),
where TREE+RL+RRB used aknob value of 1. We observe
that on average,Pacifier outperforms TREE+RL, TREE, and
MORE by 60%, 90%, and 171%, respectively. In addition,
Pacifier allows well-connected receivers to achieve much
higher throughput, which can be up to 20x higher than with
MORE (for scenario 1), and also improves throughput of the
worst receiver in all 10 scenarios, compared to the other 3
protocols.

Figure 7(b) depicts the same results in a different way. It
plots the CDF of the 90 throughput values obtained from
10 scenarios with 9 receivers each, for the four protocols.
In this figure, the CDFs for MORE, TREE, and TREE+RL
have a staircase form, since for each scenario, all 9 receivers
get roughly the same throughput (equal to that of the worst
receiver) due to the “crying baby” problem. In contrast, with
Pacifier, receivers finish independently of each other and the
CDF has a continuous form. In the median case,Pacifier
outperforms TREE+RL, TREE, and MORE by 20%, 49%,
and 178%, respectively.

The benefit ofPacifierbecomes more prominent if we look
at the two ends of the CDF.Pacifiersolves the “crying baby”
problem by allowing good receivers to achieve very high
throughput. The 90th percentile is 223Kbps forPacifier, 70%,
higher than with TREE+RL, 77% higher than with TREE,
and 159% higher than with MORE. If we look at the 10th
percentile, i.e., the worst receivers, we observe thatPacifier
outperforms TREE+RL, TREE, and MORE by 80%, 300%,
and 450%, respectively. This shows again thatPacifiernot only
solves the “crying baby” problem, it also simultaneously offers
a significant improvement to the performance of the “crying
baby” itself.

V. PROTOCOL IMPLEMENTATION AND TESTBED

EVALUATION

In this section, we describe an implementation ofPacifieron
a WMN testbed and present experimental results comparing
Pacifier and MORE.

A. Testbed description

Our testbed, Mesh@Purdue (MAP) [48], currently consists
of 22 mesh routers (small form factor desktops) deployed on
two floors of two academic buildings on the Purdue University
campus. Each router has an Atheros 5212 based 802.11a/b/g
wireless radio operating in b ad hoc mode and attached to
a 2dBi rubber duck omnidirectional antenna with a low loss
pigtail. Each mesh router runs Mandrake Linux 10.1 (kernel
2.6.8-12) and the open-sourcemadwifi driver [49] is used to
enable the wireless cards. IP addresses are statically assigned.
The testbed deployment environment is not wireless-friendly,
having floor-to-ceiling office walls, as well as laboratories with
structures that limit the propagation of wireless signals and
create multipath fading.

B. Implementation details

NC-based wireless protocols (e.g., [6], [7]) are typically
implemented as a shim between the IP and the MAC layer,
i.e., at layer 2.5. Here, for ease of debugging, deployment,
and evaluation, we implementedPacifier at the application
layer, using broadcast sockets, on Mandrake Linux 10.1 (ker-
nel 2.6.8-12). For a fair comparison, we also implemented
MORE at the application layer, following all the details
in [6].4 Although such an implementation unavoidably results
in some performance degradation, compared to an implemen-
tation closer to the MAC layer, from crossing the kernel-user
boundary, we note that this degradation is expected to be
similar for both protocols, since they use the same type of
network coding, they have the same memory requirements at
the routers, and the same header fields.

Our implementation handles only synthetic traffic, i.e. data
packets are generated within the MORE orPacifier applica-
tion, similarly as the implementation in [50], in which packets
are generated within Click. The layer-2.5 header of MORE or
Pacifier is part of the application layer packet payload. The
source initially generatesk random payloads for the current
batch and mixes them every time it wants to transmit a packet.

4The publicly available implementation of MORE [50] using the Click
modular router from the authors of [6] currently supports only unicast.

11

It then appends the MORE orPacifierheader and delivers the
resulting packet to the IP layer, which in turn delivers the
packet to the MAC for transmission. Packets are broadcast
at the MAC layer, and every neighbor node can hear them.
When a node receives a packet, it extracts and processes the
protocol-specific header from the payload; if the node is an FN
(i.e., it finds its ID5 in the FN list in the header), it also uses
the coding coefficients (also included in the header) to check
for linear independence. If the received packet is innovative,
the rest of the payload is stored for future mixing (if the node
is an FN) or for decoding (if the node is a multicast receiver).

1) Dealing with queue sizes:In an ideal implementation at
layer 2.5, a node running either MORE orPacifier transmits
a packet when (1)the 802.11 MAC allowsand (2) the credit
counter is positive. A layer-2.5 implementation [6] does not
queue packets in the wireless card. Instead, innovative packets
for the current batch are stored at a buffer. A pre-coded
packet is always available awaiting for transmission. If another
innovative packet is received before the pre-coded packet is
transmitted, the pre-coded packet is updated by multiplying
the newly received packet with a random number and adding
it to the pre-coded packet. This approach ensures that every
transmitted packet includes information from all the received
innovative packets, including the most recent ones.

In our application layer implementation, we cannot get any
feedback from the MAC, and hence, we have no control
over the time a packet is transmitted. Instead, the application
delivers packets to the IP when only the second condition
holds and there is enough space in the socket buffer; from the
IP layer, the packets are delivered to the wireless driver stored
at the card’s queue for transmission at a later time.

Since we have no control over a packet, once it leaves the
application layer, we cannot update the packets buffered at
the socket buffer or awaiting for transmission at the card’s
queue, if a new innovative packet is received. This inefficiency
can have a significant impact on the performance of the two
protocols. If a packet is queued either at the IP or at the MAC
layer for a long time, it may not contain information from all
the received packets so far. Even worse, the downstream nodes
may have already received enough packets from the current
batch, in which case the enqueued packets should not be
transmitted at all. This is true in particular at the source which
may create packets at a rate faster than the (actual) MAC’s
transmission rate. To avoid this problem with application-level
implementation, we limit the socket buffer size to one packet
and the card’s queue length to three packets, so as to limit the
time from the moment a packet is created at the application
layer till the moment the packet is actually transmitted.

2) Dealing with end-to-end ACKs:In both protocols, a
multicast receiver sends an end-to-end ACK back to the
source every time it decodes a batch. It is critical for the
performance of the protocols that these ACKs are propagated
to the source in a fast and reliable way. In particular in MORE,
loss of an ACK breaks the operation of the protocol, since
the source only moves to the next batch when all receivers

5To reduce the header overhead, we used 1-byte IDs instead of 4-byte IP
addresses.

acknowledge the current batch. Similarly, delayed ACKs cause
throughput degradation, since the source again cannot quickly
move to the next batch. InPacifier, the first problem does
not exist, since even if no ACK is received for batchi, the
source will eventually move to the next batch when theCsi

counter reaches zero (Section III-C). However, delayed or lost
ACKs can again significantly affect performance if the source
unnecessarily spends time on batches that have already been
decoded by all the receivers.

ACK reliability. To provide reliability, the ACKs in MORE
areunicastat the MAC layer. In contrast to 802.11 broadcast
mode, 802.11 unicast mode provides a reliability mechanism
through acknowledgments and retransmissions. Unfortunately,
there is an upper limit to the number of times a packet can
be retransmitted at the MAC layer. For our Atheros wireless
cards, this limit is 11. In our experiments, we found that 11
retransmissions were not always enough to deliver the packet
to the next hop (especially under heavy traffic). Since this
particular card does not allow changing this limit through
iwconfig, we had to implement a simple but efficient reliability
scheme at the application layer.

In our scheme, every node maintains an ACK cache, where
it caches every ACK it transmitted, along with some meta data
(the next hop of the path towards the source, the multicast
group, the batch acknowledged by the ACK, and its status
– “ACKed” or “not ACKed”). Nodes also remember the last
ACK they forwarded for each multicast group. Every time a
node transmits a data packet, it piggybacks information about
the last ACK it received. This serves as an acknowledgment for
the ACK to the ACK’s previous hop. When the previous hop
overhears a data packet acknowledging the ACK, it marks it as
“ACKed” in the ACK cache. A node retransmits an ACK when
(i) it overhearsM packets from the ACK’s next hop that do not
acknowledge the ACK, or (ii) it overhearsN packets from any
node other than the ACK’s next hop. We experimented with
different values ofM and N and finally selectedM = 10,
N = 20.

Fast ACK propagation. Similar to in [6], ACKs are sent
to the source over the shortest ETX path to ensure quick
propagation. In addition, in [6], ACKs are prioritized overdata
transmissions. In addition to ensuring fast ACK propagation,
prioritizing ACKs over data packets is critical in our appli-
cation layer implementation for one more reason. Since we
have no control over a packet once it leaves the application
layer, we have to guarantee that an ACK packet will never be
dropped if the card’s queue is full of data packets.

To implement ACK priority over data packets in our applica-
tion layer implementation, we leveraged the TOS bits (“TOS
field”) of the IP header, which can be set usingsetsockopt
at the application layer, and the priority properties in Linux
routing [51]. The basic queuing discipline in Linux,pfifo fast,
is a three-band first-in, first-out queue. Packets are enqueued
in the three bands based on their TOS bits. We set the TOS
bits of the ACKs to1010, which corresponds to “minimum
delay + maximum reliability” (or “mr+md”) and enqueues the
ACKs in the highest priority band.

In addition to the two protocols, we also implemented an

12

ETX measurement module, same as the one we used in our
simulations (described in Section IV-A). The source code for
the two protocols and the ETX module together is over 9000
lines of C code.

C. Experimental setup

In the implementation of the two protocols we used the same
parameters as in our simulation study in Section IV. In all the
experiments, the bitrate of the wireless cards was set to 2Mbps
and the transmission power to 16dBm. We disabled RTS/CTS
for unicast frames as most operational networks do. With these
settings, the length of the shortest ETX paths between different
nodes is 1-6 hops in length, and the loss rates of the links vary
from 0% to 88%, with an average value of 29%.

We ran each protocol on 10 different scenarios (i.e., selec-
tion of source and multicast group members). In each scenario,
1 source and 4 receivers were randomly selected among the
22 nodes of our testbed. In each scenario, we first ran the ETX
module for 10 minutes to collect the pairwise loss rates and
ETX metric for each link of our testbed, and then we ran the
two protocols, MORE andPacifier, in sequence. With both
protocols, the source sent a 2.3MB file consisting of 1460-
byte packets. Since the quality of some links of our testbed
varies substantially from day to day in a week, we repeated
the experiments for the same 10 scenarios on 4 different days
(one weekend and two weekdays). Due to space limitation, we
present the results for the first and the fourth day (the results
for the other two days were similar).

D. Experimental results

Figures 8(a), 8(b) show the average throughput achieved
with MORE andPacifier in each of the 10 scenarios, as well
as the throughput of the best and the worst receiver (top and
bottom of error bars) in each scenario, on 2 different days.

Similar to the simulation results, we observe thatPacifier
outperforms MORE in 9 out of 10 scenarios on both days.
The average throughput improvement over all 10 scenarios
ranges between 83% (for Day 4) and 144% (for Day 1). This
is somewhat lower than the corresponding simulation result
(171% in Figure 7(a)). The reason is that the size of our testbed
is much smaller than the simulated networks, and hence path
diversity is not as large, and the “crying baby” problem is not
as severe, as in the simulations.

We observe again thatPacifier solves the “crying baby”
problem, allowing well-connected receivers in each case to
achieve throughputs much higher than the average value, while
also improving throughput of the worst receivers in almost
all scenarios. Averaging over 10 scenarios for each day, the
throughput of the best receiver withPacifieris 244% and 259%
higher than with MORE, but, in some cases, it can be much
higher, e.g., more than 8x in Scenario 8, Day4, and more than
14.4x in Scenario 7, Day1. Similarly, the average (over 10
scenarios) throughput of the worst receiver withPacifier is on
83% and 53% higher than with MORE on each day, and the
maximum improvement can be as high as 5.4x (higher than
in the simulation results) in Scenario 7, Day 1.

Figures 9(a), 9(b) plot the CDF of the 40 throughput values
obtained from the 10 scenarios with 4 receivers each, for the
two protocols, on each of the 2 days. Similar to Figure 7(b) for

(a) Day 1 (b) Day 4

Fig. 8. Testbed throughput comparison of MORE andPacifier in 10 different
scenarios on 2 different days.

(a) Day 1 (b) Day 4

Fig. 9. CDFs of 40 testbed throughput measurements obtainedwith MORE
andPacifier for 10 scenarios with 4 receivers each on 2 different days.

the simulation results, we observe that the CDFs for MORE
exhibit a staircase form. In contrast, withPacifier, receivers
finish independently of each other and the CDF always has
a continuous form.Pacifier outperforms MORE on both days
both in the median case, by 158 - 286%, and in the two ends
of the CDFs – the 90th percentile is 85-128% higher and the
10th percentile is 128-294% higher withPacifier than with
MORE. VI. SCOPE OFOUR WORK

A. On the Choice of Transmission Rates

In both our simulation and our testbed evaluation, we used a
low fixed MAC transmission rate of 2Mbps and disabled the
rate adaptation mechanism of 802.11 for the following two
technical reasons.
(i) Implementation related reasons: NC protocols are cur-
rently implemented as user-level programs and they cannot
work with high data rates. The pioneering COPE [5] and
MORE [6] protocols, implemented using the Click software
router [52], were evaluated using 6Mbps and 5.5Mbps, respec-
tively. In the publicly available implementation of MORE [50],
it is stated that “it is highly recommended that no bit-rates
faster than 6Mbps are used for comparison”. Our implemen-
tation at the application layer posed even greater challenges
with respect to timing constraints and we had to limit our
testing to the bitrate of 2Mbps. Note that the second gener-
ation of NC/OR protocols exploiting PHY-MAC cross-layer
interactions have been evaluated using even lower bitrates(a
few hundreds of Kbps) due to hardware constraints (e.g., [53]).
(ii) Reasons related to the 802.11 standard: NC protocols are
built on top of 802.11 broadcast; in contrast to unicast, 802.11
broadcast uses no rate adaptation. Integrating rate adaptation
with broadcast is by itself a very interesting and at the same
time extremely challenging open research problem, due to
the speed vs. range tradeoff (a higher bitrate may reduce

13

the number of neighboring nodes being able to overhear a
transmission, limiting the gain from OR). Preliminary efforts
to integrate MORE with an offline rate selection algorithm
have not produced satisfactory results [54]. The lack of an ap-
propriate rate adaptation algorithm for broadcast has led many
researchers to use a low fixed bitrate even in simulation studies
of NC/OR protocols in order to exploit the Wireless Multicast
Advantage (WMA) [8] (e.g., the very recent works [55], [56]).

B. On Link Loss Rate Measurement

In our evaluation ofPacifier and MORE, we followed
the evaluation methodology of all state-of-the-art OR/NC
protocols (e.g., [4], [6], [5]) and measured the link loss rates
only once, prior to each experiment. In practice, a link state
mechanism should be used to ensure that nodes periodically
broadcast probes to their neighbors and the estimated loss rates
are periodically but less frequently distributed to all thenodes.
As [6] argues, such a link state mechanism is required in all
state-of-the-art routing protocols, and the overhead thisprocess
incurs is not consideredPacifier-specific.

The use of stale loss measurements can affect two features
of OR/NC protocols: topology control (i.e., the choice of FNs)
and credit calculation. As pointed out in [4], the impact on the
former is not significant. The performance of OR protocols
is relatively insensitive to suboptimal choice of FNs, since a
packet’s actual path is determined by conditions at the time
of transmission. This is the main benefit of OR.6 However,
the impact on the latter may be more serious, since inaccurate
credit calculation may result in a large number of redundant
transmissions leading to congestion. Addressing this problem,
which can affect all OR/NC protocols, is not trivial, and is out
of scope of this paper. In our recent work [57], we proposed a
solution for unicast OR/NC protocols, which decouples credit
calculation from loss rate measurements. We plan to extend
this solution to multicast in our future work.

C. Generality of Our Results

The above limitations which prevent the use of higher data
rates in the evaluation of NC-based OR protocols should not
limit by any means the scope of our work and the generality
of our results to the low rate 802.11b. On the contrary, the
significance of our work will only be more pronounced when
considering future high rate technologies (with fixed or varying
rates). A core contribution of our work is to solve the classic
“crying baby” problem in the new context of reliable multicast
to a set of heterogeneous receivers in WMNs. As we move
towards novel 802.11 technologies offering a larger selection
of data rates (up to 54Mbps for 802.11a/g, up to 600Mbps for
802.11n), receiver heterogeneity will only increase, making
the “crying baby” problem even more prominent and the need
for our solution even greater.

Imagine an example scenario in an 802.11n network with
two receivers: receiverR1 is directly connected to the mul-
ticast source over a 600Mbps link while receiverR2 is
connected to the source over a 3-hop path including one

6In contrast, in single path routing, suboptimal choice of FNs may even
result in a broken path.

poor link of 26Mbps. Even though the throughput ofR2
is already much higher than the throughput achieved in an
802.11b network, there is no reason to limitR1’s throughput
to R2’s level. Doing so would significantly underutilize the
network and does not exploit the maximum benefits possible
from the advanced PHY layer.

VII. CONCLUSION

High-throughput, reliable multicast routing has many im-
portant applications in WMNs, such as software updates
and video/audio file downloads. However, designing high-
throughput, reliable multicast protocols faces two challenges:
the inherent lossiness of wireless links and the “crying baby”
problem. In this paper, we presentedPacifier, the first practi-
cal NC-based high-throughput, reliable multicast protocol for
WMNs. Pacifier seamlessly integrates tree-based OR, intra-
flow NC, source rate limiting, and round-robin batching, to
achieve high throughput and solve the “crying baby” problem.

Our performance evaluation ofPacifier via extensive simu-
lations and an implementation on a WMN testbed have shown
Pacifier significantly outperforms the state-of-the-art MORE
for various multicast scenarios. In particular, the experimental
results on our 22-node WMN testbed show thatPacifier
increases the average multicast throughput over MORE by 83-
114%, while the maximum throughput gain for well-connected
receivers is as high as 14x, and the maximum throughput gain
for the “crying baby” itself is as high as 5.4x, compared to
MORE.

Since the cumulative path loss rate in wireless multihop
networks increases with the path length, multicast receiver
heterogeneity is unavoidable in WMNs. In fact, the degree of
heterogeneity is expected to increase as future WMNs scale
in size. Our experience with designingPacifier shows the
importance of exploiting heterogeneity, rather than ignoring it.
By treating heterogeneous receivers equally, MORE penalizes
well-connected receivers, forcing them to achieve the same
throughput as the worst receiver. In contrast, by exploiting
heterogeneity, and prioritizing well-connected receivers over
the “crying babies”,Pacifier manages to achieve several-fold
throughput improvement for well-connected receivers, without
penalizing the poorly-connected ones; on the contrary, it often
drastically improves throughput of the worst receivers.

REFERENCES

[1] “MIT Roofnet,” http://www.pdos.lcs.mit.edu/roofnet.
[2] “Seattle wireless,” http://www.seattlewireless.net.
[3] “Technology For All (TFA),” http://tfa.rice.edu.
[4] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hoprouting for

wireless networks,” inProc of ACM SIGCOMM, 2005.
[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,

“XORs in the air: Practical wireless network coding,” inProc. of ACM
SIGCOMM, August 2006.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” inACM SIGCOMM,
2007.

[7] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:
Analog network coding,” inProc. of ACM SIGCOMM, 2007.

[8] M. Cagalj, J.-P. Hubaux, and C. Enz, “Minimum-energy broadcast in
all-wireless networks: NP-Completeness and distribution,” in Proc. of
ACM MobiCom, September 2002.

[9] R. Chandra, S. Karanth, T. Moscibroda, V. Navda, J. Padhye, R. Ramjee,
and L. Ravindranath, “Dircast: A practical and efficient wi-fi multicast
system,” inProc. of IEEE ICNP, 2009.

14

[10] S. Sen, N. K. Madabhushi, and S. Banerjee, “Scalable wifimedia
delivery through adaptive broadcasts,” inProc. of USENIX NSDI, 2010.

[11] R. Chandra, V. Ramasubramaniam, and K. Birman, “Anonymous gossip:
Improving multicast reliability in mobile ad hoc networks,” in Proc. of
ICDCS, 2001.

[12] J. Luo, P. Eugster, and J.-P. Hubaux, “Route driven gossip: Probabilistic
reliable multicast in ad hoc networks,” inProc. of IEEE Infocom, 2003.

[13] B. Scheuermann, M. Transier, C. L. M. Mauve, and W. Effelsberg,
“Backpressure multicast congestion control in mobile ad-hoc networks.”
in Proc. of CoNEXT, 2007.

[14] J. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, “Codecast:
a network-coding-based ad hoc multicast protocol,”IEEE Wireless
Communications, vol. 13, no. 5, 2006.

[15] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla, “A reliable, congestion-
controlled multicast transport protocol in multimedia multi-hop net-
works,” in Proc. of WPMC, 2004.

[16] E. Pagani and G. Rossi, “Reliable broadcast in mobile multihop packet
networks,” inProc. of MobiCom, 1997.

[17] A. Sobeih, H. Baraka, and A. Fahmy, “ReMHoc: A reliable multicast
protocol for wireless mobile multihop ad hoc networks,” inIEEE
Consumer Communications and Networking Conference (CCNC), 2004.

[18] V. Rajendran, Y. Yi, K. Obraczka, S.-J. Lee, K. Tang, andM. Gerla,
“Combining source- and localized recovery to achieve reliable multicadt
in multi-hop ad hoc networks,” inProc. of Networking, 2004.

[19] D. Koutsonikolas and Y. C. Hu, “The case for FEC-based reliable
multicast in wireless mesh networks,” inProc. of DSN, 2007.

[20] L. Rizzo and L. Visicano, “RMDP: an FEC-based reliable multicast
protocol for wireless environments,”Mobile Computing and Communi-
cations Review, vol. 2, no. 2, 1998.

[21] D. Lun, M. Medard, and R. Koetter, “Efficient operation of wireless
packet networks using network coding,” inProc. of IWCT, 2005.

[22] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability Gain of Network
Coding in Lossy Wireless Networks ,” inProc. of IEEE INFOCOM,
2008.

[23] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton, “Log-based receiver-
reliable multicast for distributed interactive simulation,” in Proc. of ACM
SIGCOMM, 1995.

[24] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” inProc. of ACM
SIGCOMM, August 2004.

[25] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable
framework for light-weight sessions and application levelframing,”
IEEE/ACM Transactions on Networking, 1997.

[26] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Comp. Comm. Review, vol. 27, no. 2, 1997.

[27] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss
recovery for reliable multicast transmission,” inACM SIGCOMM, 1997.

[28] E. Schooler and J. Gemmel, “Using multicast FEC to solvethe midnight
madness problem,” Technical Report, MSR-TR-97-25, Tech. Rep., 1997.

[29] M. Luby, “LT codes,” inProc. of 43rd FoCS, 2002.
[30] P. Maymounkov and D. Mazieres, “Rateless codes and big downloads,”

in Proc. of IPTPS, 2003.
[31] A. Shokrollahi, “Raptor codes,” inProc. of IEEE International Sympo-

sium on Information Theory (ISIT), 2004.
[32] A. W. Eckford and W. Yu, “Rateless slepian-wolf codes,”in Proc. of

39th Asilomar Conference on Signals, Systems and Computers, 2005.
[33] E. Vollset and P. Ezhilchelvan, “A survey of reliable broadcast protocols

for mobile ad-hoc networks,” University of Newcastle upon Tyne, Tech.
Rep. CS-TR-792, 2003.

[34] S. Gupta and P.Srimani, “An adaptive protocol for reliable multicast in
mobile multi-hop radio networks,” inProc. of IEEE Workshop on Mobile
Computing Systems and Applications, 1999.

[35] T. Gopalsamy, M. Singhal, and P. Sadayappan, “A reliable multicast
algorithm for mobile ad hoc networks,” inProc. of ICDCS, 2002.

[36] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla, “Reliableadaptive
lightweight multicast protocol,” inProc. of ICC, 2004.

[37] D. S. J. D. Couto, D. Aguayo, J. C. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” inProc. of ACM
MobiCom, 2003.

[38] E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu, “Simple opportunistic
routing protocol for wireless mesh networks,” inProc. of WiMesh, 2006.

[39] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-Demand Multicast Routing
Protocol,” in Proc. of IEEE WCNC, September 1999.

[40] C. Gkantsidis, W. Hu, P. Key, B. Radunovic, S. Gheorghiu, and P. Ro-
driguez, “Multipath code casting for wireless mesh networks,” in Proc.
of ACM CoNEXT, 2007.

[41] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Measurement-based models of delivery and interference instatic wire-
less networks,” inProc. of ACM SIGCOMM, 2006.

[42] Y. Li, L. Qiu, Y. Zhang, R. Mahajan, Z. Zhong, G. Deshpande, and
E. Rozner, “Effects of interference on throughput of wireless mesh
networks: Pathologies and a preliminary solution,” inProc. of HotNets-
VI, 2007.

[43] D. Koutsonikolas, Y. C. Hu, and K. Papagiannaki, “How toevaluate
exotic wireless routing protocols?” inProc. of ACM HotNets-VII, 2008.

[44] B. Scheuermann, C. Lochert, and M. Mauve, “Implicit hop-by-hop
congestion control in wireless multihop networks,”Elsevier Ad Hoc
Networks, vol. 6, no. 2, pp. 260–286, Apr. 2008.

[45] Y. Lin, B. Li, and B. Liang, “CodeOR: Opportunistic routing in wireless
mesh networks with segmented network coding,” inProc. of IEEE ICNP,
2008.

[46] J. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain approach
to asynchronous reliable multicast,”Journal on selected areas in com-
munications, vol. 20, 2002.

[47] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A libraryfor parallel
simulation of large-scale wireless networks,” inProc. of PADS Work-
shop, May 1998.

[48] “http://www.engineering.purdue.edu/mesh.”
[49] madwifi, “http://madwifi.org.”
[50] “MORE source code,” http://people.csail.mit.edu/szym/more.
[51] Linux Advanced Routing and Traffic Control, “http://lartc.org.”
[52] R. Morris, E. Kohler, J. Jannoti, and M. F. Kaashoek, “The click modular

router,” in Proc. of. SOSP, 1999.
[53] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-level net-

work coding for wireless mesh networks,” inProc. of ACM SIGCOMM,
2008.

[54] M. Afanasyev and A. C. Snoeren, “The importance of beingoverheard:
Throughput gains in wireless mesh neworks,” inProc. of ACM SIG-
COMM/USENIX IMC, 2009.

[55] E. Rozner, M. K. Han, L. Qiu, and Y. Zhang, “Model-drivenoptimization
of opportunistic routing,” inProc. of ACM SIGMETRICS, 2011.

[56] M. K. Han, A. Bhartia, L. Qiu, and E. Rozner, “Optimized overlay-based
opportunistic routing,” inProc. of ACM MobiHoc, 2011.

[57] D. Koutsonikolas, C.-C. Wang, and Y. C. Hu, “Efficient network coding
based opportunistic routing through cumulative coded acknowledg-
ments,”IEEE/ACM Transactions on Networking, vol. 19, no. 5, October
2011.

Dimitrios Koutsonikolas received the Ph.D. degree
in Electrical and Computer Engineering from Purdue
University, West Lafayette, IN, in 2010. He worked
as a Post-Doctoral Research Associate at Purdue
University from September to December 2010. He is
currently an assistant professor of Computer Science
and Engineering at the University at Buffalo, the
State University of New York. His research interests
are broadly on experimental wireless networking and
mobile computing. He is a member of IEEE, ACM,
and USENIX.

Y. Charlie Hu is a Professor of Electrical and Com-
puter Engineering at Purdue University. He received
his Ph.D. degree in Computer Science from Harvard
University in 1997. From 1997 to 2001, he was a
research scientist at Rice University. His research
interests include operating systems, distributed sys-
tems, Internet measurement and routing analysis,
and wireless networking. He has published over 130
papers in these areas. Dr. Hu received the NSF
CAREER Award in 2003. He is a senior member
of IEEE and an ACM distinguished scientist.

Chih-Chun Wang joined Purdue School of Elec-
trical and Computer Engineering in 2006 as an As-
sistant Professor. He received the B.E. degree from
National Taiwan University in 1999, and the M.S.
and Ph.D. degrees in E.E. from Princeton University
in 2002 and 2005, respectively. His current research
interests are in the graph-theoretic and algorithmic
analysis of iterative decoding and of network coding.
His other research interests fall in the general areas
of optimal control, information theory, detection
theory, coding theory, iterative decoding algorithms,

and network coding. He received the NSF CAREER Award in 2009.

