
On the Impact of Packet Spraying in
Data Center Networks

Advait Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella
Purdue University

Abstract—Modern data center networks are commonly or-
ganized in multi-rooted tree topologies. They typically rely on
equal-cost multipath to split flows across multiple paths, which
can lead to significant load imbalance. Splitting individual flows
can provide better load balance, but is not preferred because of
potential packet reordering that conventional wisdom suggests
may negatively interact with TCP congestion control. In this
paper, we revisit this “myth” in the context of data center
networks which have regular topologies such as multi-rooted
trees. We argue that due to symmetry, the multiple equal-cost
paths between two hosts are composed of links that exhibit
similar queuing properties. As a result, TCP is able to tolerate
the induced packet reordering and maintain a single estimate of
RTT. We validate the efficacy of random packet spraying (RPS)
using a data center testbed comprising real hardware switches.
We also reveal the adverse impact on the performance of RPS
when the symmetry is disturbed (e.g., during link failures) and
suggest solutions to mitigate this effect.

I. INTRODUCTION

In recent years, data centers have become the cornerstones
of modern computing infrastructure. Many distributed pro-
cessing applications (e.g., search, social collaboration, high-
performance computing) are routinely run in large-scale data
centers that contain upwards of 100,000 servers. Because of
the inherently distributed nature of computation, the network
fabric that connects these different servers becomes critical
in determining the performance of these applications, which
translates to user satisfaction and ultimately money for the
data center operator.

Meanwhile, recent papers characterizing data center traffic
have found significant spatial and temporal variation in traffic
volumes [1], [2], [3], which means that the data center network
design cannot pre-assume a given traffic matrix and optimize
the routing and forwarding for it. Recent trends therefore favor
network fabric designs based on multi-rooted tree topologies
with full bi-section bandwidth (or with low oversubscription
ratios such as 4:1) such as the fat-tree architecture [4]. While
in theory these topologies provide (almost) full bi-section
bandwidth, achieving this is hard in practice because it is de-
pendent on the underlying routing scheme. Traditional single-
path routing is inadequate since the full bi-section bandwidth
guarantee assumes that all paths that exist between a pair
of servers can be fully utilized. Thus, equal-cost multipath
(ECMP) has been used as the de facto routing algorithm in
these data centers.

In ECMP, flows (as identified by the TCP 5-tuple) between a
given pair of servers are routed through one of the paths using
hashing; therefore, two flows between the same hosts may take

different paths, and ECMP does not affect TCP congestion
control. However, because not all flows are identical in their
size (or their duration), this simple scheme is not sufficient
to prevent the occurrence of hot-spots in the network. In
a recent study [2], the authors find that 90% of the traffic
volume is actually contained in 10% of flows (heavy-hitters);
if two heavy-hitter flows are hashed to the same path, they
can experience significant performance dip. Several solutions
(e.g.,, Hedera [5], Mahout [6]) focus on addressing this hot-
spot problem by tracking and separating long-lived (elephant)
flows among link-disjoint paths. However, it is fundamentally
not always feasible to pack flows of different size/duration
across a fixed number of paths in a perfectly balanced manner.

A recently proposed solution called MP-TCP [7] departs
from the basic assumption that a flow needs to be sent along
one path, by splitting each flow into multiple sub-flows and
leveraging ECMP to send them along multiple paths. Since
MP-TCP requires significant end-host protocol stack changes,
it is not always feasible in all environments, especially in
public cloud platforms where individual tenants control the
OS and the network stack. Further, it has high signaling and
connection establishment complexity for short flows, which
typically dominate the data center environment [2], [3].

In this paper, we study the feasibility of an intuitive and
simple multipathing scheme called random packet spraying
(RPS), in which packets of every flow are randomly assigned
to one of the available shortest paths to the destination. RPS
requires no changes to end hosts, and is practical to implement
in modern switches. In fact, many commodity switches today
(e.g., Cisco [8]) already implement a more sophisticated per-
destination round-robin packet spraying technique.

RPS approach, however, can potentially result in reordering
of packets that belong to a flow—a problem that is known to
negatively interact with TCP congestion control1, at least in the
wide-area networks [9]. Specifically, packets in a given flow
that traverse multiple paths with potentially different latencies
may arrive at the receiver out of order, i.e., later-sent packets
may be received ahead of earlier-sent ones. Since TCP can not
distinguish reordered packets from lost packets, it will trigger
congestion avoidance by cutting down its congestion window
leading to suboptimal performance. Because of the potential
packet reordering and its implication on TCP, networking
researchers as well as practitioners have cautiously kept packet

1This is the reason that the feature though supported in commodity switches
is not turned on by default

COREC2

A1 A2 A4A3

T1 T3 T4

C3 C4

A5 A6 A8A7

T6 T7 T8T5

C1

T2

 S1 S5 S7 S11 S13 S15S9S3S2 S6 S8 S12 S14 S16S10S4

Equivalence
Class

Fig. 1. Fat-tree topology with equivalence classes and imbalance with ECMP.

spraying out of consideration for data center networks.
In this paper, we make two key observations that together

suggest RPS is unlikely to be affected by packet reordering
and hence a promising multipathing scheme for data center
networks. First, we observe that modern data center networks
based on multirooted tree topologies tend to be symmetrical,
which essentially causes links along multiple paths between
a source-destination to be grouped into equivalence classes.
As a result, paths between a source-destination pair are likely
to exhibit similar queue build-up, keeping latencies roughly
equal. In addition, data center networks are often engineered
to provide low latencies to service latency sensitive traffic any-
way. Solutions such as DCTCP [10] and HULL [11] provide
even lower latencies at the (slight) expense of throughput. Low
end-to-end latencies help RPS since the worst case latency
differential between two paths is also going to be small.

Second, standard TCP originally designed for the wide
area Internet already has a built-in mechanism to tolerate
mild packet reordering. In particular, TCP does not perform
fast retransmit unless 3 duplicate ACKs (DUPACKs) arrive
for the same packet. Newer implementations of TCP in the
Linux kernel are even more robust to packet reordering. They
use timestamps and DSACK options to detect spurious fast
retransmissions. If a spurious fast retransmission is detected,
TCP reverts the reduction in congestion window size. Also, the
TCP duplicate ACK threshold is dynamically adjusted. Hence,
even if some occasional reordering happens in the data center
network under RPS, the reordering may only mildly affect
TCP performance.

In this paper, we conduct an empirical study to validate
these observations and study the overall performance under
RPS multipath routing using a real testbed comprising of
hardware NetFPGA-based switches organized in 4-ary fat-
tree topology. Our experiments indicate that our observations
typically hold true in practice and as a result, RPS achieves
much better network-wide TCP throughput than ECMP.

While our experiments above show that RPS works well
in symmetric topologies, production data centers are prone to
link failures which may disturb the overall symmetry of the
network. Such asymmetry in the topology can potentially lead
to unequal load on links leading to sub-optimal throughput of
RPS. However, no prior studies have quantified the impact of
failures on the performance of RPS in data center networks.
Thus, in second part of this paper, we conduct detailed
empirical analysis of RPS under failure conditions. We observe

that if RPS alone is used, it can lead to significantly lower
throughput in failure scenarios. We observe however that if the
queue lengths are kept sufficiently small using simple active
queue management scheme such as Random Early Discard
(RED), the performance of RPS can be much better, almost
comparable to complex solutions such as MP-TCP.

Contributions. In summary, the main contributions of the
paper include the following. (1) We conduct a first of its
kind empirical study to debunk the myth that random packet
spraying is inherently harmful to TCP, in the context of
designing an effective multipathing scheme for data center
networks. (2) Using a data center testbed with real RPS
implementation over NetFPGA switches, we conduct detailed
study on the reasons why RPS performs better than existing
schemes such as ECMP and similar to MP-TCP (with long-
lived flows). (3) We also study the adverse effect of link
failures on the performance of RPS. Exploiting the key insight
that smaller queues result in better performance even under
failures, we propose an approach based on RED to mitigate
these adverse effects.

II. RANDOM PACKET SPRAYING (RPS)

In this section, we start with an overview of RPS followed
by theoretical analysis on why we expect RPS to perform well
in data center networks.

A. RPS Overview

The basic idea of RPS is simple: Like ECMP, RPS uses
all the equal-cost shortest paths between every source and
destination pair. However, instead of hashing the flow key
of a packet to determine the next hop for forwarding as in
ECMP, RPS randomly spreads all packets that belong to each
flow equally along different shortest paths. For example, in
Figure 1, we show a flow from S1 − S16 that traverses
the paths S1 → T1 → {A1, A2} → {C1, C2, C3, C4} →
{A7, A8} → T8→ S16 to reach the destination. Thus, if the
flow consists of 100 packets, roughly 25 packets will be routed
through each of the four paths via core routers C1− C4.

As shown before in literature [9], packet spraying can lead
to severe packet reordering in the wide-area—the packets of a
flow which take different paths may have orders of magnitude
differences in latencies since there is no guarantees that the
paths will be of equal lengths or have similar congestion.
Even in data center environments, where latencies are low
and uniform, RPS will potentially introduce packet reordering.
TCP performs poorly in the presence of packet reordering.
When the TCP sender receives three duplicate acknowledg-
ments (DupACK), it assumes that a segment has been lost
and reduces its congestion window size, which results in a
drop in throughput. TCP maintains an estimate of round-trip
(RTT) times. If paths have hugely varying latencies, TCP’s
RTT estimate will also be meaningless, which can lead to
spurious retransmissions and timeouts. In fact, this concern of
potential packet reordering is why none of the existing data
centers use or existing proposals advocate the use of simple
packet spraying schemes.

We make three key observations that indicate that packet
spraying techniques like RPS are unlikely to result in sig-
nificant packet reordering, and consequently should not affect
TCP’s performance in data center networks that employ multi-
rooted tree topologies such as the fat-tree. Specifically:
Observation 1. In a multirooted tree topology like a fat-
tree shown in Figure 1, links can be grouped together into
equivalence classes. All links within each equivalence class
have equal amount of load if all flows in the networks use
RPS. Thus, even though each flow is routed along several
paths, each of these paths is similarly loaded. So, the latency
differential between these paths is expected to be quite small,
and the amount of induced reordering due to packet spraying
is likely to be small. (We analyze this in more detail next.)
Observation 2. TCP congestion control is robust to small
amount of packet reordering in the network anyway. Given
that TCP was designed for the wide area network, where
some amount of reordering can happen due to failures and
other events. The sender typically waits for 3 duplicate ACKs
to infer that a loss event has occurred after which it per-
forms fast retransmit and cuts its window in half. Besides
this, the TCP implementation in newer Linux kernels detects
spurious fast retransmission using the DSACK and timestamp
options of TCP to rollback any erroneous reductions in the
congestion window [12]. TCP also proactively avoids spurious
fast retransmissions in the future by increasing the DupACK
threshold [13].
Observation 3. Even if packet spraying using RPS induces
slightly more fast retransmits compared to say a flow based
technique like ECMP, the extra loss in throughput, due to the
sender reducing its congestion window by half every time a
fast retransmit event occurs, can be a small penalty compared
to the better usage of the total aggregate available bandwidth
across all paths. Thus, RPS’ overall performance will be likely
better than that of ECMP.

Further, data center operators are increasingly more con-
cerned about end-to-end latencies. Thus, future data center
designs are likely to ensure low and uniform latencies, using
mechanisms such as HULL [11], DCTCP [10], DeTail [14]. If
latencies across all paths are low and uniform, TCP end-host
can maintain a single estimate of RTT for all paths.

In spite of low latencies in data center networks and
improvements to TCP, researchers have focused mainly on
load balancing schemes which avoid packet reordering. No
measurement studies have been conducted to study the impact
of these improvements on packet spraying in data center
networks. Our analysis in this paper shows that TCP is
able to perform well with packet spraying in a data center
environment, as long as packets are sprayed over equal length
paths and queue lengths are kept almost equal along all paths.
We hope that this result will encourage more research in
simple packet spraying techniques for data centers.

B. Analysis

We formalize the concept of equivalence classes stated in
Observation 1 above, which gives a key reason why different

from in the Internet, significant packet reordering is unlikely
to happen when RPS is running in data center networks which
typically employ multi-rooted tree typologies such as fat trees.

When RPS is used to route packets between a source and
a destination via all equal-cost paths, an equivalence class
comprises all outgoing links from the switches at the same
hop along all the equal-cost paths. For simplicity, we exclude
links to/from end hosts (leaves in the tree) in the discussion. In
a depth-h K-ary fat tree (each switch has K ports), each flow
goes through 2h-hop equal-cost paths and passes through 2h
equivalance classes of links. Note different source-destination
pairs can share some equivalance classes. Together, there are
2h types of equivalance classes in a depth-h fat tree. In
particular, there are 4 equivalance classes in the depth-2 fat
tree in Figure 1:

Type 1: A Type 1 class consists of the links from a ToR
switch, ToRi, to the K

2 aggregate switches Aggj within the
same pod.2

Type 2: A Type 2 class is the mirror image of a Type 1
class, and consists of the links from the K

2 aggregate switches
Aggj within a pod, to a ToR switch, ToRi.

Under RPS, for an X-packet flow, the expected number of
packets that will be routed through each of the K

2 links in a
Type 1 or Type 2 equivalence class is 2X

K .
Type 3: A Type 3 class consists of the links from all the

aggregate switches Aggi within a pod, to all K2

4 core switches,
Cn.

Type 4: A Type 4 class is the mirror imagine of a Type 3
class, and consists of the links from all the core switches Cn,
to all aggregate switches, Aggj , within a pod.

Under RPS, for an X-packet flow, the expected number of
packets that will be routed through each of the K2

4 links in a
Type 3 or Type 4 equivalence class is 4X

K2 .

Example. Consider the two paths between S1 and S5 in
Figure 1. There are four equal-cost paths between them.
The first hops of all paths form to the Type 1 equivalence
class (T1 → A1, T1 → A2), the second hops of all
paths belong to the Type 3 equivalence class (A1 → C1,
A1 → C2, A2 → C3, A2 → C4), and so on. This hop-by-
hop equivalence holds for paths between all hosts in the fat
tree even if they are in different pods, in the same pod, or
under the same ToR switch.

The equal spread of packets of each flow among the links
in its hop-by-hop equivalence ensures that, given any set
of flows, load and hence the queue lengths (measured in
number of packets) among the links in each eqivalent class
stays the same. This in turn implies that for a given flow,
its packets traversing different paths will encounter the same
queuing delay, and hence the same end-to-end delay. Thus,
the receiver will observe only a few reordered packets due to
small differences in queue lengths introduced by (1) difference
in packet sizes; (2) flow sizes are not always in multiples of the
number of paths; and (3) timing issues. However, these issues

2The set of switches {T1,T2,A1,A2}, {T3,T4,A3,A4}, etc. in Figure 1, are
referred to as pods in the fat-tree.

are expected to cause only a small queue length differential
which results in a small amount of reordering within the
network. We experimentally confirm this in Section III.

III. EVALUATING RPS
In this section, we evaluate RPS using a real hardware

testbed. We first discuss the testbed configuration and our im-
plementation of RPS and ECMP. We then provide comparisons
of RPS with and ECMP and MP-TCP. Finally, we empirically
confirm the three observations made in the previous section
that explain the good performance of RPS in our testbed.

A. Testbed Configuration
Our testbed has 36 servers connected in a 4-ary (k = 4)

fat-tree [4] topology (as shown in Figure 1). All the servers
are equipped with 4GB RAM, Intel Xeon 2.40GHz quad-core
processors running Centos 5.5 and two 1Gbps Ethernet ports.
We have 20 NetFPGA boards, each deployed on a server,
and interconnected in a fat-tree topology via 1 Gbps Ethernet
links. Rest of the 16 servers form the endhosts connected to
this network. A fat tree has an oversubscription ratio of 1:1.
Removing two of the four core switches would have resulted
in an oversubscription ratio of 2:1 but it would have reduced
path diversity; there would be just two paths between hosts
in different paths, which can bias our results significantly.
Other oversubscription ratios (4:1, 8:1) would not be possi-
ble even. To overcome this, we emulate oversubscription of
approximately 4:1 (and 8:1) by rate-limiting the core links to
230Mbps (and 115Mbps). The seemingly arbitrary choice of
230Mbps (instead of 250Mbps) stems from the limitations of
the NetFPGA rate limiter, which allows only a few discrete
values to choose from.

1) Implementation of RPS and ECMP: We implemented
RPS and ECMP on NetFPGA switches by modifying the code
base already provided by NetFPGA. For a packet arriving at
the switch, we generate a random number (using the library
provided by NetFPGA) to determine the output port (among
all eligible output ports) to which the packet is forwarded.
Implementing this is quite simple; we needed only about 100
lines of verilog code to implement this technique. RPS is a
purely switch-based solution and does not require any help or
modification at the end hosts.

2) Implementation of MP-TCP: To enable MP-TCP, we
deployed the publicly released Linux kernel for MP-TCP [15]
at the end hosts. This kernel still has a few performance
and stability problems. For instance, we observed kernel
panics sometimes when MP-TCP was handling many short-
sized flows simultaneously. This prevented us from running
experiments involving many short flows with the MP-TCP
kernel. For long flows, we observed more stable results for
MP-TCP. MP-TCP has also been noted to have a sub-standard
performance with short flows because the control overhead of
setting up and terminating many subflows becomes significant.
For the above reasons, we present MP-TCP results for long
flows in this paper. Since ECMP performs well with short
and long flows, we compare RPS with ECMP in experiments
involving both short and long flows.

B. TCP Throughput under Packet Spraying

We first measure the throughput obtained by long lived TCP
flows in a random permutation matrix (similar to [16]). In
such a setup, each host in the topology is either a sender or
a receiver of exactly one TCP flow. All senders are randomly
paired with receivers. A netperf client running at the sender
sends a TCP flow to its receiver for the duration of the exper-
iment. We measure the average throughput as a percentage of
the ideal throughput and also compare performance of TCP
flows under different schemes.

Figure 2 clearly depicts the gain in throughput experienced
by TCP flows under a packet spraying technique (RPS). Even
under different degrees of oversubscription, the throughput
obtained under RPS is higher than those measured under MP-
TCP or ECMP-like techniques. The low average throughput
in case of ECMP-based forwarding can be attributed to the
fact that two or more TCP flows may be forwarded over the
same core link which becomes a bottleneck. For the entire
flow duration of the flow, that link remains the hot spot in
the network while leaving other links underutilized. Due to
static allocation of paths in ECMP, if some of the flows are
unlucky and are routed through a congested link, then they
suffer permanently for the entire duration resulting in poor
throughput.

0

20

40

60

80

100

1:1 4:1 8:1

T
h

ro
u

g
h

p
u

t
(a

s
 %

a
g

e
 o

f
id

e
a

l)

ECMP
RPS

MPTCP

Fig. 2. Throughput for Permutation Matrix

Under RPS, average throughput achieved is about 90% of
the ideal bandwidth in all 3 cases with different oversubscrip-
tion ratios. Figure 2 also demonstrates that the variance in
throughput obtained by different TCP flows is small. MP-
TCP also achieves about 90% in case of a non-oversubscribed
topology (subscription factor 1:1). This is consistent with
results reported in [16] for a similar experimental setup. In case
of oversubscribed topology though, the average throughput
achieved by MP-TCP flows seems to suffer and it decreases
from 90% to about 75%. This poor performance may be an
artifact of MP-TCP itself or the released implementation of
MP-TCP; unfortunately, there is no easy way for us to know
precisely at the moment.

To study the effect of path diversity on RPS, we repeated
the above experiment in simulation using fat trees with (k =)
6 and 8 pods. The number of paths between end hosts is 9
and 16 respectively (k2/4). Intuitively, when the number of
paths increases, the probability of packet reordering in packet

spraying increases. However, we observed that the drop is
not substantial showing that our analysis in Section II-B still
largely holds.

C. Data Transfer Time

We repeat the experiment performed in [16] (but with mixed
short and long flows) to study how much time TCP takes to
transfer the same amount of data under different schemes. This
experiment shows the ability of the underlying mechanism
to consume bandwidth more efficiently to transfer the same
amount of data. In this experimental setup, each end host
executes two clients which have to transfer 2GB of total
data, which is divided into many flows with flow sizes drawn
from the real data-center flow size distribution reported in [1].
A client sends these flows in sequence to randomly chosen
destinations. The client forks a new netperf client for each
flow. All clients begin simultaneously. We plot the median,
and first/third quartiles of the completion time of all clients in
Figure 3(a).

We observe that TCP flows are able to complete faster under
RPS as compared to ECMP. (We cannot do this experiment
with MP-TCP as it is unstable when there are large number
of concurrent connections.) With 1:1 oversubscription, we
observe that ECMP and RPS perform equally well. This is
because in such a topology and flows being setup between
random pairs of hosts, the edge links are more likely to be
the bottleneck than the core of the network. So, TCP does not
benefit from a better traffic splitting technique. In case of 4:1
or 8:1 oversubscribed networks, the packet spraying technique
helps TCP flows to utilize the available capacity in a much
more efficient manner in spite of the reordering. Hence, the
time to transfer the same amount of total data is 25% smaller
in case of RPS than ECMP.

D. Packet Latencies

Packet latency is another important metric for flows in
data center networks. Recent works like [11], [10] have
focused on reducing packet latencies in the network so that
applications can satisfy SLAs (service level agreements). To
study the effect of packet spraying on packet latencies we
ran background traffic between 14 (out of 16) end hosts in
our testbed. The flow sizes for background traffic were drawn
from the distribution in [1]. The flow arrival rate followed
an exponential distribution and variable mean. We sent 200
back-to-back ping packets between the two hosts that did not
carry background traffic. The two hosts which do not carry
background traffic exchange ping packets. For ECMP, MP-
TCP and RPS, a ping packet randomly takes one of the 4
paths between the end hosts. Buffers at the two end hosts
are always empty because they do not transmit or receive any
of the background traffic. So, ping packets experience similar
latencies at end hosts. Since the ping packets are sent back-to-
back, we can assume that packets taking the same path also
observe very similar latencies. So, the variation in latencies
between packets is almost entirely due to variation in latencies
between different paths in the network. Figure 3(b) shows

the mean RTT for the 200 back-to-back ping packets and
the errorbars show the mean deviation reported by ping. We
observed that the latency varied widely with ECMP indicating
that different paths between the two hosts different loads.
Packets experience similar mean latencies with RPS and MP-
TCP, but experience higher variance with MP-TCP.

E. Effect on MapReduce

In order to quantify the impact of packet spraying on
applications, we run Hadoop Sort application on 4 of the 16
end hosts in our testbed (other 12 hosts have background traffic
between them as before). To emulate a network constrained
cloud application, we reduce the bandwidth of each link to
115Mbps but kept the oversubscription ratio at 1:1.

Figure 3(c) shows the time taken for the shuffle phase of
Hadoop sorting 4GB of data averaged over 3 runs. On the
x-axis, we vary the intensity of background traffic (that is,
flow arrival rate of background traffic). We observe a 20% to
30% reduction in shuffle time with RPS. Also, the variance
in completion time is much smaller with RPS than ECMP.
Since a fat-tree is provides full bisection bandwidth, end hosts
running Hadoop can communicate with each other at full
line rate even when background traffic intensity increases. So,
increasing background traffic intensity does not affect shuffle
phase completion time. RPS completes the sort phase quicker
than ECMP because it is able to utilize the available bisection
bandwidth more efficiently than RPS. We were not able to
perform this experiment with MP-TCP due to the stability
issues with MP-TCP implementation.

F. Analysis of Packet Spraying

Now, we conduct experiments to validate our analysis and
our understanding of why TCP performs well under packet
spraying in data center networks. Specifically, we empirically
validate our key observations made in Section II using exper-
iments conducted on our testbed. In these experiments, each
end host starts new flows with start times based on a Poisson
distribution with 2 arrivals per second. As before, flow sizes
are drawn from the distribution reported in [1]. The traffic
matrix was executed two times, once each for ECMP and RPS.
Both times, the random number seeds were initialized to the
same value to ensure that flows of the same size were started
at the same time in both runs, allowing us to make a flow-by-
flow comparison between RPS and ECMP.

1) Queue length differential: In Section II-B, we argued
that packet reordering will be limited because all paths be-
tween a pair of hosts have similar latencies. Latencies are
largely determined by queue lengths that a packet encounters
at every hop. We polled the queue lengths at every hop along
a path between a pair of hosts in our testbed. We were able
to poll about 1000 times per second; this is the maximum
rate allowed by our NetFPGA platform. We used NTP to
synchronize timestamps at all switches. By summing the queue
lengths of all hops, we determined the path queue-length, that
is, the total queue-length that a packet would encounter if
it were forwarded along that path. We did this for all paths

 0

 50

 100

 150

 200

 250

1:1 4:1 8:1

C
o
m

p
le

ti
o
n
 T

im
e
 (

in
 s

e
c
s
) ECMP

RPS

(a) Completion Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16

T
im

e
 (

in
 m

ic
ro

s
e
c
o
n
d
s
)

Flow arrival rate (flows per second per host)

ECMP
RPS

MPTCP

(b) Ping RTT

 0

 100

 200

 300

 400

 500

 600

2 4 8 16

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Flow arrival rate (flows per second per host)

ECMP
RPS

(c) Hadoop Shuffle Time

Fig. 3. Performance of RPS with different traffic patterns.

-1

 0

 1

 2

 3

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

#
 o

f
p
k
ts

Time (secs)

Path-length-diff

(a) Q-length diff. across a src-dest pair

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 1 2 3 4 5 6 7 8 9

F
re

q
u
e
n
c
y

of Dupacks

ECMP
RPS

(b) # of consecutive DupAcks

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

E
C

M
P

-T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RPS-Throughput (Mbps)

Thpt-small
Thpt-large

(c) Throughput comparison with ECMP

Fig. 4. Microscopic analysis to validate our understanding about RPS performance.

between a source destination pair and plotted the instantaneous
difference between the highest and the lowest path queue-
lengths in Figure 4(a). In a perfectly balanced network, this
path queue-length differential will always be zero. However, in
Figure 4(a), the queue-length differential is less than or equal
to one 93% of the time. Flows between the pair of end hosts
under observation may experience some reordering when the
path queue-length differential increases to two or three, but
that is relatively infrequent (less than 7%).

2) DupACKs: We now measure the number of dupACKs
that an end host will receive. We log the number of dupACKs
received at the sender and plot Figure 4(b). The x-axis
shows the number of dupACKs that the sender received for
a particular TCP segment. For both ECMP and RPS, the
sender received no dupACKs for almost one million TCP
segments. RPS received exactly one dupACK almost 200,000
TCP segments, and exactly two dupACKs for 30,000 and
so on. We see that the frequency of k dupACKs reduces
exponentially with increasing k.

TCP does not enter fast-retransmission until it sees greater
number of dupACKs than the dupAckThreshold (default is
3). So, the first three bars in the figure will not lead to a
drop in throughput. Since the number of dupACKs reduce
exponentially, we observe that fewer that 55,000 (about 2%)
of the transmitted TCP sequence numbers cross the three
dupACK threshold. Surprisingly, we find a similar order of
magnitude dupACKs in ECMP. However, dupACKs in ECMP
are entirely due to packet losses and therefore cause a drop in
throughput. But, dupACKs in RPS are due to a combination
of reordered and lost packets. While it is difficult to ascertain

the exact number of reordered and lost packets, note that
dupACKs due to reordered packets are handled well as stock
Linux TCP implementation has adaptive dupACKThreshold
to reduce spurious reductions in TCP congestion window due
to reordered packets. In any case, RPS should perform, if
not better, no worse than ECMP because of dupACKs. But,
flows have higher available bandwidth in the case of RPS than
ECMP due to the availability of combined bandwidth across all
sub-paths, which increases the performance of RPS compared
with ECMP.

3) Effect on throughput of individual flows: We compare
the performance of large and small flows in RPS and ECMP.
It is generally expected that small flows should obtain good
throughput under ECMP; it is the large flows that usually
suffer. In Figure 4(c), we plot the throughput observed by
the same flows under ECMP and RPS. The x-coordinate of a
point corresponds to a flow’s throughput under RPS while the
y-coordinate is its throughput with ECMP. Points below the
diagonal line indicate higher throughput with RPS. The green
crosses represent large flows (greater than 1MB) while the
red pluses are for short flows. From the graph, we can clearly
see that large flows benefit most with RPS, while small flows
perform equally well with both ECMP and RPS. Although
only 10% of the flows in the distribution are large, the differ-
ence in throughput is significant enough to affect applications.
Also, the number of bytes belonging to large flows is a larger
fraction of the overall network utilization than the number
of large flows. We also conducted a similar experiment as
in Section III-C, and observed a significant reduction in data
transfer time. This experiment has an important implication:

C2

A1 A2 A4A3

T1 T3 T4

C3 C4

A5 A6 A8A7

T6 T7 T8T5

C1

T2

S1 S5 S7 S11 S13 S15S9S3S2 S6 S8 S12 S14 S16S10S4

Part of network
doing data transfer

F1

F2

Fig. 5. Experimental setup in case of failure

RPS cannot benefit much by treating large and small flows
differently. Some earlier proposals [5] work only on large
flows and let ECMP handle smaller flows. Since RPS handles
small flows just as well as ECMP, we can apply RPS to all
flows in the network. This avoids the additional complexity of
trying to identify large flows in the network.

IV. HANDLING ASYMMETRY

So far, we have investigated the behavior of packet spraying
in symmetric multirooted tree topologies. But in the real
world, a data center network may not be symmetric at all
times. The data center may have an asymmetric topology
to start with. Even in networks with symmetric topologies,
asymmetries may arise due to various reasons. For instance, a
failure condition (link/switch failure or link degradation) can
result in an asymmetric topology. Under the above scenarios,
different paths between a pair of end hosts in the network may
see different levels of congestion.

In Section III-F1, we showed that the queue length differ-
ential is low in a symmetric network topology. However, the
queue length differential can be significant in an assymmetric
network topology due to the absence of equivalence classes.
Below, we first show how flows suffer from this queue length
differential. We then show how we can force queue lengths to
be almost equal using existing techniques that prevent queues
from growing large.

A. Problem Illustration

In this section, we use a very simple setup to demonstrate
how asymmetries can impact RPS. We consider two scenarios
(failures and mixture of routing strategies) which we believe
are common in data centers.

Two Flow Experiment: We describe our experimental results
obtained using the testbed with an oversubscription ratio of
4:1. Results for the 1:1 and 8:1 are similar and are hence
skipped for brevity. To illustrate the problem, we consider only
2 flows in the network: flow F1 from S1 to S10 and and flow
F2 from S15 to S9 as shown in Figure 5. For this experiment,
ignore the shaded box indicating data transfer. Both flows use
RPS and last for the entire duration of the experiment. As
expected, F1 and F2 observe a throughput of 407Mbps. Now,
we fail the link between T1 and A1 which lies along the path
to F1’s destination. So, while RPS is able to evenly spray F2’s
packets over all four paths to S9, F1’s packets are sprayed over

the remaining two paths to S10. This ensures F2’s packets will
see higher queue lengths along paths shared with F1 and lower
queue lengths along other paths. As a result, F2’s throughput
drops from 407Mbps to 155Mbps.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

65535 200 100 50

F
ra

c
ti
o
n
 o

f
b
o
tt
le

n
e
c
k
 b

/w
c
o
n
s
u
m

e
d
 b

y
 F

2

Max Queue Length (in Packets)

Fig. 6. RPS performance with a link failure.

B. Key Observation

We first demonstrate that the drop in throughput is indeed
due to difference in queue lengths and reducing it alleviates
the problem. To do so, in the two-flow experiment setup
described above, we statically limit the buffer size at the
output buffer of all ports in the network. When the output
buffer is unrestricted, the queue length differential reaches
more that 300 packets. But, limiting the output buffer limits
the queue length differential too. However, it also causes a
drop in throughput due to lower link utilization. To find out
throughput loss due to queue length differential, we observe
the fraction of the bandwidth that F2 receives at the bottleneck
link. A bottleneck link is always one of the links shared by
both flows. So, F2 should always get 50% of the bottleneck
bandwidth. However, as Figure 6 shows, when the queue
length is unrestricted (corresponding to the bar at 65535), F2
consumes just 17% of the bandwidth. Reducing buffer sizes
reduces the queue length difference between the paths that
carry F2’s packets. As a result, it is able to sustain a higher
throughput, reaching 35% when buffer sizes are restricted to
50 packets. This demonstrates that the higher the queue length
differential, the lower the throughput.

C. A Practical Solution: Keeping Queue Lengths Equal

The queue length differential due to assymetries is the
main factor that impacts RPS performance, but we observe
that the extent of this impact is very much dependent on
the maximum size a queue is allowed to grow. Modern data
center operators try to keep queue lengths to the minimum
to keep end-to-end latencies low and predictable, which helps
RPS. Standard active queue management techniques like RED
and numerous newer solutions [17], [10], [11] can be used to
achieve this. Later in this section, we show how RED improves
the performance of RPS in the presence of link failures. We
were not able to test out RPS with newer solutions since they
are still emerging.

RED probabilistically drops packets as soon as the queue
length crosses some threshold. Setting the threshold too low
results in being aggressive in dropping packets, and hence,

queue length is kept relatively low. However, the total through-
put and utilization is reduced as well. We also introduce a
new variant of RED that limits the ill-effects of RED while
still reducing queue length differentials. We call this variant
Selective-RED (SRED). SRED selectively enables RED only
for flows that induce a queue length differential. These are
flows which do not use all the multiple paths (like F1 in the
two flow experiment) because of link failures or otherwise.
Intuitively, restricting the queue length share of these flows
should reduce the queue length differential. Packets of flows
using all the paths (like F2) continue to use droptail since these
packets do not contribute to any queue length differentials.

We envision implementing SRED using packet marking
and a topology aware centralized fault manager. When a link
fails, the centralized fault manager configures end hosts or
ToR routers to mark all packets of flows affected by that
failure. Marking can be done using TOS bits in the IP header.
Downstream routers and employ RED only on marked packets,
thus emulating SRED. Other packets are queued and dropped
using droptail policy; this limits the ill effects of RED to only
those queues which induce queue imbalances in the network.
Note that, while centralized controllers like Hedera [5] need
to respond to new flow arrivals, the fault manager responds
only to topology changes. Hence, it can scale well to larger
networks.

SRED requires changes to switches however. Logically,
each output port will need to maintain 2 queues, one using
droptail for unmarked packets, while the other using RED
for marked packets. We can of course implement SRED
using a single physical queue itself; unmarked packets are
inserted if space is available while marked packets are queued
probabilistically using RED. Only the number of marked
packets in the queue are used to calculate the average queue
length used by the RED algorithm. We now evaluate this idea
but a detailed analysis of SRED is left for future work.

1) Two Flow Experiment: We repeat the above experiment
with RED (thresholdmax = 20, thresholdmin = 10, pmax =
0.1) enabled at all switches. We observe the throughput of
flow F2 under two scenarios: RED is applied to both flows
and SRED (RED applied only to F1’s packets). We want
to show that the reduced throughput experienced by F2 is
entirely due to the unequal queue lengths induced by F1’s
packets. Hence, limiting F1 in the routers’ queues should be
sufficient to restore F2’s throughput. As seen in Figure 7(a),
F2’s throughput falls from 417Mbps in the ideal case to less
than 200Mbps when packets from flow F1 are spread over 2
(out of 4) paths. This is expected as F1 creates high queue
length differential for packets of flow F2 which are spread
over all the 4 paths.

However, when we restrict the queue length of the switches
using RED, the throughput of F2 increases (to 360 Mbps)
resulting from lesser queue length differential. It is still low
(compared to ideal) as we are limiting the link utilization by
limiting the total queue length. Under SRED, we can clearly
observe that F2 gets close to ideal throughput. When using 2
paths under SRED, flow F1 gets a throughput (not shown in

figure) close to 195 Mbps, almost half of the ideal. This is
by design since we believe it is acceptable for flows that are
directly impacted by the failure to suffer throughput loss, but
we want to ensure that other flows not directly impacted by
the failure continue unaffected.

2) Permutation Matrix under Failure: We repeat the ex-
periment with a permutation matrix on a 4:1 oversubscribed
topology. As before, we fail the link between A1 and T1.
Figure 7(b) shows the average throughput of all the flows
which are not affected by the failure and spray their packets on
all four paths. We also compare their average throughput with
that in a topology without failures. With RPS over droptail,
the mean throughput of these flows almost halves as compared
to that without failure. RPS in presence of RED reduces the
average throughput of these flows even in the absence of
failures (due to lower link utilization). But, when a failure
happens, the mean throughput is not affected by a lot (changes
by less than 10%) due to limits on queue length differential.

SRED is exactly like droptail when there are no failures
in the network (since no flow is subjected to RED). In case
of failures, flows affected by failure (using only 2 out of 4
paths in our case) are handled using RED. These flows get
an average throughput of 156Mbps (not shown in graph).
Other flows are not affected by the failure at all and they
continue to achieve a high share of throughput. The figure
clearly shows that the failure has a negligible impact of
the average throughput of these flows. As expected, MPTCP
remains almost unaffected by the link failure.

3) Data Transfer Time under Failure: We repeat the ex-
periment in Section III-C with unequal traffic splitting. We
use the same oversubscribed fat-tree (4:1) as discussed above.
However, we transfer 1GB of data between hosts in 3 pods
as shown in Figure 5. We also inject flow F1 from the 4th

pod to a randomly selected host in one of the 3 pods. For this
experiment, ignore flow F2 shown in the figure. We plot the
average time taken by the last host to complete the transfer in
Figure 7(c) and compare the with and without failure cases.
We average this over 10 runs and the errorbars represent the
standard deviation.

A link failure in the 4th pod should not affect the 1GB data
transfer because its traffic does not traverse this pod. However,
the flow which is injected from the 4th pod creates the queue
length differential as it is sprayed over two instead of four
core switches (the other two core switches are inaccessible to
this flow due to the failure). This imbalance greatly increases
the data transfer completion time in RPS with droptail from
36 seconds to 120 seconds. In case of RED, the data transfer
completion time increases marginally from 36 to 48 seconds
for the same failure scenario. With SRED, a failure in the 4th

pod has virtually no effect on the traffic of the 3 pods. The
completion time stays the same for both with and without
failure scenarios.

V. RELATED WORK

The most related to our work are those mechanisms that
rely on flow-level traffic splitting such as ECMP and Hed-

0

100

200

300

400

500

600

Droptail RED SRED

T
h
ro

u
g
h
p
u
t
o
f
F

2
 (

in
 M

b
p
s
)

(a) Throughput in 2 flow experiment

 0

 100

 200

 300

 400

 500

Droptail RED SRED MPTCP

T
h

ro
u

g
h

p
u

t
(i
n

 M
b

p
s
)

No Failures
Link Failure

(b) Throughput with permutation matrix

 0

 20

 40

 60

 80

 100

 120

 140

Droptail RED SRED

C
o
m

p
le

ti
o
n
 T

im
e
 (

in
 s

e
c
s
) No Failures

Link Failure

(c) Completion time for data transfer

Fig. 7. RPS performance with a link failure.

era [5]. Mahout [6] is a recent scheme that uses end-host
mechanisms to identify elephants, and uses flow scheduling
schemes similar to Hedera. BCube [18] proposes a server-
centric network architecture and source routing mechanism for
selecting paths for flows. When a host needs to route a new
flow, it probes multiple paths to the destination and selects
the one with the highest available bandwidth. Techniques like
Hedera, Mahout and BCube which select a path for a flow
based on current network conditions suffer from a common
problem: When network conditions change over time, the
selected path may no longer be the optimal one. To overcome
this problem, they periodically re-execute their path selection
algorithm. VL2[1] and Monsoon[19] propose using Valiant
Load Balancing (VLB) at a per-flow granularity, but they too
do not split an individual flow across multiple paths.

Two research efforts propose traffic splitting at a sub-flow
granularity. The first effort, MPTCP[7], splits a TCP flow into
multiple sub-flows at the end hosts, which are routed over
different paths in the network using ECMP. The receiving end
host aggregates the TCP sub-flows and resequences packets.
As we mentioned before, MP-TCP requires end-host changes
which may not be feasible in all environments. It also suffers
from high overhead for short flows that dominate data centers.
The second effort, although in the context of the Internet, is
FLARE [20]. FLARE exploits the inherent burstiness of TCP
flows to break up a flow into bursts called flowlets, and route
each flowlet along a different path to the destination. However,
FLARE requires each router to maintain some per-flow state
and estimate the latency to the destination. We did experiment
with some simple variants of FLARE, such as keeping a small
number of packets of a flow go through the same path. But we
observed that any simple variant of FLARE does not achieve
as good a throughput as our RPS, since bursts of packets may
actually lead to higher queue length differentials.

VI. CONCLUSION

Multi-rooted tree topologies (e.g., fat-trees) have emerged
as the architecture of choice for many data center environ-
ments. Unfortunately, default multipath routing protocols such
as ECMP can lead to significant load imbalance, resulting
underutilization of network bandwidth. We show how a simple
packet-level traffic splitting scheme called RPS not only leads
to significantly better load balance and network utilization,
but also, somewhat surprisingly, incurs little packet reordering

since it exploits the symmetry in these networks. Furthermore,
such schemes are of lower complexity (than MP-TCP) and
readily implementable, making them an appealing alternative
for data center networks. Real data centers also need to deal
with failures which may disturb the symmetry, impacting the
performance of RPS. We observed that by keeping queue
lengths small, this impact can be minimized. We exploited this
observation by proposing a simple queue management scheme
called S-RED that can cope well with failures.

REFERENCES

[1] A. Greenberg, J. R. Hamilton et al., “VL2: A scalable and flexible data
center network,” in SIGCOMM, 2009.

[2] S. Kandula, S. Sengupta et al., “The nature of data center traffic:
measurements & analysis,” in IMC, 2009.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” in WREN, 2009.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM, 2008.

[5] M. Al-fares et al., “Hedera: Dynamic flow scheduling for data center
networks,” in NSDI, 2010.

[6] A. Curtis et al., “Mahout: Low-Overhead Datacenter Traffic Manage-
ment using End-Host-Based Elephant Detection,” in Infocom, 2011.

[7] A. Ford, C. Raiciu, and M. Handley, “TCP Extensions for Multipath
Operation with Multiple Addresses,” IETF, Internet-Draft, Oct. 2009.

[8] “Per packet load balancing,” http://www.cisco.com/en/US/docs/ios/
12 0s/feature/guide/pplb.html.

[9] M. Laor and L. Gendel, “The effect of packet reordering in a backbone
link on application throughput,” Network, IEEE, vol. 16, no. 5, sep 2002.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz et al., “Data Center TCP
(DCTCP),” in SIGCOMM, 2010.

[11] M. Alizadeh et al., “Less is More: Trading a little Bandwidth for Ultra-
Low Latency in the Data Center,” in NSDI, 2012.

[12] E. Blanton and M. Allman, “Using TCP DSACKs and SCTP Duplicate
Transmission Sequence Numbers (TSNs) to Detect Spurious Retrans-
missions,” IETF, RFC 3708, Feb. 2004.

[13] “Improving the robustness of TCP to non-congestion events,” IETF RFC
4653 (Experimental), 2006.

[14] D. Zats et al., “DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks,” in ACM SIGCOMM, Mar 2012.

[15] Sebastien Barr, “MultiPath TCP in the Linux Kernel,”
https://scm.info.ucl.ac.be/trac/mptcp/wiki/install.

[16] C. Raiciu, C. Pluntke et al., “Data Centre Networking with Multipath
TCP,” in ACM HotNets, 2010.

[17] K. K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” IETF, RFC 3168, Sep. 2001.

[18] C. Guo et al., “BCube: A High Performance, server-centric network
architecture for modular data centers,” in ACM SIGCOMM, 2009.

[19] A. Greenberg et al., “Towards a next generation data center architecture:
scalability and commoditization,” in ACM PRESTO, 2008.

[20] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCPs Burstiness using
Flowlet Switching,” in ACM HotNets, 2004.

