
Run-Time Support for Distributed Sharing
in Safe Languages

Y. CHARLIE HU
Purdue University
and
WEIMIN YU, ALAN COX, DAN WALLACH, and WILLY ZWAENEPOEL
Rice University

We present a new run-time system that supports object sharing in a distributed system. The key
insight in this system is that a handle-based implementation of such a system enables efficient and
transparent sharing of data with both fine- and coarse-grained access patterns. In addition, it sup-
ports efficient execution of garbage-collected programs. In contrast, conventional distributed shared
memory (DSM) systems are limited to providing only one granularity with good performance, and
have experienced difficulty in efficiently supporting garbage collection. A safe language, in which no
pointer arithmetic is allowed, can transparently be compiled into a handle-based system and con-
stitutes its preferred mode of use. A programmer can also directly use a handle-based programming
model that avoids pointer arithmetic on the handles, and achieve the same performance but with-
out the programming benefits of a safe programming language. This new run-time system, DOSA
(Distributed Object Sharing Architecture), provides a shared object space abstraction rather than
a shared address space abstraction. The key to its efficiency is the observation that a handle-based
distributed implementation permits VM-based access and modification detection without suffering
false sharing for fine-grained access patterns. We compare DOSA to TreadMarks, a conventional
DSM system that is efficient at handling coarse-grained sharing. The performance of fine-grained
applications and garbage-collected applications is considerably better than in TreadMarks, and
the performance of coarse-grained applications is nearly as good as in TreadMarks. Inasmuch as
the performance of such applications is already good in TreadMarks, we consider this an acceptable
performance penalty.

Categories and Subject Descriptors: D.4.2 [Software]: Operating Systems—storage management;
D.3.4 [Software]: Programming Languages—processors

General Terms: Languages, Management, Performance

Additional Key Words and Phrases: Communications, distributed sharing, memory consistency,
safe programming languages

1. INTRODUCTION

In recent years there has been increasing interest in supporting scientific
computing in modern languages, particularly in Java (e.g., JavaGrande).

Authors’ addresses: Y. C. Hu, School of Electrical and Computer Engineering, Purdue University,
1285 Electrical Engineering Building, West Lafayette, Indiana 47907; email: ychu@purdue.edu;
W. Yu, A. Cox, D. Wallach, and W. Zwaenepoel, Department of Computer Science, Rice University,
6100 Main Street, Houston, Texas 77005; email: {weimin,alc,dwallach,willy}@cs.rice.edu.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2003 ACM 0734-2071/03/0200-0001 $5.00

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003, Pages 1–35.

2 • Y. C. Hu et al.

Among these efforts are numerous attempts at building fast Java virtual ma-
chines (e.g., Adl-Tabatabai et al. [1998], Burke et al. [1999], and Wilkinson
[1996]), compilation into native code (e.g., Timber and Tower Technologies),
compiler optimizations specifically for scientific codes (e.g., Budimlic and
Kennedy [1997, 1999]), development of suitable scientific run-time libraries
(e.g., Casanova et al. [1997]), and support for parallel and distributed comput-
ing (e.g. Christiansen et al. [1997]) and Fox and Furmanski [1996]). This article
falls in the latter category.

We investigate run-time support for executing multithreaded scientific codes
in modern languages on a cluster of PCs. The presence of a network between
the PCs in the cluster is transparent to the programmer. Specifically, object ref-
erences can be followed across machine boundaries, and no special API (such
as, e.g., Java RMI) is necessary to access objects on another machine. The ra-
tionale is similar to the rationale for conventional software distributed shared
memory (DSM) (e.g., Li and Hudak [1989]): it allows for easier development
and faster migration of multithreaded codes to cluster environments.

This article addresses the issue of building such a distributed sharing sys-
tem that exhibits good performance for a wide range of sharing patterns, from
fine-grained to coarse-grained. Building a single system that covers such a
wide range has proven to be a vexing problem. Indeed, DSM systems have
been divided into those offering support for coarse-grained sharing or for fine-
grained sharing. Coarse-grained sharing systems are typically page-based, and
use the virtual memory hardware for access and modification detection. Al-
though relaxed memory models [Gharachorloo et al. 1990; Keleher et al. 1992]
and multiple-writer protocols [Carter et al. 1995] relieve the impact of the large
page size, fine-grained sharing and false-sharing remain problematic [Amza
et al. 1997]. Fine-grained sharing systems typically augment the code with in-
structions to detect reads and writes [Scales et al. 1996; Veldema et al. 2001a],
freeing them from the large size of the consistency unit in virtual memory-
based systems, but introducing per-access overhead that reduces performance
for coarse-grained applications [Dwarkadas et al. 1999]. Both types of systems
experience problems when it comes to efficiently supporting garbage collection,
because they do not distinguish memory updates by the application from a
memory update caused by the garbage collector [Yu and Cox 1996].

Modern languages all offer some notion of language safety. For the purposes
of this article language safety can be narrowly interpreted to mean absence of
pointer arithmetic. The key result of this work is that, when a safe language
is used, a single system can transparently support sharing of both fine- and
coarse-grained objects across machine boundaries. Underlying the efficiency
of our approach is the observation that in the absence of pointer arithmetic
the compiler can transparently redirect object accesses through a handle ta-
ble. This in turn allows inexpensive per-object access and modification detec-
tion using virtual memory protection [Brecht and Sandhu 1999; Itzkovitz and
Schuster 1999]. Another contribution of this article is that handle-based sys-
tems interact much better with garbage collection algorithms present in safe
language implementations, leading to good performance for garbage-collected
applications.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 3

Our results are more broadly applicable and not necessarily restricted to safe
languages. For programs in unsafe languages, the same results apply but in a
nontransparent manner. The programmer must use a restrictive programming
model, using a handle to access all objects and refraining from pointer arith-
metic on the handles. Viewed in this light, this article also contributes to the
area of distributed shared memory systems. We demonstrate that, when a
handle-based programming model is used without pointer arithmetic on the
handles, a single system can in fact support both fine and coarse granularities
with good efficiency.

We have implemented these ideas in a system we call DOSA (Distributed
Object System Architecture). To evaluate its performance, we have compared
the performance of DOSA against that of the TreadMarks coarse-grained DSM
system [Amza et al. 1996] for a number of applications. We chose TreadMarks
as the baseline for performance comparison for two reasons: it is the most
widely used coarse-grained DSM system, and believed to be the most efficient;
and DOSA is derived from the same code base as TreadMarks, minimizing
the differences due to coding. Unfortunately, there is no similarly available
implementation of fine-grained shared memory, so we cannot make an explicit
comparison with such a system. Our performance evaluation substantiates the
following claims.

1. The performance of fine-grained applications is considerably better than in
TreadMarks.

2. The performance of coarse-grained applications is nearly as good as in
TreadMarks.

3. The performance of garbage-collected applications is considerably better
than in TreadMarks.

For the applications used in this article, we observe performance improvements
as high as 98% for fine-grained applications and 65% for garbage-collected ap-
plications, whereas the maximum performance degradation for coarse-grained
applications is 6%.

The outline of the rest of this article is as follows. Section 2 explains the key
technical idea: how handle-based systems allow efficient support for fine- and
coarse-grained objects. Section 3 describes the API and the memory model of
the DOSA system. Section 4 describes its implementation and various optimiza-
tions to the basic handle-based approach. Section 5 discusses the experimental
methodology that we have used. Section 6 presents overall results for fine-
grained, coarse-grained, and garbage-collected applications. Section 7 presents
a breakdown of the contributions of the various optimizations. Section 8 dis-
cusses related work. Section 9 concludes the article.

2. KEY TECHNICAL CONCEPT

The key insight in this work is that a handle-based implementation enables
efficient and transparent sharing of data with both fine- and coarse-grained
access patterns (see Figure 1). We define a handle-based system as one in which

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

4 • Y. C. Hu et al.

Fig. 1. Pointer safety in a safe language enables a handle-based implementation.

Fig. 2. Objects with handles.

all references to objects are redirected through a handle for the object. No direct
references to the object are allowed, other than through the handle, and no
pointer arithmetic is allowed on the handles. A handle table contains all the
handles (see Figure 2). Each object in the language is uniquely identified by
an object identifier (OID) that also serves as an index into the handle table for
that object. A safe language in which no pointer arithmetic is allowed can easily
be compiled into a handle-based system (e.g., Sun’s classic JVM for Java, and
early implementations of Smalltalk [Goldberg and Robson 1983; Deutsch and
Schiffman 1984]), and constitutes the preferred use of the proposed run-time
system.

In a handle-based run-time system, it is easy to relocate objects in memory. It
suffices to change the corresponding entry in the handle table after a relocation.
No other changes need to be made, as all references are redirected through the
handle table. Extending this simple observation allows an efficient distributed
implementation of these languages. Specifically (see Figure 3), a handle table
representing all shared objects is present on each processor. A globally unique
OID identifies each object, and serves as an entry in the handle tables. As
before, each handle table entry contains a pointer to the location in memory
where the object resides on that processor. The consistency protocol can then
be implemented solely in terms of OIDs, because these are the only references
that appear in any of the objects. Furthermore, the same object may be allocated
at different virtual memory addresses on different processors. It suffices for the
handle table entry on each processor to point to the proper location. In other
words, although the programmer retains the abstraction of a single object space,
it is no longer the case that all of memory is virtually shared, and that all objects
have to reside at the same virtual address at all processors, as is the case in
conventional DSM systems.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 5

Fig. 3. Shared objects identified by unique OIDs.

Fig. 4. Access detection using the handle pointers. All three regions of virtual memory point to the
same region of physical memory, but the protection on each of the regions is different: read-write,
read-only, and invalid. Switching the handle pointer of an object among the three regions causes
the access protection of the object to be changed accordingly, without affecting the access protection
of other objects in the same page.

In order to provide good performance for coarse-grained applications, we
continue to use the virtual memory system for access detection, thereby avoid-
ing the overhead of instrumentation incurred in previous fine-grained systems.
Fine-grained access using VM techniques is then provided as follows. Although
only a single physical copy of each object exists on a single processor, each ob-
ject can be accessed through three VM mappings. All three point to the same
physical location in memory, but with three different protection attributes:
invalid, read-only, or read-write. An object’s access protection is changed by
switching the object’s handle among the different mappings. This changes the
access protection for that object only. The access protection of the other objects
in the same page remain unaffected. Consider the example in Figure 4. A phys-
ical page on a processor contains four objects A, B, C, and D, one of which, D,
is written on a different processor. This modification is communicated between
processors through the consistency protocol, and results in the invalid mapping
being set for this object. Access to other objects can continue, unperturbed by
this change, thus eliminating false sharing between objects in the same page.

3. API AND MEMORY MODEL

We now turn to a detailed discussion of the system that we have implemented
to evaluate the efficiency of the handle-based implementation of shared object

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

6 • Y. C. Hu et al.

systems. We first discuss the system’s interface. Its implementation is discussed
in the next section.

3.1 API

The programming model is a shared space of objects, in which object references
are safe. The fields of an object must be accessed through a reference to the
object. No other access is allowed. In particular, no pointer arithmetic is allowed
on the references to access the fields of an object.

The programmer is responsible for creating and destroying threads of control,
and for the necessary synchronization to ensure orderly access by these threads
to the object space. Various synchronization mechanisms may be used, such as
semaphores, locks, barriers, monitors, and so on.

An individual object must not be concurrently written by different threads,
even if those threads write different data items in the object. If two threads
write to the same object, they should synchronize between their writes. Arrays
are treated as collections of objects, and therefore their elements can be written
concurrently. Of course, for correctness, the different processes must write to
disjoint elements in the arrays. Similarly, concurrent write and read accesses by
different threads to the same object are not allowed. The single-writer nature
of individual objects is not an inherent part of the design of our system, but we
have found that it corresponds to common usage, and is therefore not restrictive.
As shown in Section 4, it allows us to use an efficient single-writer protocol for
individual objects.

3.2 Memory Model: Release Consistency

In order to combat long network latencies, many distributed shared memory or
shared object systems have adopted some form of relaxed consistency. DOSA’s
object space is release consistent (RC) [Gharachorloo et al. 1990]. In RC, ordi-
nary accesses to shared data are distinguished from synchronization accesses,
with the latter category divided into acquires and releases. An acquire roughly
corresponds to a request for access to data, such as a lock acquire, a wait at a
condition variable, or a barrier departure. A release corresponds to the granting
of such a request, such as a lock release, a signal on a condition variable, or a
barrier arrival. RC requires ordinary shared memory updates by a processor
p to become visible to another processor q only when a subsequent release by
p becomes visible to q via some chain of synchronization events. Parallel pro-
grams that are properly synchronized (i.e., have a release–acquire pair between
conflicting accesses to shared data) behave as expected on the conventional se-
quentially consistent shared memory model [Lamport 1979].

4. IMPLEMENTATION

We focus in this section on the consistency maintenance of individual objects.
Synchronization is implemented as in TreadMarks [Amza et al. 1996]. Lock
and barrier synchronization are supported. Each lock has a lock manager that
keeps track of which processor has most recently requested the lock. The lock
manager forwards a lock acquire request to that processor, where it is queued

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 7

until that processor releases the lock. Each barrier has a barrier manager that
implements a barrier by waiting for barrier arrival messages from all other
processors, and then sending barrier departure messages to all of them.

We first discuss our implementation of release consistency. Next, we describe
the handle table and the supporting data structures. We then turn to the use of
the handle table to perform per-object access and modification detection using
virtual memory protection. We conclude this section with a discussion of various
optimizations.

4.1 Release Consistency Implementation

DOSA uses a single-writer, lazy invalidate protocol to maintain release consis-
tency. The lazy implementation delays the propagation of consistency informa-
tion until the time of an acquire. At that time, the releaser informs the acquiring
processor which objects have been modified, and these objects are then invali-
dated. Access to an invalidated object causes a protection fault, which in turn
causes an up-to-date version of the object to be brought in.

To implement the lazy invalidate protocol, the execution of each process is
divided into intervals, defined as the epochs between consecutive synchroniza-
tion operations on a processor. Each interval is labeled with an interval number,
which is simply a count of the number of intervals on a processor. Intervals of
different processors are partially ordered [Adve and Hill 1990]: (i) intervals on
a single processor are totally ordered by program order, and (ii) an interval on
processor p precedes an interval on processor q if the interval of q begins with
the acquire corresponding to the release that concluded the interval of p.

The above partial order can be represented concisely by assigning a vector
timestamp to each interval. On processor i, the ith element of the vector times-
tamp for a particular interval is equal to its interval number. The elements
j 6= i of the vector timestamp are equal to the interval number of processor
j at the time of the last acquire from i to j . The current vector timestamp on
processor i is the vector timestamp of the current interval on processor i. Vec-
tor timestamps are maintained by the consistency protocol. When processor
i performs an acquire from processor j , processor j sends its current vector
timestamp to processor i. Processor i then computes the pairwise maximum
of the elements in its current vector timestamp and in the one it received in
the message from j . The result of this computation becomes the current vector
timestamp of processor i.

Each object that was modified during an interval is recorded in a write notice.
Each write notice has an associated processor identifier and vector timestamp,
indicating where and when the modification of the object occurred. Arrival of a
write notice for an object causes the acquiring processor to invalidate its local
copy, and to set the last writer field in the handle table entry to the processor
identifier in the write notice. A processor incurs a page fault on the first access
to an invalidated object, and obtains an up-to-date version of that object from
the processor indicated in the last writer field.

To avoid repeated sending of write notices, a processor i performing an ac-
quire sends its current vector timestamp, and the responding processor sends

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

8 • Y. C. Hu et al.

only those write notices with a vector timestamp between the vector timestamp
received from i and its own current vector timestamp.

Creating one write notice per object allows consistency to be maintained
on a per-object basis. For applications with a large number of objects, this is
inefficient. In Section 4.5, we describe a number of optimizations that largely
remove this inefficiency.

4.2 Data Structures

A handle table is present on each processor. The handle table is indexed by a
globally unique object identifier (OID). Each entry in the handle table contains
the corresponding object’s address in local virtual memory. This address may be
different from processor to processor (see Figure 3). The object’s local state (i.e.,
invalid, read-only, or read-write) is implicitly reflected in the handle table entry.
Depending on the object’s state, the handle pointer points to one of three possible
VM mappings for the object’s local physical address (see Section 4.3). The handle
table entry contains a last writer field, indicating from which processor to fetch
an up-to-date copy of the object on an access miss. Finally, a handle table entry
contains a field linking it with the handle table entries of other objects allocated
in the same page.

A few auxiliary data structures are maintained as well. An inverse object
table, implemented as a hash table, is used by the page fault handler to trans-
late a faulting address to an OID. Each processor maintains a per-page linked
list of objects allocated in that page. This list is used to implement commu-
nication aggregation (see Section 4.5.2). Finally, each processor maintains its
vector timestamp and an efficient data structure for sending write notices when
responding to an acquire.

To avoid translation between OIDs and local memory addresses on different
processors during the exchange of objects, the handle table is located at the
same virtual address on all processors, and OIDs are simply assigned as the
virtual addresses of the entries in the handle table.

Objects are instantiated by a new operation or the equivalent. An OID is
generated, and memory is allocated on the local processor to hold the object. In
order to minimize synchronization overhead for unique OID generation, each
processor is allocated a large chunk of OIDs at once, and this chunk allocation is
protected by a global lock. Each processor then independently generates OIDs
from its chunk.

4.3 Switching Protection

DOSA relies on hardware page protection to detect accesses to invalid objects
and write accesses to read-only objects. We create three nonoverlapping virtual
address regions that map to the same physical memory (see Figure 4). An object
can thus be viewed through any of the three corresponding addresses from the
three mappings. DOSA assigns the access permissions to the three mappings to
be invalid, read-only, and read-write, respectively. During program execution,
it regulates access to a shared object by adjusting the object’s handle to point to

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 9

one of the three mappings. In addition to providing per-object access control, this
approach has the substantial additional benefit that no kernel-based memory
protection operations are necessary after the initialization of all mappings.

As a practical matter, the three mappings of a shared object differ only in the
two leading bits of their addresses. Therefore, changing protection is a simple
bit masking operation.

4.4 Handling Page Faults

When a page fault occurs on access to an invalid object, the up-to-date value
of the object is fetched. When a page fault occurs as a result of a write access
to a read-only object, a write notice for that object is created. In either case,
protection is changed and the faulting instruction is restarted.

Some care has to be taken to properly restart the faulting instruction. Access-
ing an object through a handle involves two memory dereferences: the first to
obtain the object’s address and the second to read or write the data field within
the object. On most architectures these two dereferences are implemented by
two distinct instructions: the first loads the address of the object into a register,
and the second uses that register to read or write a field in the object. The page
fault occurs during the second instruction. Simply updating the object’s address
in the handle table does not resolve the page fault, because the (old) address
still resides in the register that is used by the second instruction.

Therefore, to resolve the page fault, the page fault handler also needs to
decode the register being used by the faulting instruction, and update it as well
as the handle in memory.

4.5 Optimizations

The DOSA system as described so far supports sharing at object granularity.
We next describe a set of optimizations that reduce the overhead of per-object
consistency maintenance for applications with a large number of objects. We
also describe an optimization aimed at reducing the overhead of indirection
through the handle table for array-based applications.

4.5.1 Lazy Object Storage Allocation. The ability to allocate objects at dif-
ferent addresses on different processors suggests that a processor can delay
the storage allocation for an object until that object is first accessed by that
processor. We call this optimization lazy object storage allocation.

N-body simulations (e.g., Barnes-Hut and Water-Spatial [Woo et al. 1995])
illustrate the benefit of this optimization. Each processor typically accesses its
own bodies, and a small number of “nearby” bodies on other processors. With
global allocation of memory, the remote bodies are scattered in shared memory,
causing a large memory footprint, many page faults, messages, and—in the case
of TreadMarks—false sharing. In contrast, in DOSA, only the local bodies and
the locally accessed remote bodies are allocated in local memory. As a result, the
memory footprint is smaller, there are far fewer misses and messages, and false
sharing is eliminated through the per-object mappings. Moreover, objects can be
locally rearranged in memory, for instance, to improve cache locality or during

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

10 • Y. C. Hu et al.

garbage collection, without affecting the other processors. More generally, this
optimization works for all applications that exhibit this kind of locality of
access.

4.5.2 Access Miss Handling and Read Aggregation. When a processor
faults on an object smaller than a page, it uses the list of objects in the same
page (see Section 4.2) to find all of the invalid objects residing in that page. It
sends out concurrent object fetch messages for all these objects to the proces-
sors recorded as the last writers of these objects. We refer to this optimization
as read aggregation.

By doing so, we aggregate the requests for all invalid objects in the same
page. This approach performs better than simply fetching one faulted object at
a time. There are two fundamental reasons for this phenomenon.

1. If there is some locality in the objects accessed by a processor, then it is likely
that the objects allocated in the same page are going to be accessed closely
together in time. Here, again, the lazy object storage allocation works to our
advantage. It is true that some unnecessary data may be fetched, but the
effect is minimal for the following reason.

2. The destination processors of different request messages process the mes-
sages in parallel and also generate the replies in parallel. In addition, a
particular destination processor needs to handle only one message per page
as opposed to one message per object on that page for which it has the up-
to-date value. Thus the latency for updating all objects on the page is not
much higher than updating a single object.

If an object is larger than a page, we fall back on a page-based approach. In
other words, only the page that is necessary to satisfy the fault is fetched.

4.5.3 Modification Detection and Write Aggregation. On a write fault, we
make a copy (a twin) of the page on which the fault occurred, and we make all
read-only objects in the page read-write. At a (release) synchronization point,
we compare the modified page with the twin to determine which objects have
been changed, and hence for which objects write notices need to be generated.1

After the (release) synchronization, the twin is deleted and the page is made
read-only again.

This approach has better performance than the more straightforward ap-
proach, where only one object at a time is made read-write. The latter method
generates a substantially larger number of write faults. If there is locality to the
write access pattern, the cost of these write faults exceeds the cost of making
the twin and performing the comparison. We refer to this optimization as write
aggregation.

1The twin is used here for a different purpose than the twin in TreadMarks. Here it is simply used
to generate write notices. In the TreadMarks multiple-writer protocol it is used to generate a diff,
a runlength encoding of the changes to the page. Because we are using a single-writer protocol,
there is no need for diffs.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 11

4.5.4 Write Notice Compression. The write notices are in terms of objects.
As a consequence, for applications with a large number of objects, the number
of write notices can potentially be very large. DOSA employs a novel compres-
sion technique to reduce the number of write notices transmitted. Each time a
processor creates a new interval, it traverses in reverse order the intervals that
it has created before, searching for one that has a similar set of write notices. If
such an approximate “match” is found, the encoding of the differences between
the write notices of the new and the old interval are typically much smaller
than the write notices themselves. In this case, only the differences are sent.
Information about intervals on one processor is always received on another
processor in the order of increasing interval numbers. Thus, when a processor
receives interval information containing a difference of write notices, it must
already have received the interval based on which that difference has been com-
puted. It can then easily reconstruct the write notices of the new interval. To
avoid having to save all the old intervals created by all other processors, we set
a threshold on how many old intervals to save and thus how far to search back
for a close match with an old interval. If no close match is found, the current
set of new write notices is sent in the normal way.

4.5.5 Eliminating Indirect References in Loops. This optimization elimi-
nates the cost of repeated indirection through the handle table when an array
is accessed inside a loop. Assume a one-dimensional array a is accessed in a for
loop. Using C-like pseudocode, the resulting memory accesses in DOSA can be
expressed as follows.

for i
a->handle[i] = ...;

This code sequence leads to twice as many memory accesses as a corresponding
loop implemented without a handle table.

Observe also that the following transformation of the DOSA program is legal
but not profitable.

p = a->handle;
for i

p[i] = ...;

The problem with this transformation occurs when a->handle has been invali-
dated as a result of a previous synchronization. Before the loop, p contains an
address in the invalid region, which causes a page fault on the first iteration
of the loop. DOSA changes a->handle to its location in the read-write region,
but this change is not reflected in p. As a result, the loop page faults on every
iteration. We solve this problem by “touching” a->handle[0] before assigning
it to p. In other words,

write_touch(a->handle[0]);
p = a->handle[0];
for i

p[i] = ...;

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

12 • Y. C. Hu et al.

Write-touching a->handle[0] outside the loop causes the write fault to occur
there, and a->handle to point to the read-write mapping. Similarly, if the access
is a read (i.e., appearing on the right-hand side of an assignment), we insert
a read-touch before the loop to force an update of the handle to point to the
read-only mapping.

This optimization is dependent on the lazy implementation of release con-
sistency. Invalidations only arrive at synchronization points, never asynchro-
nously; thus the cached references are never invalidated in a synchronization-
free loop.

With suitable compiler support, this optimization can be automated. For
example, recent progress on pointer analysis (e.g., Landi and Ryder [1992],
Andersen [1994], and Das [2000]) has allowed for fairly accurate computation
of the set of memory locations to which a pointer can potentially point. Such
analysis can be used to prove that a and a->handle are invariant across the
loop iterations, automating the above transformation.

4.6 Limitations

The triple mapping consumes virtual memory space and causes TLB (transla-
tion lookaside buffer) pressure. This is not a significant problem, however, for
two reasons: with 64-bit architectures nearby, consumption of virtual memory
space is unlikely to remain a problem; and, compared to page-based DSMs, the
lazy object allocation in DOSA actually reduces virtual memory use and TLB
pressure for applications in which each processor only accesses a subset of the
objects. Each processor only needs to allocate memory for those objects that
it accesses, thus effectively packing those objects into fewer virtual memory
pages, and reducing the virtual memory footprint and resulting TLB pressure.
In contrast, in page-based DSMs virtual memory has to be allocated for all
objects on all processors, regardless of whether a processor accesses an object.
Unfortunately, the hardware counters on the architecture that we are using do
not monitor TLB performance [Intel Corporation 2001]. Thus we cannot provide
quantitative information on this subject.

Some of the optimizations, in particular lazy object allocation, read aggrega-
tion, and write aggregation, seek to take advantage of locality in the application.
If no such locality is present, then no benefits can be expected.

5. EVALUATION METHODOLOGY

We evaluate DOSA by comparing its performance to TreadMarks [Amza et al.
1996]. We choose TreadMarks as a basis for comparison because it is the most
widely used VM-based distributed shared memory system and because DOSA
is derived from the same code base as TreadMarks, thus avoiding performance
differences due to coding. Briefly, TreadMarks uses a lazy implementation of the
release consistency which reduces the amount of data and the number of mes-
sages transmitted compared to eager implementations [Amza et al. 1996]. To
address the false sharing problem facing VM-based DSM systems, TreadMarks
uses a multiple-writer protocol that allows multiple concurrent writers to mod-
ify a page [Carter et al. 1991]. Unfortunately, none of the instrumentation-based

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 13

DSM systems aimed at fine-grained sharing is generally available, so a direct
comparison to such a system cannot be made.

In general, our performance evaluation seeks to provide evidence for our
claim that DOSA provides efficient support for both fine- and coarse-grained
sharing, and interacts well with garbage collection. As a result, our perfor-
mance evaluation considers both fine- and coarse-grained applications as well
as garbage-collected applications. In more detail, we seek to substantiate the
following claims.

1. The performance of fine-grained applications is considerably better than in
TreadMarks.

2. The performance of coarse-grained applications is nearly as good as in
TreadMarks. DOSA slightly underperforms TreadMarks because of the over-
head of indirection from using handles. Because the performance of such
applications is already good in TreadMarks, we consider this an acceptable
performance penalty.

3. The performance of garbage-collected applications is considerably better
than in TreadMarks.

5.1 Comparison with TreadMarks for Fine- and Coarse-Grained Applications

A difficulty arises in making the comparison with TreadMarks. Ideally, we
would like to make these comparisons by simply taking a number of appli-
cations in a safe language, and comparing their performance when running on
TreadMarks with their performance on DOSA.

For a variety of reasons, the most appealing programming language for this
purpose is Java. Unfortunately, commonly available implementations of Java
are interpreted and run on slow Java virtual machines. This would render our
experiments largely meaningless, because inefficiencies in the Java implemen-
tations and virtual machines would dwarf differences between TreadMarks and
DOSA. Perhaps more important, we expect efficient compiled versions of Java
to become available soon, and we expect that those would be used in preference
to the current implementations, quickly making our results obsolete. Finally,
the performance of these Java applications would be quite inferior to published
results for conventional programming languages.

We have therefore chosen to carry out the following experiments. For the first
two comparisons, we have taken existing C applications and rewritten them to
follow the model of a handle-based implementation. In other words, a handle ta-
ble is introduced, and all pointers are redirected through the handle table. This
approach represents the results that could be achieved by a language or compi-
lation environment that is compatible with our approach for maintaining con-
sistency, but otherwise exhibits no compilation or execution differences with the
conventional TreadMarks execution environment. In other words, these exper-
iments isolate the benefits and the drawbacks of our consistency maintenance
methods from other aspects of the compilation and execution process. It also
allows us to assess the overhead of the extra indirection on single-processor
execution times. The optimizations discussed in Section 4.5.5 have been

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

14 • Y. C. Hu et al.

implemented by hand in both the TreadMarks and the DOSA programs. We
report results with and without these optimizations present.

5.2 Comparison with TreadMarks for Garbage-Collected Applications

We have implemented a distributed garbage collector on both TreadMarks and
DOSA that is representative of the state of the art. Distributed garbage col-
lectors are naturally divided into an interprocessor algorithm, which tracks
crossprocessor references and an intraprocessor algorithm, which performs the
traversal on each processor and reclaims the unused memory.

To provide a fair comparison, we use the same interprocessor algorithm
for both TreadMarks and DOSA. In particular, we use a weighted reference
counting [Bevan 1987; Thomas 1981; Watson and Watson 1987]. To implement
weighted reference counting transparently, we check incoming and outgoing
messages for references. These references are recorded in an import table and
an export table, respectively.

We also use the same intraprocessor algorithm in TreadMarks and DOSA,
namely, a generational copying collector. The generational copying collectors
have two generations. Following the suggestion by Wilson and Moher [1989],
objects in the younger generation advance to the older generation in every
other garbage collection. Like Tarditi and Diwan’s [1996] collector, the old gen-
eration is included in a garbage collection if the size of the free space falls
below 20% of the total heap size. Due to the existence of handles and the single-
writer protocol in DOSA, the implementation of the collectors for TreadMarks
and DOSA differs significantly. We next describe the differences in the two
implementations.

In TreadMarks, when a processor wants to start a garbage collection, it ini-
tiates a barrier-like operation that suspends the DSM system. Only the last
writer of a page is allowed to copy objects within that page. After the barrier,
the last writer of every page is known to every processor. In the case of mul-
tiple writers to a page, an arbitration algorithm in the barrier designates a
single processor as the last writer. Each processor starts a depth-first traversal
from the “root” references and the exported references. An object is copied and
scanned only if the node is its last writer. When an object is copied, a forward-
ing pointer to its new location is written into its old address. A reference to
the moved object is updated only if the processor is also the last writer of the
page that contains this reference. After the traversal, imported references still
pointing to the old address ranges (the fromspace) are removed from the import
table and sent back to the object’s creator. The fromspace cannot, however, be
immediately reclaimed. A processor instead sets the protection of the fromspace
to no-access. When a remote processor follows a stale pointer and accesses a
page in the fromspace, it fetches the up-to-date copy of the page, reads the for-
warding pointer, and updates the reference that has caused the fault to the new
address. The fault handler does not change the protection of the page so that
other stale references to moved objects are caught. The fromspace is reclaimed
when all stale references have been updated on all nodes, that is, when there
are no more export or import references to the fromspace.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 15

The copying collector for DOSA is much simpler. Each processor can start a
garbage collection asynchronously because the last writer of an object is always
known locally. Like the copying collector for TreadMarks, a processor starts a
depth-first traversal from the “root” references and the exported references, and
only copies and scans an object if it is the last writer of the object. Forwarding
pointers are unnecessary because the only reference that needs to be updated is
the address in the object’s handle. After the traversal, imported references still
pointing to the old address ranges (the fromspace) are removed from the import
table and sent back to the object’s creator. The fromspace can immediately be
reclaimed and reused.

On DOSA, the garbage collector on each processor is also responsible for
reclaiming unused handles, that is, OIDs, that it owns (see Section 4.2). The
locally owned handles are managed using Baker’s [1991] noncopying collector.
Two pointer fields are added to each handle: one to chain the free handles in
a free list, and one to chain the allocated handles in an allocated list. During
garbage collection, live handles are moved from the old allocated list to a new
allocated list. This occurs when an object (whose handle is owned by the pro-
cessor) is copied from the old space to the new space. At the end of garbage
collection, any handles remaining in the old allocated list are unused, so the
old allocated list is appended to the free list. When changing the membership of
handles between free and allocated lists, the handles themselves are not moved
and thus the OIDs are not changed.

5.3 Experimental Environment

Our experimental platform is a switched, full-duplex 100 Mbps Ethernet net-
work of thirty-two 300 MHz Pentium II-based computers. Each computer has
a 512 Kbyte secondary cache and 256 Mbytes of memory. All of the machines
are running FreeBSD 2.2.6 and communicating through UDP sockets. On this
platform, the roundtrip latency for a 1 byte message is 126 microseconds. The
time to acquire a lock varies from 178 to 272 microseconds. The time for an
32 processor barrier is 1333 microseconds. For TreadMarks, the time to obtain
a diff, a runlength encoding of the changes to a page [Amza et al. 1996], varies
from 313 to 1544 microseconds, depending on the size of the diff. The time to
obtain a full page is 1308 microseconds.

5.4 Applications

Our choice of applications follows immediately from the goals of our perfor-
mance evaluation. We include a number of fine-grained, coarse-grained, and
garbage-collected applications. An application is said to be coarse-grained if a
single processor typically accesses a large portion or all of a page, and is said
to be fine-grained otherwise. An application may be coarse-grained because its
basic objects are large relative to the size of a page, or because it is accessing a
number of (small) objects that are contiguous in memory.

We use three fine-grained applications: Barnes-Hut and Water-Spatial from
the SPLASH-2 [Woo et al. 1995] benchmark suite, and Gauss distributed with
TreadMarks. Barnes-Hut is an N-body simulation, Water-Spatial is a molecular

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

16 • Y. C. Hu et al.

Table I. Applications, Input Data Sets, and Sequential Execution Time

Time (sec.)
Application Problem Size Original Handle

Fine-grained
Barnes-Hut Small 32K bodies, 3 steps 58.68 60.84

Large 131K bodies, 3 steps 270.34 284.43
Water-Spatial Small 4K mols, 9 steps 89.63 89.80

Large 32K mols, 2 steps 158.57 160.39
Gauss Small 512× 512 2.20 2.22

Coarse-grained
Red-Black SOR Small 3070× 2047, 20 steps 21.12 21.13

Large 4094× 2047, 20 steps 27.57 28.05
Water-N-Squared Small 1728 mols, 2 steps 71.59 73.83

Large 2744 mols, 2 steps 190.63 193.50
Gauss Large 1k× 1k 18.76 18.97

dynamics simulation optimized for spatial locality. Gauss implements Gaussian
Elimination with partial pivoting on linear equations stored in a two-
dimensional shared array. For Gauss, the computation on the rows is distributed
across the processors in a round-robin fashion. Thus, if the size of a row is
smaller than the size of a VM page, the access pattern is fine-grained. We de-
note this case as Gauss/small. Overall, the object sizes for these applications
are 104 bytes for Barnes-Hut, 680 bytes for Water-Spatial, and 2 kilobytes for
Gauss/small. In all cases, a single processor does not access contiguous objects.

We use three coarse-grained applications: SOR and Gauss/large distributed
with TreadMarks and Water-N-Squared from the SPLASH [Singh et al. 1992]
benchmark suite. SOR performs red–black successive overrelaxation on a 2-D
grid. Gauss/large is identical to Gauss/small except that its row size is the size
of a VM page. Water-N-Squared is a molecular dynamics simulation. The object
sizes for SOR and Gauss/large are 8 and 4 kilobytes, respectively. For Water-
N-Squared it is 680 bytes, but in this case a processor accesses a number of
contiguous objects, thus making access coarse-grained.

For each of these applications, Table I lists the problem size and the sequen-
tial execution times. We use two problem sizes for each application, denoted
large and small. The sequential execution times are obtained by removing all
TreadMarks or DOSA calls from the applications, and using the optimization
described in Section 4.5.5. Table I also includes execution times with and with-
out handles. These timings show that the overhead of the extra level of derefer-
encing in the handle-based versions of the applications is never more than 5.2%
on one processor for any of these applications. The sequential execution times
without handles are used as the basis for computing the speedups reported
later in the article.

To exercise the distributed garbage collector, we use three programs that
have been modified to perform garbage collection. The first program, OO7, is a
modified version of the OO7 object-oriented database benchmark [Carey et al.
1994]. The next program, Game, performs a game-tree search for a game called
Othello. The last program, MIP, solves a Mixed Integer Programming prob-
lem [Bixby et al. 1999].

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 17

The OO7 benchmark is designed to match the characteristics of many
CAD/CAM/CASE applications. Its database contains a tree of assembly objects,
with leaves pointing to three composite parts chosen randomly from among
500 objects. Each composite part contains a graph of atomic parts linked by
connection objects. Each atomic part has three outgoing connections.

Ordinarily, OO7 does not release memory. Thus there would be nothing for
a garbage collector to do. Our modified version of OO7 creates garbage by re-
placing rather than updating objects when the database changes. After the new
object with the updated data is installed in the database, the old object becomes
eligible for collection.

The OO7 benchmark defines several database traversals [Carey et al. 1994].
For our experiments, we use a mixed sequence of T1, T2a, and T2b traversals.
T1 performs a depth-first traversal of the entire object hierarchy. T2a and T2b
are identical to T1, except that T2a replaces the root atomic part of each graph,
and T2b replaces all the atomic parts.

The Game program for Othello runs for several game steps. In each step, a
master processor takes the current game board as the root of the game tree,
and expands the tree for a predetermined number of levels. Each node in the
tree has a back pointer to its parent node. After the master finishes expanding
the tree, it puts the leaf nodes in a task queue. Then each processor repeatedly
takes a task from the queue, computes the result, and writes the result into all
ancestors of the task node, including the root node. The writes to the ancestor
nodes are synchronized by a lock. At the end of each step, the master makes
the best move, and the game tree is discarded.

We run the program for 20 steps. The size of the game tree generated in
each step is around 256Kbytes. Each processor also allocates a large number of
private objects.

MIP solves the Mixed Integer Programming problem, a form of linear pro-
gramming in which some of the variables are restricted to take on only integer
values. It uses branch-and-bound to find the optimal solution to the problem.
Nodes in the search space are kept in a doubly linked task queue. Each proces-
sor takes a node from this queue, performs its computation, perhaps generating
new task nodes, and puts these new nodes back into the queue. For each task
node, the computation involves “relaxing” the integer restrictions on the vari-
ables and solving the corresponding linear programming problem to determine
whether a better solution than the current best solution is possible below that
node. This procedure is repeated until the solution is found. This program al-
locates about 32K objects. All of the objects are shared.

Table II lists the sequential execution times for OO7, Game, and MIP run-
ning with the garbage collector on TreadMarks and DOSA. Overall, DOSA
underperforms TreadMarks by less than 3.5% due to handle dereference cost
and GC overhead. Table II also lists the time spent in the memory allocator and
the garbage collector. Compared to TreadMarks, DOSA spends 0.9%, 3.6%, and
10% more time in the garbage collector for OO7, Game, and MIP, respectively.
This extra overhead results from the fact that whenever an object is created,
deleted, or moved, DOSA has to update the handle table entry.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

18 • Y. C. Hu et al.

Table II. Total Execution Time and Allocation and GC
Time on 1 Processor for OO7, Game, and MIP with

Garbage Collection

Time (sec.)
Application Version Total Alloc. and GC

OO7 TreadMarks 185 10.9
DOSA 191 11.0

Game TreadMarks 286 21.7
DOSA 296 22.5

MIP TreadMarks 583 0.20
DOSA 600 0.22

Fig. 5. Speedup comparison between TreadMarks and DOSA for fine-grained applications.

6. OVERALL RESULTS

6.1 Fine-Grained Applications

Figure 5 shows the speedup comparison between TreadMarks and DOSA for
Barnes-Hut and Water-Spatial with small and large problem sizes, and Gauss
with the small problem size on 16 and 32 processors.

We derive the following conclusions from these data. First, even for a small
number of processors, the benefits of the handle-based implementation out-
weigh the cost of the extra indirection. For Barnes-Hut with 32K and 128K
bodies, DOSA outperforms TreadMarks by 29% and 52%, respectively, on 16
processors. For Water-Spatial with 4K and 32K molecules, DOSA outperforms
TreadMarks by 62% and 47%, respectively, on 16 processors. For Gauss/sm,
DOSA outperforms TreadMarks by 23.3%. Second, as the number of processors
increases, the benefits of the handle-based implementation grow. For Barnes-
Hut with 128K bodies, DOSA outperforms TreadMarks by 52% on 16 processors
and 98% on 32 processors. For Water-Spatial with 32K molecules, DOSA out-
performs TreadMarks by 47% on 16 processors and 51% on 32 processors. For
Gauss/sm, DOSA outperforms TreadMarks by 23.3% on 16 processors and by
25.6% on 32 processors. Third, if the amount of false sharing under TreadMarks

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 19

Fig. 6. Statistics for TreadMarks and DOSA on 32 processors for fine-grained applications with
large data sizes, normalized to TreadMarks measurements. The statistics include the amount of
data (Data), the number of messages (Msg), the number of message rounds where a message
round includes all messages sent and received in parallel (OverlapReq), and the average amount
of memory allocated per processor (MemAlloc).

Table III. Detailed Statistics for TreadMarks and DOSA on 32 Processors for Fine-Grained
Applications, Barnes-Hut, Water-Spatial, and Gauss/sma

Barnes-Hut/sm Barnes-Hut/lg
Application Tmk DOSA Tmk DOSA
Time 18.07 12.06 89.07 45.98
Data (MB) 315.3 82.6 1307 246
Messages 2549648 307223 10994350 1027932
Overlapped requests 108225 98896 439463 341303
Memory alloc. (MB) 7.36 1.05 29.4 3.35

Water-Spatial/sm Water-Spatial/lg Gauss/sm
Application Tmk DOSA Tmk DOSA Tmk DOSA
Time 12.52 8.04 12.89 8.52 1.57 1.25
Data (MB) 475.1 262.6 342.1 166.8 44.7 35.8
Messages 617793 188687 330737 109560 94265 95135
Overlapped requests 193692 66937 202170 41491 31248 31683
Memory alloc. (MB) 3.15 0.61 25.2 2.64 1.06 1.06

aThe statistics include the amount of data (Data), the number of messages (Msg), the number of message
rounds where a message round includes all messages sent and received in parallel (OverlapReq), and the
average amount of memory allocated per processor (MemAlloc).

decreases as the problem size increases, as in Water-Spatial, then DOSA’s ad-
vantage over TreadMarks decreases for larger problem sizes. If, on the other
hand, the amount of false sharing under TreadMarks increases as the problem
size increases, as in Barnes-Hut, then DOSA’s advantage over TreadMarks in-
creases for larger problem sizes.

The reasons for DOSA’s clear dominance over TreadMarks can be seen in
Figure 6, which shows the normalized statistics from the execution of Barnes-
Hut/lg, Water-Spatial/lg, and Gauss/sm on 32 processors, and also in Table III,
which presents detailed statistics from these executions. The figure and
the table show the amount of data communicated, the number of messages

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

20 • Y. C. Hu et al.

Fig. 7. Speedup comparison between TreadMarks and DOSA for coarse-grained applications.

exchanged, the number of overlapped data requests,2 and the average amount
of shared data allocated on each processor. Specifically, we see a substantial
reduction in the amount of data sent for DOSA, as a result of the reduction in
false sharing. Furthermore, the number of messages is reduced by a factor of
11 for Barnes-Hut/lg and 3 for Water-Spatial/lg. More importantly, the num-
ber of overlapped data requests is reduced by a factor of 1.3 for Barnes-Hut/lg
and 4.9 for Water-Spatial/lg. Finally, the benefits of lazy object allocation for
these applications are quite clear: the memory footprint of DOSA is consider-
ably smaller than that of TreadMarks. For Gauss/sm, the number of messages,
the number of overlapped data requests, and the memory footprint size are
the same for DOSA and TreadMarks, as there is no write-write false sharing
of shared pages among the processors. The better performance of DOSA over
TreadMarks stems solely from a reduction in the amount of data transmitted,
as a result of lazy object allocation. In Gauss/sm a row occupies half a page.
Lazy object allocation avoids transmitting the other half of the page in which
the pivot row is allocated. For a more detailed explanation, see Section 7.1.

6.2 Coarse-Grained Applications

Figure 7 shows the speedup comparison between TreadMarks and DOSA for
SOR and Water-N-Squared with small and large problem sizes, and for Gauss
with the large problem size, running on 16 and 32 processors. The results show
that the performance of these coarse-grained applications in DOSA is within
6% of the performance achieved with TreadMarks.

Figure 8 shows normalized statistics from the execution of these applications
on 32 processors for SOR and Water-N-Squared with large problem sizes and
Gauss/lg. The detailed statistics are listed in Table IV. For SOR and Gauss/lg,
where the data unit (i.e., a row) is a multiple of a page, the detailed statistics
for the two systems are almost identical. DOSA performs almost as well as
TreadMarks for SOR and is 3.5% slower than TreadMarks for Gauss/lg. These

2All concurrent message exchanges for updating a page in TreadMarks or all concurrent message
exchanges for updating invalid objects in a page in DOSA are counted as one overlapped data
request. These messages are processed and their replies are generated in parallel, so they largely
overlap each other.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 21

Fig. 8. Statistics for TreadMarks and DOSA on 32 processors for coarse-grained applications
with large data sizes, normalized to TreadMarks measurements. The statistics include the amount
of data (Data), the number of messages (Msg), the number of message rounds where a message
round includes all messages sent and received in parallel (OverlapReq), and the average amount
of memory allocated per processor (MemAlloc).

Table IV. Detailed Statistics for TreadMarks and DOSA on 32 Processors for Coarse-Grained
Applications SOR, Water-N-Squared, and Gauss/lga

SOR/sm SOR/lg
Application Tmk DOSA Tmk DOSA
Time 1.10 1.10 1.31 1.32
Data (MB) 23.6 23.6 23.6 23.6
Messages 12564 12564 12440 12440
Overlapped requests 4962 4962 4962 4962
Memory alloc. (MB) 50.3 1.64 67.1 2.16

Water-N-Squared/sm Water-N-Squared/lg Gauss/lg
Application Tmk DOSA Tmk DOSA Tmk DOSA
Time 4.52 4.27 9.74 9.58 6.77 7.01
Data (MB) 134.1 114.0 212.4 181.4 134.3 136.7
Messages 77075 63742 114322 101098 189500 190368
Overlapped requests 33033 28032 51816 44758 62992 63427
Memory alloc. (MB) 1.58 0.66 2.10 1.04 4.20 4.20

aThe statistics include the amount of data (Data), the number of messages (Msg), the number of message
rounds where a message round includes all messages sent and received in parallel (OverlapReq), and the
average amount of memory allocated per processor (MemAlloc).

differences are due to the indirection through the handle table. For Water-N-
Squared/lg, DOSA underperforms TreadMarks by 6.7% on 16 processors, but
surprisingly outperforms TreadMarks by 1.7% on 32 processors. This is due to
the difference between the multiple-writer protocol used in TreadMarks and
the single-writer protocol used in DOSA. The migratory data access in Water-
N-Squared/lg results in diff accumulation [Lu et al. 1997] in a multiple-writer
protocol implementation, which causes TreadMarks to send more and more
accumulated diffs as we increase the number of processors. On 16 processors,
TreadMarks sends 15% less data than DOSA, and as a result outperforms
DOSA by 6.7%. On 32 processors, as diff accumulations become more severe,

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

22 • Y. C. Hu et al.

Fig. 9. Time breakdown (in seconds) for the garbage-collected applications, OO7 on 16 processors,
and Game and MIP on 32 processors, on TreadMarks and DOSA.

Fig. 10. Statistics for garbage-collected applications, OO7 on 16 processors, and Game and MIP on
32 processors, on TreadMarks and DOSA, normalized to TreadMarks measurements. The statistics
include the total amount of data transmitted (Data), the amount of GC data transmitted (GC Data),
and the number of messages (Msg). GC data consist of the weights transferred and the nack data,
which list the references that have been removed from a processor and their weights.

TreadMarks sends 17% more data than DOSA and as a result slightly un-
derperforms DOSA. Finally, because in Water-N-Squared each processor only
accesses half of the molecules due to the use of symmetry, the memory footprint
in DOSA is about half of that in TreadMarks.

6.3 Garbage-Collected Applications

Figures 9 and 10 show the execution statistics for OO7 running on 16 processors
and Game and MIP running on 32 processors on TreadMarks and DOSA using
the generational copying collector. The detailed statistics are listed in Table V.
We do not present results for OO7 on 32 processors because the total data size,
which increases linearly with the number of processors, is so large that it causes
paging on 32 processors.

On 16 processors, OO7 performs almost 65% better on DOSA than on Tread-
Marks. On 32 processors, Game and MIP perform 19% and 33% better run-
ning on DOSA than running on TreadMarks. Table V shows that for all three

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 23

Table V. Detailed Statistics for TreadMarks and DOSA for the Garbage-Collected
Applicationsa

OO7 Game MIP
Tree Tmk DOSA Tmk DOSA Tmk DOSA

Time 23.4 14.2 21.5 18.0 70.3 52.7
Alloc and GC time 0.70 0.70 3.04 3.04 0.20 0.21
Data (MB) 48.4 17.9 60.5 34.5 203 116
GC Data (MB) 9.8 2.7 9.45 5.51 2.26 2.26
Messages 427.8K 117.4K 79.7K 69.8K 228K 122K

aOO7 is run on 16 processors, and Game and MIP are run on 32 processors. The statistics
include the total amount of data transmitted (Data), the amount of GC data transmitted (GC
Data), and the number of messages (Msg). GC data consist of the weights transferred and
the nack data, which list the references that have been removed from a processor and their
weights.

programs the time spent in the memory management code performing alloca-
tion and garbage collection is almost the same for TreadMarks and DOSA. The
effects of the interaction between the garbage collector and DOSA or Tread-
Marks appear during the execution of the application code. The main cause
for the large performance improvement in DOSA is reduced communication, as
shown in Figure 10.

The extra communication on TreadMarks is primarily a side effect of garbage
collection. On TreadMarks, when a processor copies an object during garbage
collection, this operation is indistinguishable from an ordinary write by the
application. Consequently, when another processor accesses the object after
garbage collection, the object is transmitted, even though its content has not
been changed by the garbage collector’s copy. In fact, the requesting processor
may have an up-to-date copy of the object in its memory, but at a new virtual
address. In contrast, on DOSA, when the garbage collector copies an object, it
simply updates its handle table entry, which is local information that never
propagates to other processors.

7. EFFECTS OF THE VARIOUS OPTIMIZATIONS

To achieve the results described in the previous section, various optimi-
zations are used in DOSA. These optimizations include lazy object allocation
(Section 4.5.1), read aggregation (Section 4.5.2), write aggregation
(Section 4.5.3), write notices reduction (Section 4.5.4), and removing indirect
references from loops (Section 4.5.5). To see what effect each optimization has
individually, we perform the following experiments. For each of the optimiza-
tions, we compare the performance of DOSA without that optimization to the
fully optimized system.

Not all optimizations benefit all applications. The first four optimizations
have no effect on SOR and Gauss/lg. The objects in these two applications are
larger than a page. Read aggregation, write aggregation, and write notice reduc-
tion are performed on a per-page basis, and therefore produce no improvement,
and lazy object allocation does not reduce false sharing. The fifth optimiza-
tion produces noticeable improvements only for SOR and Gauss, because these
two applications perform many indirect accesses that can be eliminated. For

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

24 • Y. C. Hu et al.

Fig. 11. Speedup comparison on 32 processors between DOSA and DOSA without lazy object allo-
cation, read aggregation, write aggregation, and write notice reduction for Barnes-Hut/lg, Water-
Spatial/lg, Gauss/sm, and Water-N-squared/lg. No results are shown for SOR and Gauss/lg, since
these applications are not affected by these optimizations.

the other applications, floating point computations dominate the overhead of
indirection.

For a particular optimization and a particular application, we present results
only if the optimization benefits the application. Figure 11 shows the speedups
for each of the experiments for the first four optimizations for Barnes-Hut,
Water-Spatial, Gauss/sm, and Water-N-Squared. Table VI provides further de-
tail on the effects of the optimizations for these four applications, comparing
the number of messages, the number of overlapped data requests, the amount
of data, the memory footprint, the number of write notices, and the number of
write page faults, all with and without the optimizations. Table VII provides
execution times for SOR/lg and Gauss/lg on 1 and 32 processors for DOSA and
TreadMarks, with and without the optimization that removes indirect refer-
ences from loops.

7.1 Lazy Object Allocation

Table VI shows that lazy object allocation produces improvements in execution
time of 13% for Barnes-Hut, 18% for Water-Spatial, and 30% for Gauss/sm, com-
pared to a version of DOSA without lazy object allocation. Lazy object allocation
shows no improvement for Water-N-Squared.

Lazy object allocation significantly benefits irregular applications that ex-
hibit spatial locality of reference in their physical domain. For example, even
though the bodies in Barnes-Hut and the molecules in Water-Spatial are input
or generated in random order, in the parallel algorithms each processor only
updates bodies or molecules corresponding to a contiguous physical subdomain.
Furthermore, inter-subdomain data references only happen on the boundary of
each subdomain. As described in Section 4.5.1, for such applications, lazy object
allocation only allocates memory for objects on a processor that are accessed
by that processor. Therefore, a physical page contains mostly “useful” objects.
With read aggregation, these objects are updated in a single round of overlapped

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 25

Table VI. Statistics from the Execution on 32 Processors for DOSA and DOSA Without Lazy
Object Allocation, Read Aggregation, Write Aggregation, and Write Notice Reduction for

Barnes-Hut/lg, Water-Spatial/lg, Gauss/sm, and Water-N-Squared/lga

w/o Lazy w/o Read w/o Write w/o W.N.
Application DOSA Obj. Alloc. Aggre. Aggre. Reduc.

Barnes- Time (sec.) 45.07 50.90 139.88 46.05 49.56
Hut Data (MB) 245.8 251.7 124.7 246.2 277.4
(lg) Write notices (M) 6.42 6.42 6.42 6.42 35.4

Messages 1027903 1612276 2254374 1027944 1027991
Overlapped reqs. 341303 428537 1123734 341303 341303
Mem. alloc. (MB) 3.35 23.2 3.35 3.35 3.35
Write faults 27586 163865 28248 582533 27728

Water- Time (sec.) 8.52 10.07 10.54 8.54 8.75
Spatial Data (MB) 166.8 167.2 166.0 166.7 169.4
(lg) Write notices (M) 0.74 0.74 0.74 0.74 3.30

Messages 109560 183965 478674 109560 109558
Overlapped reqs. 41486 72664 238341 41491 41490
Mem. alloc. (MB) 2.64 22.5 2.64 2.64 2.64
Write faults 20989 35277 20777 110864 21062

Gauss Time (sec.) 1.25 1.62 1.25 1.25 1.25
(sm) Data (MB) 35.8 53.8 35.8 35.8 35.8

Write notices (M) 0.10 0.10 0.10 0.10 0.10
Messages 95135 95135 95135 95135 95135
Overlapped reqs. 31683 31683 31683 31683 31683
Mem. alloc.(MB) 1.06 1.06 1.06 1.06 1.06
Write faults 768 768 768 768 768

Water- Time (sec.) 9.58 9.58 11.74 9.58 9.58
N- Data (MB) 181.3 181.8 183.2 181.4 181.6
Squared Write notices (M) 0.81 0.81 0.81 0.81 0.97
(lg) Messages 101098 101228 530783 101116 101108

Overlapped reqs. 44758 44874 261669 44770 44757
Mem. alloc. (MB) 1.04 1.89 1.04 1.04 1.04
Write faults 16953 16978 87498 96589 16968

aThe statistics include the execution time (Time), the amount of data (Data), the number of messages (Msg),
the number of message rounds where a message round includes all messages sent and received in parallel
(OverlapReq), and the average amount of memory allocated per processor (MemAlloc). No results are shown
for SOR and Gauss/lg, since these applications are not affected by these optimizations.

Table VII. Execution Time (sec.) for SOR and Gauss/lg With and Without Removing Indirect
Accesses on 1 and 32 Processors

Application No. Procs. Tmk/Opt. Tmk/No-Opt. DOSA/Opt. DOSA/No-Opt.
SOR/lg 1 27.57 33.19 28.05 47.47

32 1.32 1.54 1.31 1.84
Gauss/lg 1 18.76 23.64 18.97 33.58

32 6.77 8.07 7.01 10.02

messages when faulting on the first object. In contrast, without lazy object ag-
gregation, objects are allocated on all processors in the same order and at the
same virtual address. Thus the order of the objects in memory reflects the access
pattern of the initialization which may differ from that of the computation. In
other words, objects accessed by a specific processor may be scattered in many
more pages than with lazy object allocation. As a result, the memory footprint

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

26 • Y. C. Hu et al.

is much larger, many more faults occur, many more rounds of messages are
required to make all the pages consistent, and more data are sent because all
modified objects in the same page are sent. The statistics in Table VI quantify
all these improvements.

As already explained in Section 6.1, Gauss/sm benefits from lazy object al-
location because it reduces the extra data sent as a result of false sharing in a
page containing a pivot row. For Gauss/sm, two rows fit in one VM page. With
lazy object allocation, when the first row in a page becomes the pivot row, only
that row is allocated and fetched. When the second row in that page becomes the
pivot row, only that second row is allocated and updated, inasmuch as the first
row is still valid. Therefore, remote pivot rows are always fetched once. Without
lazy object allocation, when updating the first row on a page to become the pivot
row, read aggregation causes both rows in that page to be updated, because the
second row has been modified by the owning processor during some previous
iterations. The update of the second row at this point is useless, as it needs to be
updated again when it becomes the pivot row. This effect is clearly visible in the
statistics for Gauss/sm in Table VI: the amount of data transmitted increases
by 50%.

Lazy object allocation has no impact on Water-N-Squared because molecules
are allocated in a 1-D array, and each processor always accesses the same con-
tiguous segment, consisting of half of the array elements, in fixed increasing
order. Table VI shows that the memory footprint is halved as a result of lazy
object allocation, but all the other statistics remain the same.

7.2 Read Aggregation

Read aggregation produces the biggest performance improvements. Table VI
shows execution time improvements of 310% for Barnes-Hut, 24% for Water-
Spatial, and 22% for Water-N-squared. Read aggregation has no effect on
Gauss/sm for the same reasons as explained in Section 7.1.

Read aggregation brings in all modified objects in a page at once, on the first
fault on an object on that page. The potential gains come from fewer faults, fewer
messages, and fewer rounds of overlapped requests. The potential problem with
read aggregation is that DOSA may fetch more objects than necessary.

For Water-N-squared each processor accesses the same set of elements on
each iteration. For Water-Spatial the set of accessed elements is almost the
same on each iteration. In either case, spatial locality is good throughout the
execution. Consequently, objects prefetched by read aggregation are typically
used. In Barnes-Hut, the set of bodies accessed by a processor changes over
time. In effect, when a body migrates from its old processor to its new one, it
leaves behind a “hole” in the page that it used to occupy. When the old proces-
sor accesses any of the remaining objects in that page, read aggregation still
updates the hole.

Table VI shows that without read aggregation, DOSA sends 2.2, 4.4, and 5.3
times more messages, and requires 3.3, 5.7, and 5.8 more overlapped requests
for Barnes-Hut, Water-Spatial, and Water-N-Squared, respectively. For Water-
Spatial and Water-N-Squared, the amount of data remains the same, with or

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 27

without read aggregation. For Barnes-Hut, twice as much data are sent with
read aggregation. Overall, the benefits outweigh the drawback for all three
applications.

7.3 Write Aggregation

Improvements as a result of write aggregation are minor. Table VI shows a
2.2% improvement for Barnes-Hut and no noticeable improvement for the other
applications. Table VI further shows that write aggregation reduces the num-
ber of page faults by factors of 21, 5.3, and 5.7 for Barnes-Hut, Water-Spatial,
and Water-N-Squared, respectively. The impact on Water-Spatial and Water-
N-Squared is marginal, as page faults constitute only a very small fraction of
the execution time for these two applications. Write aggregation has no effect
on Gauss/sm.

7.4 Write Notice Reduction

Write notice reduction is effective for Barnes-Hut and Water-Spatial. Table VI
shows an improvement in execution time of 10% for Barnes-Hut and 3% for
Water-Spatial. For Barnes-Hut, it reduces the amount of write notice data by
a factor of 5.5, and for Water-Spatial by a factor of 4.5. This optimization has
little effect on Water-N-Squared and Gauss/sm as they have relatively few write
notices.

7.5 Removing Indirect Accesses in Loops

Table VII shows the execution times of SOR/lg and Gauss/lg, on 1 and 32 pro-
cessors, for TreadMarks and DOSA, with and without the optimization for re-
moving indirect accesses in loops. For these two applications, this optimization
significantly improves performance. On a single processor, it improves the per-
formance of the original array-based version of SOR/lg and Gauss/lg by 20% and
26%, respectively, and the handle-based version by 69% and 77%, respectively.
On 32 processors, the improvements are 17% and 40% for the two versions of
SOR, and 19% and 43% for the two versions of Gauss, respectively. This opti-
mization has a similar effect on Gauss/sm as on Gauss/lg. It has little impact
on Barnes-Hut, Water-Spatial, and Water-N-Squared, as these applications are
dominated by floating-point computations.

8. RELATED WORK

The article already contains an extensive description of the coarse-grained
TreadMarks system and a detailed comparison of DOSA and TreadMarks. In
this section we discuss additional DSM systems that offer support for fine-
grained sharing. We also compare DOSA with related work in the broader field
of parallel and distributed object systems, persistent programming languages,
and distributed persistent storage systems. Finally, we compare the garbage
collection algorithm in DOSA to previous GC algorithms on DSMs.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

28 • Y. C. Hu et al.

8.1 Fine-Grained Distributed Shared Memory

8.1.1 Using Instrumentation. Instrumentation in support of fine-grained
sharing has been used in Blizzard-S [Schoinas et al. 1994], Shasta [Scales et al.
1996], and Midway [Bershad et al. 1993]. Aggressive optimizations are required
to reduce the potentially high overhead of run-time checking. In addition, these
systems do not aggregate updates to shared blocks or take advantage of data
locality to reduce memory usage and communication as DOSA does.

Dwarkadas et al. [1999] compared Cashmere, a coarse-grained system some-
what like TreadMarks, and Shasta, an instrumentation-based system, run-
ning on an identical platform—a cluster of four 4-way AlphaServers connected
by a Memory Channel network. In general, Cashmere outperformed Shasta
on coarse-grained applications (e.g., Water-N-Squared), and Shasta outper-
formed Cashmere on fine-grained applications (e.g., Barnes-Hut). Surprisingly,
Cashmere’s performance on the fine-grained application Water-Spatial equaled
that of Shasta. They attributed this result to the run-time overhead of the in-
line access checks in Shasta. In contrast, DOSA outperforms TreadMarks by
62% on the same application. We attribute this to lazy object allocation, which
is not possible in Shasta, and read aggregation.

Jackal [Veldema et al. 2001b] is a fine-grained DSM system for Java that im-
plements the Java memory model, which resembles but is subtly different from
release consistency. Like Shasta, Jackal uses software inline checks for access
detection to Java objects or arrays. Aggressive compiler and run-time optimiza-
tions are reported to be necessary to achieve reasonable performance [Veldema
et al. 2001a]. Unfortunately, the system is not generally available, and therefore
a direct comparison cannot be made.

8.1.2 Using VM Protection. Millipede [Itzkovitz and Schuster 1999] does
not take advantage of language safety or of a handle-based programming model.
Instead, it attempts to provide transparent support for fine-grained sharing
using VM protection. This effectively requires that every object reside in a
separate virtual page. Different virtual pages are mapped to a single physical
page by offsetting the objects in their virtual pages such that they do not overlap
in physical memory. Different protection attributes may be set on different
virtual pages that are mapped to the same physical page, thereby achieving
the same effect as DOSA, namely, per-object access and write detection. The
Millipede approach is more costly than the DOSA approach in a variety of ways.
It requires costly OS system calls (e.g., mprotect) to change page protections
each time a page’s protection needs to be changed. DOSA implements protection
changes by user-level pointer switching in the handle table. Millipede requires
one virtual memory mapping per object, whereas the DOSA method requires
only three mappings per page, resulting in considerably less address space
consumption and pressure on the TLB. Finally, it does not allow any aggregation
optimizations, because each object must reside in a separate page.

The Region Trapping Library (RTL) [Brecht and Sandhu 1999] requires the
programmer to define regions and identify all pointers into each region. It then
allocates three different regions of memory with different protection attributes
to perform per-object access and modification detection. All pointers declared to

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 29

point into a region are changed when the region’s protection changes. By virtue
of using a handle-based programming model or by virtue of using a safe lan-
guage in which the compiler can redirect all accesses through a handle table,
DOSA effectively allows only a single pointer into an object, thereby avoiding
the complication of having to declare all pointers into shared memory as be-
longing to a particular region. Furthermore, in the RTL implementation, the
read memory region and the read-write memory region are backed by differ-
ent physical memory regions. As result, modifications made in the read-write
region must be copied to the read region, every time protection changes from
read-write to read.

8.1.3 Using Handles. Freeh and Andrews [1996] use handles to reduce
false sharing in a page-based DSM system. If false sharing occurs within a
page, their system moves the objects causing the false sharing to another page.
However, their system still maintains coherence at the page granularity. The
handles are only used to facilitate the data movement, not to detect memory
accesses at the object granularity.

8.1.4 Shared Addresses Versus Shared Objects. In all of the above systems,
objects need to appear at the same virtual address on all processors. As a result,
none can support lazy object allocation.

8.2 Parallel and Distributed Object-Oriented Languages and Systems

There has been a host of concurrent object-oriented languages and systems that
aim to provide distributed or distributed shared objects.

Orca [Tanenbaum et al. 1992], Jade [Rinard and Lam 1998], COOL [Chandra
et al. 1994], and SAM [Scales and Lam 1994] are parallel or distributed object-
oriented languages. All of these systems differ from ours in that they present a
new language or API to the programmer to express distributed sharing, whereas
DOSA does not. DOSA aims to provide transparent object sharing for existing
safe languages, such as Java. Furthermore, Orca, Jade, COOL, and SAM do not
use VM-based mechanisms for object sharing.

Many recent systems add concurrency extensions to Java to support dis-
tributed shared objects. Examples include JavaParty [Philipsen and Zenger
1997], Javelin [Christiansen et al. 1997], Kan [James and Singh 2000], Aleph
[Herlihy 1999], Shareholder [Harris and Sarkar 1998], and Parallel Java [Kale
et al. 1997]. Again, these systems differ from DOSA in that they add either new
language extensions or APIs to Java.

8.3 Persistent Languages and Persistent Object Systems

The need to deal with object identifiers as opposed to memory addresses has
long faced implementors of persistent programming languages and persistent
storage systems. In a persistent language, the persistent objects can outlive a
single program execution. In a persistent storage system, the object space can
potentially be larger than the virtual memory address space. In either case,
persistent objects need to be stored using object identifiers.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

30 • Y. C. Hu et al.

The two classic ways of implementing persistent objects, swizzling on discov-
ery [White and DeWitt 1992] and address translation at page-fault time [Wilson
and Moher 1992], mirror the two classic ways of access detection in software
DSMs, software inline checks and the VM protection mechanism. The tradeoffs
between these two approaches mirror the trade-offs between fine-grained and
coarse-grained DSMs: the faulting cost for the VM scheme favors large objects
that contain many object references.

Similar trade-offs carry over to distributed persistent storage systems, in
which servers provide persistent storage for information accessed by appli-
cations running at clients (see, e.g., Kachler and Krasner [1990], White and
DeWitt [1992], Lamb et al. [1991], White and DeWitt [1994], and Castro
et al. [1997]). These systems cache recently used information at client ma-
chines to provide low access latency and good scalability. Clients can use page
caching [Lamb et al. 1991; White and DeWitt 1994], potentially leading to a mis-
match between the cache unit size and the object size, or object caching [Kachler
and Krasner 1990; White and DeWitt 1992], potentially leading to significant
overhead in checking and maintaining the cache. An interesting in-between so-
lution is hybrid adaptive caching (HAC) [Castro et al. 1997]. In this approach,
the client dynamically partitions the cache between pages and objects based on
the application behavior. Pages with good locality are cached as whole pages,
whereas for pages with poor locality, only hot objects are retained and cold ob-
jects are evicted. To enable the hybrid adaptive caching, the object identifier is
translated to a pointer to an entry in an indirection table, and the entry in turn
points to the target object in memory.

8.4 Garbage Collection on DSM Systems

Le Sergent et al. [Le Sergent and Berthomieu 1992; Matthews and Le Sergent
1995] extend an incremental copying collector originally designed for a multi-
processor to a DSM system. The garbage collector requires a consistent image
of the entire object graph, and therefore is very expensive. They do not report
any performance measurements. Kordale et al. [1993] describe a garbage col-
lector for DSM based on a mark-sweep technique. Like Le Sergent’s collector,
this algorithm also requires a consistent image of the entire object graph, and
is therefore very expensive.

Ferreira and Shapiro [1994] are the first to point out that a garbage collec-
tor can be designed to tolerate memory inconsistency. Their algorithm allows
the processors to collect independently. Their design depends on the entry con-
sistency model [Bershad et al. 1993], which presents a single-writer interface.
Address changes are propagated asynchronously and piggybacked in messages
sent out by the application program. They evaluate the scalability of their de-
sign, but do not study the impact of the garbage collector on overall program
performance. It is not straightforward to adapt their algorithms to DSM sys-
tems using other relaxed consistency protocols.

Yu and Cox [1996] discuss a conservative mark-sweep garbage collector for
DSM systems. They show that the garbage collector can be very efficient, incur-
ring low overheads during garbage collection. However, the poor spatial locality

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 31

as a side effect of the mark-sweep collector can result in high communication
cost, and is detrimental to the overall performance of some programs.

The shared object space abstraction in DOSA decouples an object’s naming
from its address in memory, making the intraprocessor garbage collector orthog-
onal to the DSM operations. Therefore, a processor is free to use any garbage
collection algorithm without it having any negative effect on the performance
of other processors. The shared object space abstraction not only eliminates the
negative effect of the intraprocessor garbage collector and improves the overall
program performance, it also simplifies the design of the intraprocessor garbage
collectors.

9. CONCLUSIONS

We have presented a new run-time system, DOSA, that efficiently supports
both fine- and coarse-grained object sharing in a distributed system. A handle
table supports efficient per-object access and modification detection using VM
protection mechanisms. In a safe language, a compiler can generate a handle-
based implementation of a program, thereby making it transparent to the ap-
plication programmer. The same benefits can also be obtained nontranspar-
ently if the programmer accesses all objects through a handle and refrains
from pointer arithmetic on the handles. Like earlier systems designed for fine-
grained sharing, DOSA improves the performance of fine-grained applications
by eliminating false sharing. In contrast to these earlier systems, DOSA’s VM-
based approach and read aggregation enable it to match the performance of a
page-based system for coarse-grained applications. Furthermore, its architec-
ture permits optimizations, such as lazy object allocation, that are not possible
in conventional fine- or coarse-grained DSM systems. Lazy object allocation
transparently improves the locality of reference in many applications, improv-
ing their performance.

Our performance evaluation on a cluster of 32 Pentium II processors con-
nected with a 100 Mbps Ethernet demonstrates that the new system performs
comparably to TreadMarks for coarse-grained applications (SOR, Water-N-
Squared, and Gauss/lg), and significantly outperforms TreadMarks for fine-
grained applications (up to 98% for Barnes-Hut, 62% for Water-Spatial, and
25.6% for Gauss/sm) and garbage-collected applications (65% for OO7, 19% for
Game, and 33% for MIP).

We have also presented a complete breakdown of the performance results.
The optimizations of lazy object allocation and read aggregation are particularly
significant to DOSA’s performance. Without lazy object allocation, on 32 proces-
sors, Barnes-Hut runs 13% slower, Water-Spatial 18%, and Gauss/small 30%.
Without read aggregation, on 32 processors, Barnes-Hut runs 310% slower,
Water-Spatial 24%, and Water-N-Squared 22%.

ACKNOWLEDGMENTS

We thank the anonymous TOCS reviewers, whose comments have helped to im-
prove the presentation and the content of this article. We also thank Gregory

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

32 • Y. C. Hu et al.

Andrews, Rudi Eigenmann, Matthias Felleisen, Ralph Grishman, Allan
Gottlieb, Rajiv Gupta, Antony Hosking, Liviu Iftode, Assaf Kfoury, Shriram
Krishnamurthi, Stuart Kurtz, Srini Parthasarathy, Benjamin Pierce, Rick
Snodgrass, and Stan Zdonik for their helpful comments and discussions on
this work.

REFERENCES

ADL-TABATABAI, A., CIERNIAK, M., LUEH, G., PARAKH, V. M., AND STICHNOTH, J. M. 1998. Fast effective
code generation in a just-in-time Java compiler. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI), 280–290.

ADVE, S. AND HILL, M. 1990. Weak ordering: A new definition. In Proceedings of the Seventeenth
Annual International Symposium on Computer Architecture, 2–14.

AMZA, C., COX, A., DWARKADAS, S., KELEHER, P., LU, H., RAJAMONY, R., YU, W., AND ZWAENEPOEL, W. 1996.
TreadMarks: Shared memory computing on networks of workstations. IEEE Computer 29, 2
(Feb.), 18–28.

AMZA, C., COX, A., RAJAMANI, K., AND ZWAENEPOEL, W. 1997. Trade-offs between false sharing and
aggregation in software distributed shared memory. In Proceedings of the Sixth Symposium on
the Principles and Practice of Parallel Programming, 90–99.

ANDERSEN, L. 1994. Program analysis and specialization for the C programming language. PhD
Thesis, DIKU University of Copenhagen.

BAKER, H. 1991. The TreadMill: Realtime garbage collection without motion sickness.
In Proceedings of the OOPSLA ’91 Workshop on Garbage Collection in Object-Oriented
Systems.

BERSHAD, B., ZEKAUSKAS, M., AND SAWDON, W. 1993. The Midway distributed shared memory sys-
tem. In Proceedings of the ’93 CompCon Conference, 528–537.

BEVAN, D. I. 1987. Distributed garbage collection using reference counting. In Parallel Archi-
tecture and Languages, Europe. Lecture Notes in Computer Science, vol. 259, Springer-Verlag,
Eindhoven, The Netherlands, 117–187.

BIXBY, R., COOK, W., COX, A., AND LEE, E. 1999. Computational experience with parallel mixed
integer programming in a distributed environment. Ann. Oper. Res. 90, 19–43.

BRECHT, T. AND SANDHU, H. 1999. The region trap library: Handling traps on application-defined
regions of memory. In Proceedings of the 1999 USENIX Annual Technical Conference.

BUDIMLIC, Z. AND KENNEDY, K. 1997. Optimizing Java: Theory and practice. Concurr. Pract.
Exper. 9, 6, 445–463.

BUDIMLIC, Z. AND KENNEDY, K. 1999. Prospects for scientific computing in polymorphic, object-
oriented style. In Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific
Computing.

BURKE, M. G., CHOI, J.-D., FINK, S., GROVE, D., HIND, M., SARKAR, V., SERRANO, M. J., SREEDHAR, V. C.,
SRINIVASAN, H., AND WHALEY, J. 1999. The Jalapeno dynamic optimizing compiler for Java. In
Proceedings of the ACM 1999 Java Grande Conference, 129–141.

CAREY, M., DEWITT, D., AND NAUGHTON, J. 1994. The OO7 benchmark. Tech. Rep., University of
Wisconsin-Madison, July.

CARTER, J., BENNETT, J., AND ZWAENEPOEL, W. 1991. Implementation and performance of Munin.
In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, 152–
164.

CARTER, J., BENNETT, J., AND ZWAENEPOEL, W. 1995. Techniques for reducing consistency-related
information in distributed shared memory systems. ACM Trans. Comput. Syst. 13, 3 (Aug.),
205–243.

CASANOVA, H., DONGARRA, J., AND DOOLIN, D. 1997. Java access to numerical libraries. Concurr.
Pract. Exper. 9, 11.

CASTRO, M., ADYA, A., LISKOV, B., AND MYER, A. C. 1997. Hac: Hybrid adaptive caching for dis-
tributed storage systems. In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 33

CHANDRA, R., GUPTA, A., AND HENNESSY, J. 1994. Cool: An object-based language for parallel pro-
gramming. IEEE Computer 27, 8 (Aug.), 14–26.

CHRISTIANSEN, B., CAPPELLO, P., IONESCU, M. F., NEARY, M. O., SCHAUSER, K. E., AND WU, D. 1997.
Javelin: Internet-based parallel computing using Java. Concurr. Pract. Exper. 9, 11 (Nov.), 1139–
1160.

DAS, M. 2000. Unification-based pointer analysis with directional assignments. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation.

DEUTSCH, L. P. AND SCHIFFMAN, A. M. 1984. Efficient implementation of the Smalltalk-80 sys-
tem. In Proceedings of the Eleventh Annual ACM Symposium on Principles of Programming
Languages, 297–302.

DWARKADAS, S., GHARACHORLOO, K., KONTOTHANASSIS, L., SCALES, D. J., SCOTT, M. L., AND STETS, R. 1999.
Comparative evaluation of fine- and coarse-grain approaches for software distributed shared
memory. In Proceedings of the Fifth International Symposium on High-Performance Computer
Architecture, 260–269.

FERREIRA, P. AND SHAPIRO, M. 1994. Garbage collection and DSM consistency. In Proceedings of
the First USENIX Symposium on Operating System Design and Implementation.

FOX, G. AND FURMANSKI, W. 1996. Towards Web/Java based high performance distributed
computing—an evolving virtual machine. In Proceedings of the Fifth IEEE International Sym-
posium on High Performance Distributed Computing.

FREEH, V. AND ANDREWS, G. 1996. Dynamically controlling false sharing in distributed
shared memory. In Proceedings of the Fifth Symposium on High-Performance Distributed
Computing.

GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBONS, P., GUPTA, A., AND HENNESSY, J. 1990. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of the
Seventeenth Annual International Symposium on Computer Architecture, 15–26.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass.

HARRIS, J. AND SARKAR, V. 1998. Lightweight object-oriented shared variables for distributed ap-
plications on the Internet. In OOPSLA ’98 Conference Proceedings, 296–309.

HERLIHY, M. 1999. The aleph toolkit: Support for scalable distributed shared objects. In CANPC
’99. Lecture Notes in Computer Science, vol. 1602, Springer-Verlag, New York.

INTEL CORPORATION. 2001. IA-32 Intel Architecture Software Developer’s Manual, Volume 3: Sys-
tem Programming Guide.

ITZKOVITZ, A. AND SCHUSTER, A. 1999. Multiview and millipage—fine-grain sharing in page-based
DSMs. In Proceedings of the Third USENIX Symposium on Operating System Design and
Implementation.

JAMES, J. AND SINGH, A. K. 2000. Design of the Kan distributed object system. Concurr. Pract.
Exper. 12, 8, 755–797.

JAVAGRANDE. Javagrande. Available at http://www.javagrande.org/.
KACHLER, T. AND KRASNER, G. 1990. LOOM—Large Object-Oriented Memory for Smalltalk-80 Sys-

tems. Morgan Kaufmann, San Francisco, 298–307.
KALE, L., BHANDARKAR, M., AND WILMARTH, T. 1997. Design and Implementation of Parallel Java

with Global Object Sace. Morgan Kaufmann, San Francisco, 235–244.
KELEHER, P., COX, A. L., AND ZWAENEPOEL, W. 1992. Lazy release consistency for software dis-

tributed shared memory. In Proceedings of the Nineteenth Annual International Symposium on
Computer Architecture, 13–21.

KORDALE, R., AHAMAD, M., AND SHILLING, J. 1993. Distributed/concurrent garbage collection in
distributed shared memory systems. In Proceedings of the International Workshop on Object
Orientation and Operating Systems.

LAMB, C., LANDIS, G., ORENSTEIN, J., AND WEINREB, D. 1991. The objectstore database system.
CACM 34, 10 (Oct.), 50–63.

LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput. C-28, 9 (Sept.), 690–691.

LANDI, W. AND RYDER, B. 1992. A safe approximate algorithm for interprocedural pointer aliasing.
In Proceedings of the ACM SIGPLAN 92 Conference on Programming Language Design and
Implementation.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

34 • Y. C. Hu et al.

LE SERGENT, T. AND BERTHOMIEU, B. 1992. Incremental multi-threaded garbage collection on vir-
tually shared memory architectures. In Proceedings of the International Workshop on Memory
Management.

LI, K. AND HUDAK, P. 1989. Memory coherence in shared virtual memory systems. ACM Trans.
Comput. Syst. 7, 4 (Nov.), 321–359.

LU, H., DWARKADAS, S., COX, A. L., AND ZWAENEPOEL, W. 1997. Quantifying the performance
differences between PVM and TreadMarks. J. Parallel Distrib. Comput. 43, 2 (June),
56–78.

MATTHEWS, D. C. J. AND LE SERGENT, T. 1995. Lemma: A distributed shared memory with global and
local garbage collections. In Proceedings of the International Workshop on Memory Management.

PHILIPSEN, M. AND ZENGER, M. 1997. Javaparty—transparent remote objects in Java. Concur.
Pract. Exper. 9, 11 (Nov.), 1225–1242.

RINARD, M. C. AND LAM, M. S. 1998. The design, implementation, and evaluation of Jade. ACM
Trans. Program. Lang. Syst. 20, 3 (May), 483–545.

SCALES, D., GHARACHORLOO, K., AND THEKKATH, C. 1996. Shasta: A low overhead software-only
approach for supporting fine-grain shared memory. In Proceedings of the Seventh Symposium on
Architectural Support for Programming Languages and Operating Systems.

SCALES, D. J. AND LAM, M. S. 1994. The design and evaluation of a shared object system for
distributed memory machines. In Proceedings of the First USENIX Symposium on Operating
System Design and Implementation, 101–114.

SCHOINAS, I., FALSAFI, B., LEBECK, A. R., REINHARDT, S. K., LARUS, J. R., AND WOOD, D. A. 1994.
Fine-grain access control for distributed shared memory. In Proceedings of the Sixth Sym-
posium on Architectural Support for Programming Languages and Operating Systems, 297–
306.

SINGH, J., WEBER, W.-D., AND GUPTA, A. 1992. SPLASH: Stanford parallel applications for shared-
memory. Comput. Arch. News 20, 1 (Mar.), 2–12.

TANENBAUM, A., KAASHOEK, M., AND BAL, H. 1992. Parallel programming using shared objects and
broadcasting. IEEE Computer 25, 8 (Aug.), 10–20.

TARDITI, D. AND DIWAN, A. 1996. Measuring the cost of storage management. Lisp Symbol.
Comput. 9, 4 (Dec.).

THOMAS, R. 1981. A dataflow computer with improved asymptotic performance. Tech. Rep. TR-
265, MIT Laboratory for Computer Science.

TIMBER. Timber: A Spar/Java compiler. Available at http://www.pds.twi.tudelft.nl/timber/.
TOWER TECHNOLOGIES. Towerj 3.0: A new generation native Java compiler and runtime environment.

Available at http://www.towerj.com/.
VELDEMA, R., HOFMAN, R., BHOEDJANG, R., AND BAL, H. E. 2001a. Runtime optimizations for a

Java DSM implementation. In Proceedings of the Joint ACM Java Grande—ISCOPE 2001
Conference.

VELDEMA, R., HOFMAN, R., BHOEDJANG, R., JACOBS, C., AND BAL, H. E. 2001b. Jackal: A compiler-
supported distributed shared memory implementation of Java. In Proceedings of the Eighth
Symposium on the Principles and Practice of Parallel Programming.

WATSON, P. AND WATSON, I. 1987. An efficient garbage collection scheme for parallel computer
architectures. In PARLE’87—Parallel Architectures and Languages Europe. Lecture Notes in
Computer Science, vol. 259, Springer-Verlag, Eindhoven, the Netherlands.

WHITE, S. AND DEWITT, D. 1992. A performance study of alternative object faulting and pointer
swizzling strategies. In Proceedings of the Eighteenth International Conference on Very Large
Data Bases.

WHITE, S. AND DEWITT, D. 1994. Quickstore: A high performance mapped object store. In Proceed-
ings of the 1994 ACM SIGMOD Conference.

WILKINSON, T. 1996. Kaffe: A virtual machine to run Java code. Available at http://www.kaffe.org/.
WILSON, P. R. AND MOHER, T. G. 1989. Design of the opportunistic garbage collector. In Proceed-

ings of the Fourth ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, 23–35.

WILSON, P. R. AND MOHER, T. G. 1992. Pointer swizzling at page fault time: Efficiently and compat-
ibly supporting huge address spaces on standard hardware. In Proceedings of the International
Workshop on Object Orientation in Operating Systems, 364–377.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

Distributed Sharing in Safe Languages • 35

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs:
Characterization and methodological considerations. In Proceedings of the Twentysecond Annual
International Symposium on Computer Architecture, 24–36.

YU, W. AND COX, A. L. 1996. Conservative garbage collection on DSM systems. In Proceedings of
the Sixteenth International Conference on Distributed Computing Systems.

Received October 2000; revised April 2002; accepted June 2002

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.

