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ABSTRACT

Multicast avoids sending repeated packets over the same
network links and thus offers the promise of supporting mul-
timedia streaming over wide-area networks. Previously, two
opposite multicast schemes — forward-path forwarding and
reverse-path forwarding — have been proposed on top of
structured peer-to-peer (p2p) overlay networks. This pa-
per presents Borg, a new scalable application-level multicast
system built on top of p2p overlay networks. Borg is a hy-
brid protocol that exploits the asymmetry in p2p routing
and leverages the reverse-path multicast scheme for its low
link stress on the physical networks. Borg has been imple-
mented on top of Pastry, a generic, structured p2p routing
substrate. Simulation results based on a realistic network
topology model shows that Borg induces significantly lower
routing delay penalty than both forward-path and reverse-
path multicast schemes while retaining the low link stress of
the reverse-path multicast scheme.
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1. INTRODUCTION

Multicast avoids sending repeated packets over the same
network links and thus offers the promise of supporting large-
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scale distributed applications such as subscribe-publish ser-
vices and multimedia streaming over wide-area networks.

While IP multicast was proposed over a decade ago [12],
the use of multicast has so far been limited due to its slow
deployment in the Internet. In the meantime, application-
level multicast has gained popularity. Numerous protocols
have been proposed and systems been built [1, 14, 2, 16,
13]. However, the ability to scale up to thousands of nodes
remains a challenge.

Recent developments of self-organizing and decentralized
peer-to-peer (p2p) overlay networks ( [19, 24, 22, 28]) point
to a new paradigm for building distributed applications.
Each of these overlays implements a scalable, fault-tolerant
distributed hash table, by which any data object can be lo-
cated within a bounded number of routing hops. In addition,
these systems exploit proximity in the underlying Internet
topology in performing object location and routing. Multi-
cast can be built on top of such p2p overlays to leverage the
inherent scalability and fault tolerance of these systems.

Several multicast schemes have been proposed on top of
p2p overlay networks. In particular, Scribe [6] and Bayeux [29]
are built on top of two similar p2p substrates, Pastry [22]
and Tapestry [28]. Both Pastry and Tapestry are based
on prefix-routing, and use the proximity neighbor selection
mechanism [4] to exploit proximity in the underlying phys-
ical network. However, Scribe and Bayeux use opposite
schemes in building multicast trees: Scribe uses reverse-path
forwarding, whereas Bayeux uses forward-path forwarding.
Both schemes offer comparable routing delay characteristics,
but Scribe induces lower link stress than Bayeux. This is due
to the use of many short links as a result of the reverse-path
construction.

In this paper, we propose Borg, a hybrid multicast scheme
in p2p networks. Borg is motivated by the asymmetry in
routing in structured p2p networks — the overlay path taken
in routing a message from node A to node B is likely to
be distinct and therefore has a different routing delay from
the path taken in routing a message from node B to node
A. Borg exploits this asymmetry by building the upper part
of a multicast tree using a hybrid of forward-path forward-
ing and reverse-path forwarding and leverages the reverse-
path multicast scheme for its low link stress by building the
lower part of the multicast tree using reverse-path forward-
ing. The boundary nodes of the upper and lower levels are
defined by the nodes’ distance from the root in terms of
the number of overlay hops. Simulation results show that
setting the boundary to be half of the average number of



routing hops in routing a random message gives optimal hy-
brid multicast trees.

The rest of the paper is organized as follows. Section 2
gives an overview of Pastry and Tapestry and the forward-
path and reverse-path multicast systems built on top of
them. Section 3 motivates the proposed hybrid multicast
protocol, and Section 4 describes the design of Borg. In
Section 5, we evaluate the performance of Borg by compar-
ing it with Scribe and Bayeux. We then discuss related work
in Section 6 and conclude in Section 7.

2. BACKGROUND

We give a brief review of Pastry routing and Scribe, a
reverse-path forwarding multicast system built on top of
Pastry, as well as a forward-path multicast system, Bayeux,
and the Tapestry p2p network on which Bayeux is built.

2.1 Pastry and Tapestry

We highlight the prefix-routing aspects of Pastry and Tapestry

and discuss their implications on the delay characteristics of
routing hops.

211 Pastry

Each Pastry node has a unique, uniform randomly as-
signed nodeld in a circular 128-bit identifier space. Given
a 128-bit key, Pastry routes the associated message towards
the live node whose nodeld is numerically closest to the key.

For the purpose of routing, nodelds and keys are thought
of as a sequence of digits in base 2° (b is a configuration
parameter with typical value 4). A node’s routing table
is organized into 128/b rows and 2° columns. The 2° en-
tries in row n of the routing table contain the IP addresses
of nodes whose nodelds share the first n digits with the
present node’s nodeld; the (n + 1)th nodeld digit of the
node in column m of row n equals m. A routing table en-
try is left empty if no node with the appropriate nodeld
prefix is known. Each node also maintains a leaf set, con-
sisting [ nodes with nodelds that are numerically closest to
the present node’s nodeld, with [/2 larger and [/2 smaller
nodelds than the current node’s id. The leaf set ensures
reliable message delivery and is used to store replicas of ap-
plication objects.

Pastry performs prefix routing. At each routing step, a
node seeks to forward the message to a node whose nodeld
shares with the key a prefix that is at least one digit (or b
bits) longer than the current node’s shared prefix. If no such
node is found in the routing table, the message is forwarded
to a node whose nodeld shares a prefix with the key as long
as the current node, but is numerically closer to the key
than the present node’s id. Experiments and analysis [22, 5]
show that the expected number of forwarding hops is slightly
below [logys NT.

2.1.2 Tapestry

Tapestry is very similar to Pastry in that they both use
prefix-based routing but differs in its approach to mapping
keys to nodes in the sparsely populated id space, and in how
it manages replication. In Tapestry, there is no leaf set and
neighboring nodes in the name space are not aware of each
other. When a node’s routing table does not have an entry
for a node that matches a key’s nth digit, the message is
forwarded to the node with the next higher value in the nth
digit, modulo 2°, found in the routing table. This procedure,

called surrogate routing, maps keys to a unique live node if
the routing tables are consistent.

2.1.3 Delay Characteristics of Routing Hops

Both Pastry and Tapestry perform topology-aware rout-
ing via proximity neighbor selection [4], a mechanism that
chooses each routing table entry to refer to a nearby node
in the proximity space, among all candidate nodes for that
routing table entry. Since Tapestry and Pastry are prefix-
based, the upper levels of the routing table allow a large
number of candidate nodes, with lower levels having ex-
ponentially fewer and fewer candidate nodes. As a result,
when candidate nodes are randomly located in the proxim-
ity space, as assumed in many network topology models,
the expected delay of the first hop is very low, it increases
exponentially with each hop, and the delay of the final hop
dominates. These delay characteristics of routing hops have
direct implications to the shape of the multicast tree built
on top of the p2p networks, as explained below.

2.2 Multicast in Peer-to-Peer Networks

We briefly review multicast systems built on top of Pastry
and Tapestry.

2.2.1 Scribe

Scribe uses reverse-path forwarding [11]. A Scribe multi-
cast tree is formed by the union of the paths from receivers
to the root. In the following, we focus on the process of
nodes joining the multicast tree.

To join a group, a node routes a JOIN message using Pastry
with the destination key set to the group’s groupld. This
message is routed towards the root, the node whose nodeld
is closest to the groupld. Each node along the route checks
whether it is either subscribed to the group or is a forwarder
for that group. If it is, it registers the source node as its
child in the multicast tree and stops routing the message
any further. Otherwise, this node creates an entry for the
group, adds the source node as a child and then attempts to
join the group using the same algorithm. The properties of
Pastry routes ensure that this mechanism produces a tree.

Bottleneck remover In the reverse-path forwarding scheme,

the fan-out of individual internal nodes in the resultant
multicast tree can be potentially unbounded. To limit the
fanout of a node and thus the stress on that node during
data dissemination, an algorithm called the bottleneck re-
mover was proposed in [6]. When a node detects that it is
overloaded, it chooses the multicast group which consumes
the most resource, e.g., the fanout from which is the high-
est. The farthest child node in the correspondent multicast
tree is then chosen for offloading. The new parent for the
offloaded node is chosen from all its previous siblings by com-
paring the overall distance to the current parent through the
new parent. The node can attach itself to the new parent
through which the distance to the old parent is the smallest.

2.2.2 Bayeux

While Tapestry routing is very similar to Pastry, Bayeux
has a fundamental difference from Scribe in that it uses
forward-path forwarding to build the multicast tree. A Bayeux
multicast tree is formed by the union of the paths from the
root down to the receivers. Bayeux uses Tapestry for group
management and data dissemination.

To join a group, a node routes a JOIN message using
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Figure 1: Asymmetric routing delay in Pastry rout-
ing. Each test picks a random source node X and a
random message key Y. Ping routes message Y to
its destination node Y’, and pong routes a message
from node Y’ back to node X with message key X.
The tests are sorted according to the relative delay
penalty of pings.

Tapestry with the destination key set to the group’s groupld.
The JOIN message is routed to the root which has the nodeld
closest to the groupld. The root then sends back a TREE
message towards the new member, which sets up the for-
warding state at intermediate nodes. Tapestry routing also
ensures that this mechanism produces a tree. Note that in
both Tapestry and Pastry routing, the reverse-path from the
joining node to the root and the forward-path in the other
direction might be different, due to the asymmetric nature
of prefix-based routing.

2.3 Comparison

As discussed in [6], while both forward-path multicast and
reverse-path multicast exploit network proximity in a simi-
lar manner and thus have similar RDPs, forward-path multi-
cast induces a higher link stress than reverse-path multicast.
This is because a forward-path multicast tree built with Pas-
try or Tapestry consists of longer and longer edges in moving
from the root towards the tree leaves, while a reverse-path
multicast consists of shorter and shorter edges in moving
from the root towards the tree leaves. As a result, messages
traverse many longer overlay links in forward-path multi-
cast, but only a few long links near the root in reverse-path
multicast.

3. MOTIVATION

This section describes the motivation behind the hybrid
multicast protocol. Routing in structured p2p networks, in-
cluding CAN, Chord, Pastry, and Tapestry, is asymmetric
in that the overlay path taken in routing a message from
node A to node B is likely to be distinct and therefore has
a different delay from the path taken in routing a message
from node B to node A. This is either due to the asymmetry
in the routing table construction, as in Chord, Pastry, and
Tapestry, or due to the asymmetry in the underlying physi-
cal links, as in the CAN which selects low-latency neighbor
nodes during dimensional routing. In this paper, we focus
on the asymmetry in the overlay networks.

As an example, we measured the extent of asymmetry
in Pastry routing between 2000 randomly chosen pairs of
nodes. The tests were performed on a network topology

with 1050 routers (1000 are stub routers) generated using
the Georgia Tech transit-stub model [26]. We randomly at-
tached 64,000 end nodes to the 1000 stub routers. The rout-
ing policy weights generated by the Georgia Tech random
graph generator were used to perform IP unicast routing in
the IP network. Figure 1 plots the routing delay penalty
(RDP) for the 2000 tests. RDP is defined as the delay going
through the overlay hops divided by the delay if the mes-
sage is sent following the shortest path in the underlying
network. Figure 1 shows that the asymmetry is significant:
the RDPs between two nodes are almost never the same;
48.50% of tests result in larger RDP in ping than in pong;
51.45% of the tests result in larger RDP in pong than in
ping; and over 68% of the tests experience larger than 20%
difference in ping and pong delays and over 82% experience
larger than 10% difference.

The above asymmetry immediately suggests that for each
individual subscriber in a multicast group, with about 50%
of chance the reverse-path scheme will result in a shorter
multicast path, and with about 50% of chance the forward-
path scheme will result in a shorter multicast path. This
suggests that if routing delay is the only performance met-
ric, a hybrid scheme that simply chooses the shorter path out
of the reverse path and the forward path between each sub-
scriber and the multicast root will construct a better multi-
cast tree than one from using either the forward-path scheme
or the reverse-path scheme alone. This simple scheme, how-
ever, may incur a high link stress on the underlying physi-
cal network, since the multicast tree contains both forward
paths and reverse paths, and forward paths in a multicast
tree may incur higher link stress than reverse paths, as ex-
plained in Section 2.3.

The asymmetry in p2p routing and the link stress charac-
teristics of forward-path and reverse-path multicast schemes
discussed above motivate a hybrid multicast scheme that
is hybrid in two aspects: First, the multicast tree is con-
structed as a subtree at the top and many subtrees at the
bottom, with the roots of the bottom subtrees coincide with
the leaves of the top subtree. Second, the bottom subtrees
are built using the reverse-path scheme for low link stress,
and the top subtree is constructed by exploiting the over-
lay routing asymmetry for reduced routing delay, i.e., by
always using the shorter paths out of the forward paths and
the reverse paths.

4. BORG: AHYBRID MULTICAST

Borg is a new scalable application-level multicast built on
top of Pastry. Like Scribe or Bayeux, it builds a multicast
tree per multicast group on top of a Pastry (or Tapestry)
overlay, and relies on Pastry’s routing substrate to opti-
mize the routes from the root to each group member based
on some network metric (e.g. latency). Unlike Scribe and
Bayeux, it builds the upper part of a multicast tree using
a hybrid of forward-path forwarding and reverse-path for-
warding and the lower part using reverse-path forwarding.
The boundary that separates the upper and lower part of the
tree is defined by a configuration parameter d, as explained
in the multicast operations of Borg below.

Group Creation Each multicast group has a key called
the groupld. To create a group, a Borg node asks Pastry
to route a CREATE message using the groupld as the key.
The destination node to which Pastry routes the message
to becomes the root of the tree and is ready to accept node
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Figure 2: Node X joining in Borg, § = 2. The for-
ward path from the root to node Y is shorter than
the reverse path from node Y to the root.

joining and leaving requests.

Node Joining The node joining process is shown in Fig-
ure 2. A node X joins a multicast group by sending a JOIN
message addressed to the multicast groupld. This message
is routed towards the root. The JOIN message records every
forwarding node and the delay of each overlay forwarding
hop on its path to the root. The message is forwarded on
until it is received at the root or at an intermediate node
which can intercept the message. A node A can intercept
JOIN messages if it is already on the multicast tree and is
at least 0 hops away from the root. The joining process
guarantees that every on-tree node also knows its own dis-
tance from the root, in terms of on-tree hops. Node A takes
the previous node on the forwarding path as its child on
the multicast tree and sends back a JOIN ACK message. If a
node is not on the multicast tree or it is within § hops from
the root, it simply appends itself together with the delay
measurement to the previous hop to the JOIN message and
forwards it on.

When a JOIN message is received at the root, the root
examines the reverse forwarding path from the subscriber
embedded in the message and takes the forwarding node that
is § hops away from itself, e.g., node Y. If there are less than
¢ forwarding nodes on the reverse forwarding path, the first
node (the source node of the JOIN message, i.e., the new node
X itself) on the path is selected. The root then sends a TREE
message towards node Y using the p2p routing. A TREE
message in Borg is similar to the TREE message in Bayeux
and it discovers the forward path to node Y. Each forwarding
node and the delay of each forwarding hop are also recorded
in the TREE message. After the TREE message arrives at
the destination node Y, the forward path discovered by the
TREE message is sent back directly to the root in a TREE
ACK message. The root then compares the total delay to
node Y by way of the reverse path and the forward path,
and chooses the shorter path to construct an on-tree path to
node Y. Specifically, the root takes the previous hop on the
chosen path as its child and sends back a JOIN ACK message.

A JOIN ACK message is propagated back to the new node X
following the forwarding path discovered by the JOIN and/or
TREE message. If the JOIN ACK message is originated from
an intermediate on-tree node, it simply follows the reverse
of the forwarding path that the JOIN message has traveled.
Otherwise, a JOIN ACK message from the root may follow a
hybrid path consisting of a forward sub-path to the node Y
and a reverse sub-path from node Y to the subscriber node
X. At each hop on the path of a JOIN ACK message, the node
adds the next hop as its child in the multicast tree and also
learns about its parent on the tree (the previous hop) and
its own distance (on-tree hops) from the root at the same
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Figure 3: Node X’ joining in Borg, § = 2. The re-
verse path from the root to node A by way of node
B is shorter than the forward path from the root to
node A. As a result, new branches from the root to
node B and from node B to node A are first added
to the multicast tree. Node A notifies node B that
it already has a parent node, and node B prunes the
branch from itself to node A just added. Similarly,
node B in turn notifies the root that the branch from
the root is unnecessary.

time.

Every on-tree node keeps track of its upstream (parent)
node and downstream (child) nodes in the multicast tree. A
subtle situation occurs when an on-tree node A receives a
JOIN ACK message from an upstream node B different from
its current parent node, for example, as the result of a new
node X’ joining the multicast tree, as shown in Figure 3. In
this case, node A notifies node B that it already has an on-
tree parent, and node B removes node A from its children
table. Node B in turn notifies its own upstream node if its
children table becomes empty after node A is removed. As a
result, node A remains attached to its current parent node,
and the tree structure is preserved.

The optimal § value which defines the boundary between

the upper and lower half of the multicast tree is experi-
21

mentally determined to be [55

Section 5.

Node Leaving A node can gracefully leave the multicast
group when it is neither a receiver nor a forwarder. It leaves
by sending a LEAVE message to its parent in the multicast
tree. After the parent removes the node from its list of
child nodes, it checks if it itself needs to leave the multicast
group. This process can be recursive and a node leaving a
lower reverse-path subtree may cause another node leaving
the upper hybrid subtree.

Data Dissemination Senders (publishers) send data mes-
sages to the root of a multicast group, using the groupld as
the key. The data messages are then forwarded down the
multicast tree.

Reliability Like Scribe and Bayeux, Borg provides best-
effort delivery of messages. Like Scribe, it uses Pastry to
repair the multicast tree when a forwarding node fails. A
forwarding node on the multicast tree sends a HEARTBEAT
message to each of its child nodes periodically. A child node
(e.g. node X) assumes that the parent node has failed if it
fails to receive HEARTBEAT messages. When a parent node
failure is detected, node X tries to re-join the multicast tree
by sending a JOIN message to the multicast group. Following
the same node joining protocol described above, node X is
re-attached to another node on the multicast tree and the
tree is repaired. If the number of on-tree hops of node X is
different after the re-joining with its previous number of on-
tree hops, node X sends an update message down the subtree

log N/2], as discussed in



rooted at itself and every node in the subtree corrects its own
number of on-tree hops accordingly.

The entries in the children table maintained at each for-
warding node are also refreshed periodically; an entry is dis-
carded unless a periodic message is received from the cor-
responding child node stating its desire to remain in the
group.

Borg can also tolerate root node failures by replicating
group management information. If the underlying p2p over-
lay is a Pastry network, the group management information
can be replicated at the nodes in the root node’s leaf set.
When the root node fails, the tree repair procedure described
above re-attaches the child nodes of the failed root to one
of the nodes from its leaf set, i.e., the one whose nodeld is
next closest to the groupld, and this node becomes the new
root for the multicast group.

Scalability A potential scalability limitation of the forward-

path multicast scheme (e.g. Bayeux) is that it generates
more traffic when handling group membership changes. In
particular, all group management traffic go through the root.
In contrast, the reverse-path scheme (e.g. Scribe) distributes
such traffic over the multicast tree nodes. In this regard,
Borg is similar to Scribe, since subtrees in the lower part of
the multicast tree are built using reverse-path forwarding,
and these subtrees consist of a large portion of all the group
members.

5. EVALUATION

This section presents the results of simulation experiments

comparing the performance of Borg against Bayeux, a forward-

path multicast scheme, and Scribe, a reverse-path multicast
scheme. All three schemes are implemented on top of Pastry.

5.1 Experimental Setup

The simulations were performed using the same topology
model as in Section 3, i.e., the Pastry network is formed with
64,000 end nodes randomly attached to the 1000 stub routers
in the topology. Pastry is configured with a value 2 for b
and a leaf set size 4. With this configuration, the average

number of routing hops is 6, or 2[log N (22;1 [log N).
This is because with probability 1/4, the nodeld of each
intermediate node during Pastry routing already shares the
next digit with the key of the message being routed, and
thus skipping a total of X[log N hops during routing.

We simulated 500 multicast groups. Each multicast group
has a rank that ranges from 1 to 500. The group size distri-
bution follows the function: Sub(r) = | Nr~'2°4-0.5], where
r is the group rank (see Figure 4, as used in [6]). The largest
multicast group (rank 1) has a subscription of 64,000 (every
node is a subscriber, equivalent of broadcast) and the mini-
mum number of subscribers is 27 (rank 500). Subscribers to
each group were selected from the 64,000 nodes randomly
and uniformly. In the simulation, a single message is sent to
each of the 500 groups.

Three metrics were measured: relative delay penalty (RDP),

node stress, and link stress. RDP was measured at each sub-
scriber of each multicast group, and then averaged over all
the subscribers of the group. Node stress is measured by the
sum of fanout per group over all the groups at each node.
Link stress is characterized by the number of messages sent
over physical network links.
The bottleneck remover algorithm explained in Section 2.2.1

is applied to all three multicast schemes. The maximal
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Figure 4: Distribution of multicast group size.

fanout at each node is set to 100. Each time a new node
is attached, the overall fanout is checked, and if the limit is
exceeded, the bottleneck remover is invoked.

5.2 Choice of 5 in Borg

We experimentally measured the performance of a broad-
cast using Borg varying the § value. The RDP and link
stress results for a broadcast to all 64,000 end nodes are
shown in Figure 5 and Table 1, respectively. Figure 5 shows
that Borg always gives lower RDP than the pure forward-
path or reverse-path schemes, and the higher the § value, the
lower the RDP value. This is because longer segments of the
paths will be optimized via exploiting the routing asymme-
try. Table 1 shows that the higher the § value, the higher
the link stress incurred by Borg. This is because the higher
the § value, the shallower the lower subtrees which consist
of short links from using reverse paths, and thus the higher
the overall link stress. Overall, the § value of 3 optimizes
both the RDP and the link stress.

We also measured the optimal choice of the § value for
broadcasts to two Pastry overlays with 32,000 and 16,000
end nodes each. These two Pastry overlay networks were
generated in a similar fashion as the Pastry overlay with
64,000 nodes, i.e., by randomly attaching 32,000 and 16,000
end nodes to the 1000 stub routers, respectively. The results
are shown in Figure 6 and Table 2, and Figure 7 and Table
3, respectively. The results show that the value of § that
optimizes both the RDP and the link stress is 3 for both
cases.

The above results show that when taking both RDP and
link stress into account, setting the § value of Borg to be half

the average number of actual routing hops, (21;;1 log N/2],

gives a balanced low RDP and link stress. We therefore

configure Borg to set its ¢ value as f2;;1 log N/2]. Note
each Pastry node can estimate the overlay size N based on
the density of nodes in its leaf set fairly accurately [3].
Simulations also show that only a small number of JOIN
messages are received at the root of a Borg multicast tree.
The percentage of JOIN messages that are received at the
root for the broadcasts is below 10% for all the three Pastry

overlay networks of 64,000, 32,000 and 16,000 nodes.
5.3 Results

Figures 8-10 compare the cumulative distribution of rela-
tive delay penalty, node stress, and link stress from sending
a message to all 500 multicast groups using the three mul-
ticast schemes. First, it shows the RDP of Borg is 16% and
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Figure 5: Cumulative distribution of RDP for a
broadcast (averaged over 12 runs), varying 0 in
Borg, with 64,000 nodes. For clarity, the x-axis is
cut off at 4.

Table 1: Link stress comparison for a broadcast (av-
eraged over 12 runs), varying ¢ in Borg, with 64,000
nodes.

mean | median max total
forward-path 4.5 1 | 2306.8 | 536807.3
reverse-path 1.2 1 79.0 | 140681.6
hybrid (§=2) 1.2 1 79.4 | 140709.3
hybrid (§=3) 1.2 1 91.9 | 141735.8
hybrid (§=4) 1.2 1 172.2 | 149492.8
hybrid (6=5) 1.4 1 404.5 | 177929.3
hybrid (§=6) 1.9 1 767.6 | 235424.3
hybrid (§=8) 2.7 1| 1344.8 | 336911.9

17% lower than those of the forward-path and the reverse-
path schemes, respectively. Over the 500 multicast groups,
the average RDP in using Borg, the forward-path scheme,
and the reverse-path scheme are 1.96, 2.32, and 2.37, respec-
tively. Second, it shows that the bottleneck remover effec-
tively limits the maximal node stress for all three schemes.
Third, Figure 10 and Table 4 show that the link stress for
Borg is very close (within 4%) to that for the reverse-path
scheme, and both are significantly lower (a factor 2.6) than
that for the forward-path scheme.

6. RELATED WORK

Another multicast scheme built on top of p2p overlay net-
works is CAN multicast [21] built on top of CAN [20]. CAN
multicast creates a separate CAN overlay for each multicast
group, and then floods multicast messages to all nodes. Re-
cently, Castro et al. [7] experimentally compared multicasts
built on CAN-style overlays versus on Pastry-style overlays
and showed that tree-based multicast built on top of Pastry
provides better performance than on top of CAN.

There have been a large body of work on application-level
multicast. Overcast [17] implements an overlay network con-
sisting of a single source and internal nodes placed at dif-
ferent locations of an existing network. Narada [16] uses a
two-step process to build the multicast tree: First, it builds
a mesh per group containing all the group members. Sec-
ond, it constructs a spanning tree of the mesh for each source
to multicast data. REUNITE [25] separates the branching
points of the multicast tree from the non-branching points
and only the branching points keep multicast state infor-
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Figure 6: Cumulative distribution of RDP for a
broadcast (averaged over 12 runs), varying 0 in
Borg, with 32,000 nodes. For clarity, the x-axis is
cut off at 4.

Table 2: Link stress comparison for a broadcast (av-
eraged over 12 runs), varying ¢ in Borg, with 32,000
nodes.

mean | median max total
forward-path 4.4 1 | 1396.7 | 268547.4
reverse-path 1.2 1 74.6 75219.8
hybrid (§=2) 1.2 1 74.7 75251.3
hybrid (§=3) 1.3 1 73.8 76401.1
hybrid (§=4) 1.4 1 123.8 84019.3
hybrid (6=5) 1.7 1 363.2 | 105148.2
hybrid (§=6) 2.1 1 640.9 | 135089.0
hybrid (§=8) 2.5 1 839.9 | 157990.0

mation. Thus the scalability is improved. Chu et al. [15]
investigate the performance of ESM in a dynamic and het-
erogeneous Internet environment in the context of audio and
video conferencing. TAG [18] exploits network topology in-
formation to build the multicast overlay. It utilizes the path
overlap among members to reduce delay penalty. Chalmers
and Almeroth [8] investigate the fundamental characteristics
of global multicast trees to understand the efficiency gains of
multicast over unicast. Cohen and Kaempfer [9] propose a
unicast-based multicast for real-time multimedia streaming.
Costa et al. [10] takes into account the unicast asymme-
tries of the Internet when building the multicast tree. Shi
and Turner [23] propose and compare algorithms to opti-
mize the degree distribution of multicast overlays composed
of specialized Multicast Service Nodes (MSNs) which serve
end hosts by unicast. Zhang et al. [27] seek to bridge the
IP multicast enabled islands with the rest of the Internet
smoothly.

7. CONCLUSION

A scalable implementation of multicast is the first step to-
wards supporting multimedia streaming over wide-area net-
works. Building multicast on top of decentralized, scalable,
and reliable peer-to-peer overlay networks offers a promis-
ing approach. This paper presented Borg, a hybrid multicast
protocol that combines forward-path multicast and reverse-
path multicast to build multicast trees. Simulation results
in a Pastry network of 64,000 nodes based on a realistic net-
work topology model have confirmed that Borg offers signif-
icantly lower routing delay penalty than both forward-path
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Figure 7: Cumulative distribution of RDP for a
broadcast (averaged over 12 runs), varying 0 in
Borg, with 16,000 nodes. For clarity, the x-axis is
cut off at 4.

Table 3: Link stress comparison for a broadcast (av-
eraged over 12 runs), varying ¢ in Borg, with 16,000
nodes.

mean | median max total
forward-path 4.3 1| 663.3 | 134287.8
reverse-path 1.3 1 69.5 41655.6
hybrid (6=2) 1.3 1 69.3 41678.8
hybrid (6=3) 1.3 1 75.4 42422.3
hybrid (6=4) 1.4 1| 1024 47087.5
hybrid (6=5) 1.8 1| 169.3 59434.1
hybrid (6=6) 2.2 1| 306.0 75278.8
hybrid (6=8) 2.5 1| 375.3 83962.8

and reverse-path multicast schemes while retaining the low
link stress of the reverse-path multicast scheme.
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