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Abstract— Publish/Subscribe (pub/sub) systems provide an im-
portant paradigm for distributed content delivery. Traditionally,
there have been two basic approaches to pub/sub: subject-based
and content-based. Content-based pub/sub allows fine-grained
expressiveness, and thus is a more attractive solution for content
dissemination. However, the performance of a content-based
pub/sub network is bounded by the expensive matching cost of
content messages. In this paper, we propose a hybrid approach ca-
pable of minimizing both the matching and forwarding overhead
within the pub/sub network and the delay experienced by clients
receiving the content. The hybrid approach aims to eliminate
redundant matching and forwarding inside the pub/sub network.
In particular, it identifies a number of virtual groups by exploring
common subscription interests among clients and messages for
each virtual group are only matched once at the group entry
point. In addition, for each virtual group, the content delivery tree
embedded in the underlying pub/sub network can benefit from
shortcutting forwarding-only paths. Simulations have shown that
the hybrid approach is highly effective in improving the service
efficiency and quality of a content-based pub/sub system.

I. INTRODUCTION

Publish/Subscribe (pub/sub) systems [11] provide selective
content distribution services. Clients specify content of inter-
ests through “subscriptions”; any content matching the sub-
scriptions is delivered to the client when available. Pub/sub is
an important building block of various distributed applications
such as event notification systems and resource discovery
services.

There have been two basic approaches to pub/sub services.
In subject-based pub/sub systems, content is labeled with pre-
defined “subjects”, to which clients subscribe. Content for
each subject is usually disseminated by multicast. The other
approach allows fine-grained content distribution. Both sub-
scriptions and content are specified with respect to attributes;
content delivery is performed based on matching by attributes.
These systems are called “content-based” pub/sub systems. A
classic example is a stock trade system, where content can
be described by three attributes: (issue, price, volume) and
a subscription can be specified as a disjunction of predicates,
e.g., (issue = Google, price < 100, volume > 1000).

A content-based pub/sub system usually consists of a net-
work of pub/sub servers, which manage client subscriptions
and forward content to interested clients. Clients attach to these
servers in order to send or receive content messages. For the
efficiency of subscription propagation and content delivery, the
pub/sub network usually has a tree topology [4], [7].

There are two categories of solutions to content-based
pub/sub systems. The first category groups similar content

into clusters, and each cluster is usually implemented by a
multicast group, as in subject-based pub/sub systems. Previous
work have studied various content clustering schemes [14] and
multicast channel assignment algorithms [1]. Clients subscribe
to all clusters that overlap, possibly partially, with their inter-
ests, and thus may receive unwanted content. Therefore, the
fine-grained expressiveness of content-based pub/sub systems
has to be sacrificed to certain degrees in this “clustering” ap-
proach. The second solution achieves precise content delivery:
content is only delivered to the clients whose subscriptions
match the attribute descriptions of the content [7], [4]. This
“exact-matching” approach retains the desirable features of
expressiveness and flexibility in content-based pub/sub sys-
tems, at the expense of potentially higher state maintenance
and processing cost.

Previous work on content-based pub/sub has focused on
the pub/sub system architecture and content matching. In
particular, a key challenge in content-based pub/sub systems
is the design of efficient content matching algorithms [2], [8],
especially for the “exact-matching” approach. Since content
messages are not given explicit destination addresses, the
pub/sub network is responsible for determining the forwarding
paths for each message. At each step, this process amounts
to evaluating the predicates associated with the message,
matching them against the subscription table, and deciding
the next-step servers to forward the message. If the content
space is defined by a large number of complex predicates,
message matching can be a significant source of cost at the
pub/sub servers. The situation is exaggerated when there are
large volumes of published content so that the frequency
of matching at each pub/sub server is extremely high, or
when the content is very popular so that matching has to
be performed by a large number of pub/sub servers. In [8],
a matching algorithm aimed at fast message forwarding is
proposed; it has been shown to achieve matching time of
from a few milliseconds to tens of milliseconds for a content
space with millions of attribute constraints. The results imply
that matching time is significant compared with the network
delay of message forwarding, which usually is also on the
magnitude of milliseconds. Therefore, from the perspective of
the pub/sub system, content matching can be a defining factor
for the throughput of the service network. Meanwhile, content
matching can also be an important contributor to the delay
experienced by clients receiving the content.

In both Gryphon [4] and Siena [7], matching is conducted
at each step of forwarding the content message from the
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publisher towards the subscribers, thus possibly reaching all
the servers in the pub/sub network. More recently, Kyra [6]
proposes to create multiple smaller pub/sub networks based
on content clustering so that each network is in charge of a
subset of the content space. In Kyra, each instance of content
distribution only involves the one pub/sub network associated
with the content; however, it may still result in matching at
all the servers in the corresponding cluster. In all of these
systems, expensive matching operations will be invoked for
unnecessarily many times, when a large volume of messages
are published with the same attribute descriptions, e.g., on-line
price monitoring of a particular issue of stock.

In this paper, we propose a hybrid pub/sub scheme that
minimizes both the amount of matchings inside the pub/sub
network and the delay to receive subscribed content at clients.
In particular, the pub/sub network dynamically identifies a
number of virtual groups based on common subscriptions.
For each of such groups, content messages only need to be
matched once at the entry point of the group, and subse-
quently forwarded to the other group members without any
more matchings. Similar to subject-based pub/sub systems,
each group uses a delivery tree for message dissemination.
However, the groups are defined on-demand according to
client subscriptions other than being pre-defined. Moreover,
these virtual groups co-exist with the original content-based
pub/sub system, and their correspondent delivery trees are
embedded inside the default pub/sub network. The virtual
groups collectively cover a subset (possibly all) of the content
space, and the content outside their definition scope is matched
and forwarded by the default pub/sub network as usual.

In addition, for each virtual group, the delivery tree can be
optimized to further reduce the forwarding overhead in the
pub/sub system. The rationale is similar to that of tunneling
in IP multicast [19]. If a particular path in the delivery tree
passes through one or more servers without branching off, this
path can be shortcut to bypass those intermediate servers. In
this way, message forwarding can be achieved by traversing
fewer servers. The benefit of shortcutting is also two fold:
First, the efficiency of content delivery is improved for both the
pub/sub servers and the underlying network. Secondly, clients
can receive the content faster.

The rest of the paper is organized as follows. We first
give an overview of the hybrid pub/sub architecture, and then
discuss the techniques of on-demand grouping and tunneling
respectively, followed by results from extensive evaluations of
the hybrid approach. Finally we draw conclusions.

II. DESIGN OVERVIEW

In this section, we describe the design rationale of the hybrid
pub/sub architecture.

A. System Model

For clarity of presentation, we model the content space Ω as
a multi-dimensional space, with each dimension representing
an attribute. A content message is uniquely described as a point
in such a space, while a subscription is a defined as a rectangle.
A published content message matches a subscription if it is

within its defining rectangle. This data model is consistent
with the assumptions made by existing pub/sub systems in
the literature [14], [15]. In practice, the content space can be
refined by designating a name, type and value range to each
dimension. In the examples we will show in this section, the
content space is a 1-D line and each subscription is described
as a range.

A content-based network is an overlay of pub/sub servers.
We assume that the pub/sub network is organized as a single-
source tree N , as show in Fig. 1. The tree root R is the
source of content. Clients (subscribers) are attached to the
tree leaves L0, . . . , Ln, which serve as their pub/sub prox-
ies. Each tree node maintains a subscription table, which
records the subscriptions from each downstream tree node or
clients. Subscription tables are created as client subscriptions
are aggregated and propagated from the leaves up the tree.
This process is similar to the subscription advertisement in
Siena [7]. Here we focus on the pub/sub tree N and do
not consider data dissemination from the leaf servers to the
clients, i.e., the actual subscribers. When a content message is
published, it is forwarded down the tree N as being matching
against the subscription tables at each step. In the example by
Fig. 1, if a message is described by the value of 3, it will be
forwarded first to nodes K0 and K1, and then to leaves L0

and L2. We do not assume any specific matching algorithm in
this paper.

B. Content-based Pub/Sub with Virtual Groups

In the hybrid pub/sub system, a virtual group Gi is identified
as a sub-region of the content space shared by the same subset
of subscribers, i.e., the same leaf nodes in our model. For the
pub/sub tree in Fig. 1, there exist two virtual groups G1 and
G2, as highlighted by dash lines. Each leaf node Lj can belong
to multiple of such virtual groups. However, the definition of
each group in the content space is unique and non-overlapping
with other groups. We discuss how to find these virtual groups
in the next section.

Each virtual group Gi induces a sub-tree Ti embedded
in the original pub/sub tree N . The sub-tree consists of the
leaf servers Li0 , . . . , Lin

in the virtual group and all the
intermediate tree nodes on the paths from these leaves to the
tree root. For virtual group G1 in Fig. 2, its corresponding sub-
tree includes the root R, the two internal nodes K0 and K1 and
leaves L0 and L1. As a content message is published at the root
R, it is first matched against the virtual groups. If the message
belongs to one of these groups, i.e., Gi, it is forwarded down
the associated sub-tree Ti without being semantically matched
at any other node. Otherwise, the message is delivered by
the default pub/sub tree N by matching and forwarding at
each step. It is easy to see that for an individual message,
the number of matching operations saved by using the virtual
group Gi is determined by size of the corresponding sub-
tree Ti. More precisely, the saving per message is equal to
the number of internal nodes Fi in the sub-tree. Therefore,
generally speaking, the more popular the virtual group Gi, i.e.,
the more leaf servers that the group spans, the more beneficial
to use it for content delivery. In addition, the value of Fi, and
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thus the matching saving, is also determined by the specific
topology of individual sub-tree Ti.

In a real-world situation, the popularity of content can vary,
as well as the density of published messages within the content
space. A second factor in determining the potential benefit of
creating a virtual group Gi is the amount of messages Ci

covered by the group. The more messages to be delivered
by the virtual group, the more savings in terms of matching
operations. Overall, the benefit of a virtual group in terms of
saved matchings can be formulated as: Fi ∗ Ci.

C. Efficient Forwarding in Virtual Groups

The benefit index of a virtual group can be improved by
optimizing the sub-tree structure. The delivery tree Ti for
each virtual group Gi is obtained from the original pub/sub
tree N . As a result, there may exist redundant forwarding
hops in the induced tree Ti as messages are passed through
a sequence of server nodes without being replicated. In this
case, the sequence of simply-forwarding hops can be replaced
by a single hop from the entry node to the exit node where
the forwarding path branches off. The virtual group G1 in
Fig. 2 has two shortcuts, as shown in Fig. 3. This type of
shortcutting can further reduce the cost of the pub/sub system
by eliminating unnecessary messaging between the pub/sub
servers. The benefit of a shortcut is determined by the length
of the original path. If the original path has H (H > 1) hops,
the benefit of a shortcut, in terms of saved messages, is equal
to H − 1.

Shortcuts may exist in any virtual group tree. However,
it is likely to find more shortcuts in sparse virtual groups
shared by only a few leaf servers. Therefore, although the
benefit from saved matching operations might be lower for
sparser groups, their overall benefit index can be improved by
applying shortcutting. As the achievable matching saving by
a virtual group Gi, the benefit of shortcutting also is tied with
the specific topology of the sub-tree Ti.

An extreme situation of shortcutting is a virtual group with
a single leaf, and thus a shortcut can be established from the
root to the leaf, bypassing all internal nodes. In this case, the
shortcut creates a unicast path.

D. Summary

The hybrid pub/sub architecture combines the strengths
of both subject-based and content-based systems. It is built
based on a content-based pub/sub network and retains the
expressiveness and flexibility of fine-grained content delivery.
Meanwhile, virtual groups are extracted to exploit shared
subscription interests among clients. Virtual groups are used
as expressways for disseminating content of common inter-
ests. These expressways can be further expedited by adding
shortcuts between branching points in the delivery tree.

Virtual groups enhanced with shortcutting is potentially
beneficial for various group sizes. A virtual group can overlap
with the underlying content-based pub/sub tree; in this case, it
serves as an express broadcast channel. On the other hand, a
virtual group can consist of a single shortcut from the root
to a leaf server and is equivalent of unicast. Nevertheless,
virtual groups are more likely to include subsets of the pub/sub
network and act as optimized multicast channels.

So far we have assumed a single-sourced tree for the
content-based pub/sub system. However, the same approach is
applicable in other pub/sub network topologies. For example,
in a content-based network like Siena [7], there exists a
delivery tree for each publishing server; each of these trees
can benefit from exploring virtual groups and shortcutting, as
we have discussed in the section.

III. IMPLEMENTING VIRTUAL GROUPS

This section discusses the techniques related to creating
virtual groups in a content-based pub/sub network.

A. Virtual Group Identification

A virtual group Gi is defined by the subset of the multi-
dimensional content space shared by the bottom-level group
members: Li0 , . . . , Lin

. Since subscriptions are described by
rectangles, the aggregated subscriptions Sj at a leaf pub/sub
server Lj can be described as a disjunction of individual
rectangles. Fig. 4 shows an example of three leaf servers,
with their respective subscription rectangles highlighted by
different shades. Each leaf server can have many, possibly
overlapping rectangles. In this simple example, The aggregated
subscription S0 at leaf server L0 consists of two overlapping
rectangles. Identifying virtual groups amounts to finding the
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intersections of the aggregated subscriptions from different
leaf servers. There exist four distinct intersections between the
three leaf servers in Fig. 4, each labeled with the intersecting
servers.

It is straightforward to produce the intersection of two rect-
angles. However, finding all possible virtual groups requires
testing and reporting intersections from any combination of
group members, i.e., 2n combinations in total. Therefore, a
brute-force solution is apparently not practical.

Theorem: The virtual group identification problem is NP-
complete.

Proof: Given the n set of rectangles, an intersection graph
V can be generated by denoting each rectangle with a node
and connecting any two intersecting rectangles with an edge.
Furthermore, we assume that each set is characterized with
a distinct color code (we use shades in our example), and
each node in the intersection graph has the same color as the
set associated with the respective rectangle. Fig. 5 depicts the
colored intersection graph corresponding to the subscription
rectangles in Fig. 4. In this way, an intersection between k

rectangles is translated into a k-size clique in the intersection
graph V . The number of colors (≤ k) in each clique represents
the number of intersecting sets. There exist five cliques in total
in Fig. 5. However, only four have at least two different colors
(shades), while the two overlapping subscription rectangles at
leaf server L0 corresponds to the fifth clique. The problem
of virtual group identification is equivalent of producing any
intersection between k set, where k ∈ [2, n], and thus is

reduced to finding all cliques with at least two different colors
in the intersection graph. A special case of this problem is
when each set contains only one rectangle. If we could solve
this special case, we would be able to answer the following
question: whether there exists a clique of size k in the graph
V . However, the latter is a well-known NP-complete problem
called the clique problem [9]. Therefore, the virtual group
identification problem is NP-complete.

1) Grid-based Grouping: In this paper, we adopt a grid-
based scheme for virtual group identification. A similar ap-
proach was used to cluster similar content in [14]. First the
content space Ω is partitioned into a regular grid. Each leaf
server Lj marks the grid cells based on its local aggregation
of subscriptions: For each cell a ∈ Ω,

a(j) =

{

1 a ∈ Sj

0 otherwise

Next, a subscription chart is generated by putting together
all the marked grids, with each cell a annotated with all the leaf
servers interested in it. Finally, virtual groups can be picked
out by grouping all the grid cells that feature the same set of
subscribing leaves. If both a1 plus a2, and no other cells, are
subscribed by the same set of leaves, a1 and a2 make a virtual
group. In this way, the total number of potential virtual groups
is bounded by the number of cells in the grid, i.e., in the worst
case, there can exist as many virtual group candidates as the
grid cells. In practice, only the most valuable candidates are
selected to be implemented.

A virtual group can be characterized by both its defining
grid cells and the associated leaf servers. As discussed pre-
viously, the potential benefit of a virtual group is determined
by both the group size and the content volume delivered by
the group. In addition to the distribution of subscriptions,
information on message density can also be collected based on
the same grid, i.e., each cell can be marked with the amount of
relevant content messages. In this way, the weight of a virtual
group can be simply calculated as the sum of the message
density of each associated cell. In our model, message density
can be recorded by the root R, where all content messages are
originated.

The partition of the grid is mandated by the specific pub/sub
application and its content space. In the stock exchange
example, the dimension corresponding to the price or the
volume can be divided into unit lengths based on the numerical
precision of the application. Since there can be a large number
of cells in the grid for some applications, the grid can be pre-
processed using the message density information [14]: only
those cells with message density higher than a certain thresh-
old are selected for consideration in virtual group identifica-
tion. In applications with highly skewed publication density,
this process can eliminate a potentially large number of cells
with zero or very low density. A second potential solution
is to use coarser partitioning if clients can tolerate unwanted
deliveries to certain extent, e.g., by deploying local content
filters. In fact, many applications do not require extreme
accuracy and oftentimes some kind of approximation, e.g.,
numerical rounding off, is used. Therefore, there may exist an
acceptable trade-off point between accuracy and efficiency.
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Step 1: for each leaf server Li

Update subscriptions to coordinator
Step 2: for coordinator

Identify virtual group candidates
Step 3: for each virtual group candidate Gj

for each leaf server in Gj

Send Group message upward subtree Tj

for each non-leaf server on subtree Tj

Update forwarding table for Gj

Step 4: Repeat step 1-3 for each virtual group candidate

Fig. 6. Distributed algorithm for virtual group setup

B. Virtual Group Setup

This subsection proposes a distributed protocol for virtual
group construction based on the algorithm described above.

We assume that there exists a protocol coordinator in the
pub/sub network, and it can be the tree root R or any pre-
designated entity. First, each leaf server updates the coor-
dinator with its local subscriptions, i.e., as a marked grid.
After aggregating all subscriptions, the coordinator identifies
all candidate virtual groups, each with a benefit value as
formulated previously.

Creating a virtual group is also associated with a cost, in
terms of state maintenance and messaging overhead. The net
benefit of a virtual group should take this cost into account.
In other words, the potential benefit should offset the cost of
setting up a virtual group. For example, the coordinator can
choose those candidate groups with benefit values larger than
a certain threshold.

After finalizing the selection of virtual groups, the coordi-
nator initializes the process of group creation by informing the
leaf servers of the groups that they belong to. For each virtual
group being notified of, a leaf server sends a Group message
up the pub/sub tree. At receiving a Group message, an internal
tree node sets up the forwarding state in the corresponding
forwarding table that it maintains for the virtual group. The
setup process is complete when the tree root R receives the
Group message for each virtual group. This protocol is briefly
summarized in Fig. 6.

This protocol can be invoked repeatedly to update vir-
tual groups according to subscription changes. The coordi-
nator is responsible for initiating protocol executions and
for maintaining correct content delivery throughout group re-
configurations. For example, the tree root R can be instructed
to temporarily buffer all content messages during the setup
process.

IV. OPTIMIZING VIRTUAL GROUPS

The Group messages described in the previous section
create a content delivery (sub)tree for each virtual group. This
tree is induced by the group membership and embedded inside
the default pub/sub tree. The tree structure can be improved by
adding shortcuts to bypass forwarding-only tree nodes. This
section presents a distributed protocol for materializing such
shortcuts. The protocol is applied to each existing virtual group
in the pub/sub system.

Step 1: for root R

Send Shortcut Probe message down subtree Ti

Step 2: for each non-root server on sub-tree Ti

if branching point or leaf server
Check Shortcut Probe message for shortcut
if shortcut exists

Send back Shortcut Reply message
if not leaf server

Send new Shortcut Probe message down
else

Append itself to Shortcut Probe message
Forward Shortcut Probe message on

Step 3: Repeat step 1-2 for each virtual group

Fig. 7. Distributed algorithm for shortcut setup

First, the root R sends Shortcut Probe messages down the
virtual group tree. Each probe message represents a probing
thread. After receiving a probe message, an internal node
checks the corresponding forwarding table. If there are more
than one downstream nodes, i.e., if the current node is a
branching point on the tree, the probe thread associated with
the probe message is ended. However, new probe messages
are sent down the sub-tree rooted at the current node, creating
new probing threads. On the other hand, if the receiving node
is forwarding only, it appends itself to the probe message and
forwards it on to the next hop. In this way, a probe message
records its own traveling path. When a probing thread is ended
at a branching point, or when it reaches the a leaf node, the
path recorded by the probe message is checked for possible
shortcuts, i.e., if the path consists of more than two hops. If
a shortcut is identified, a Shortcut Reply message is sent back
to the origin of the probe message to set up the shortcut. The
distributed algorithm is formulated in Fig. 7.

During content delivery, a tree node (except the leaves) first
checks if there exists a shortcut on each of the downstream
paths and uses the shortcut for message forwarding.

V. PERFORMANCE EVALUATION

This section presents results from extensive simulations to
evaluate the hybrid content-based pub/sub system.

A. Methodology

The simulations were conducted using a regular 4-ary tree
of 4 levels, i.e., there are 64 leaves and 85 nodes in total. For
the purpose of constructing virtual groups, the content space
is partitioned into 100 unit cells. We experimented with com-
binations of different distributions for both the popularity and
the message density of the content space. These distributions
are widely used in the pub/sub literature [14], [6]. In particular,
we study three scenarios:

• uniform-uniform, or uni-uni for brevity. Both the pop-
ularity and publishing density follow a random uniform
distribution. More precisely, the number of leaf servers
interested in each cell is randomly selected from the range
[1, 64]. The amount of content messages published in
each cell is randomly distributed in the range [1, 100].
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• zipf-uniform, or zipf-uni for short. The popularity of
content messages follow a zipf distribution: the ith most
popular cell has 64 ∗ i−1 subscribing leaf servers. The
message density follows the same random uniform dis-
tribution as described above.

• zipf-zipf, The popularity of the content space follows
the same zipf distribution as the previous scenario. The
message density also has a similar zipf distribution: the
ith most published cell has 100 ∗ i−1 messages.

We measure the performance of the proposed hybrid
pub/sub scheme using the following metrics:

• Delay: The delay to receive subscribed content at the leaf
servers. The delay to deliver a message is determined by
two factors: the network delay of forwarding the message
between the pub/sub servers, and the processing delay of
matching the message against the subscription tables at
relevant pub/sub servers. We assume that each overlay
hop of forwarding takes one unit time, as well as each
message matching operation.

• Messaging cost at internal nodes: The amount of
content messages received at an internal server node,
whether matching is performed or not. This metric is
normalized by the total number of published messages.

• Matching cost at internal nodes: The number of match-
ing operations performed at an internal nodes. It is also
normalized by the total message count.

• Overhead: We measure the messaging overhead of the
hybrid approach, i.e., the number of messages spent to
maintain the virtual groups and to setup shortcuts.

B. Results

We simulated the hybrid pub/sub approach with and without
applying shortcutting, and compare the results with a pure
content-based pub/sub system. During the process of virtual
group initialization, we also investigate three configurations:
the first materializes the top 10% virtual group candidates
identified using the protocol presented previously, which are
ranked based on their benefit values. The second and the third
select 20% and 100% from the candidates respectively. Since
the protocol coordinator does not have enough information to
determine the benefit of shortcutting at the time of virtual
group initialization, only the benefit from saved matchings
is used at this stage. Building a virtual group improves the
pub/sub system efficiency, but at the cost of state and messag-
ing cost. The purpose of simulating these three options is to
quantify this trade-off between performance and overhead.

1) Delay: Table 1 summarizes the content delivery delay of
the hybrid approach, in terms of the average delay experienced
by the leaf servers. Since the pub/sub tree has 4 levels, it takes
3 hops to deliver a message from the root to a leaf. Thus, the
total delay to receive a message is 6 for the default content-
based system as matching is performed at each hop. For the
hybrid scheme, the delay is reduced to 4 if all virtual groups
are used (100%), because only one matching is required at the
root to determine which group that the message belongs to.
When the virtual groups go through a selection process based

TABLE I

AVERAGE DELAY AT LEAF SERVERS.

hybrid hybrid+shortcuts
uni-uni(10%) 5.377 5.375
uni-uni(20%) 4.950 4.943
uni-uni(100%) 4.000 3.885
zipf-uni(10%) 4.748 4.582
zipf-uni(20%) 4.568 4.277
zipf-uni(100%) 4.000 3.203
zipf-zipf(10%) 4.137 4.037
zipf-zipf(20%) 4.078 3.942
zipf-zipf(100%) 4.000 3.796

on their benefit values (10% and 20%), the delay at the leaf
servers is between 4 and 6.

For the same configuration, the zipf-zipf distribution expe-
riences the lowest content delivery delay. With only 10% of
virutal groups, the hybrid approach can reduce the delay to
very close to the optimal value, i.e., the delay with 100%
virtual groups. On the other hand, the uni-uni distribution
has the highest content delivery delay. This suggests that the
hybrid approach is more powerful for application with skewed
subscribing popularity and publishing density distributions,
where more popular content is also published more often. In
this case, a small number of virtual groups can substantially
improve the performance of the pub/sub system.

When shortcutting is applied to the hybrid approach, the
delay can be further minimized, e.g., to below 4 with all
virtual groups incarnated. Generally speaking, the reduction in
delivery delay is more notable with more virtual groups used.
This can be explained by the fact that given a fixed number
of virtual groups to be materialized, larger groups are selected
first, while smaller (sparser) groups present better chances for
shortcutting.

Fig. 4,7,10,13,16.19 depict the more detailed distribution of
the delay at the leaf servers under various settings. Overall, the
improvement in content delivery delay is mainly the result of
applying virtual groups, while shortcutting also contributes,
to various extent depending on the size and membership
distribution of the constructed virtual groups.

2) Messaging Cost: Table 2 shows the average percentage
of messages received by an internal server. Without short-
cutting, each internal server receives the same amount of
messages, whether there exist virtual groups or not. For the
default content-based pub/sub system, matching is performed
after receiving, as opposed to mere forwarding for the hy-
brid approach. Shortcuts bypass those non-branching internal
servers in a virtual group, and thus eliminate unnecessary
messaging by up to 73%, when all virtual groups are in use
(zipf-uni). Since shortcuts are more likely to exist in sparser
groups, the benefit of shortcutting is not as notable when only
large groups are used (10% and 20%). Nevertheless, it can
reduce the messaging cost by up to 16-28% (zipf-uni).

Fig.5,8,11,14,17,20 describe the distribution of messaging
cost at internal servers. Out of all the three, the “zipf-uniform”
and “zipf=zipf” combinations benefit more from shortcutting.
These configurations produce more smaller virtual groups,
compared with random uniform group sizes in the “uni-uni”
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TABLE II

AVERAGE MESSAGES (%) RECEIVED AT INTERNAL SERVERS.

w/o shortcuts with shortcuts
uni-uni(10%) 0.828 0.824
uni-uni(20%) 0.828 0.816
uni-uni(100%) 0.828 0.650
zipf-uni(10%) 0.238 0.200
zipf-uni(20%) 0.238 0.171
zipf-uni(100%) 0.238 0.065
zipf-zipf(10%) 0.540 0.436
zipf-zipf(20%) 0.540 0.403
zipf-zipf(100%) 0.540 0.342

TABLE III

AVERAGE MATCHES (%) PERFORMED AT INTERNAL SERVERS.

content-based hybrid
uni-uni(10%) 0.828 0.651
uni-uni(20%) 0.828 0.507
uni-uni(100%) 0.828 0.000
zipf-uni(10%) 0.238 0.150
zipf-uni(20%) 0.238 0.116
zipf-uni(100%) 0.238 0.000
zipf-zipf(10%) 0.540 0.110
zipf-zipf(20%) 0.540 0.067
zipf-zipf(100%) 0.540 0.000

distribution,
3) Matching Cost: Table 3 shows the average percentage of

messages that are matched at an internal server. The number
of matching operations is determined by virtual groups and is
not affected by shortcutting. If each candidate virtual group
is taken advantage of, the matching cost at the internal nodes
is zero, since no matching needs to be conducted except at
the root. In the other scenario with limited number of virtual
groups, the matching saving is as high as more than 80%.
This suggests that a substantial amount of matching cost can
be saved even with selective virtual grouping. In all three
scenarios, the zipf-zipf combination sees the most significant
improvement in matching cost. Only 10% virtual groups can
reduce the matchings by about 80%. This result is consistent
with the result of content delivery delay shown previously.

Fig.6,9,12,15,18,21 show the distribution of matching cost
at internal servers. Although the hybrid approach is more
valuable for situations with highly skewed popularity and
density distributions in the content space, the hybrid approach
is universally beneficial, as can be seen in various simulation
settings.

4) Protocol Overhead: Table 4 lists the messaging over-
head of the hybrid approach for content-based pub/sub, com-
pared with the messaging savings due to shortcutting. Overall,
the messaging overhead is moderate when only 10% or 20%
virtual group are actually constructed. In addition, this over-
head can be amortized over time by the messages delivered by
the virtual groups and shortcuts, including both matching and
messaging savings in the pub/sub network. Only the messaging
saving is shown in Table 4. And this saving can nevertheless
offset the messaging overhead for the zipf-uni and zipf-zipf
configurations.

TABLE IV

TOTAL MESSAGING OVERHEAD AND SAVING.

overhead w/o
shortcuts

overhead with
shortcuts

saving

uni-uni(10%) 1298 2051 368
uni-uni(20%) 2441 3873 1133
uni-uni(100%) 7463 12352 17875
zipf-uni(10%) 478 826 4309
zipf-uni(20%) 626 1116 7575
zipf-uni(100%) 1170 1928 19688
zipf-zipf(10%) 519 897 1195
zipf-zipf(20%) 670 1192 1578
zipf-zipf(100%) 1170 1928 2279

A second type of overhead comes from state maintenance
for virtual groups. In the hybrid pub/sub system, each group
member maintains a forwarding table for the virtual group.
Since the pub/sub network usually consists of well provisioned
application-layer servers the state maintenance overhead does
not pose resource constraint problems. Content delivery in the
pub/sub network does not rely on IP multicast, and therefore
the number of virtual groups are not confined by the available
IP multicast channels, as assumed in previous work [15], [1].
However, in practice, it is not necessary to build many virtual
groups to achieve the desired performance; only a few of the
highest ranking groups can bring significant improvement.

C. Summary

In summary, the simulations have demonstrated that:

1) The hybrid approach is beneficial in various scenarios
with different popularity and density distributions in the
content space.

2) Virtual groups, even only a few, can significantly reduce
the matching cost at the pub/sub servers, and thereby
improve the delay of content delivery. This technique is
more beneficial for larger groups.

3) Shortcutting is effective in eliminating redundant mes-
saging inside virtual groups, resulting in improved ef-
ficiency in the pub/sub network and reduced content
delivery delay. This technique is more beneficial for
smaller, sparser virtual groups.

VI. RELATED WORK

This section discusses previous work related to content-
based pub/sub systems. A survey on the general pub/sub topic
can be found in [11].

In [14], various content clustering schemes were studied,
including a grid-based algorithm. However, the grid was used
to group similar content according to a distance function,
while in this paper, grouping is conducted only for those
with zero distance. In [15], matching and distribution issues
were discussed based on the clustering algorithms presented in
[14]. Since clustering can cause content to be delivered to un-
interested clients, matching is first performed to build a list of
interested clients for distribution. In [20], the k-mean method
was evaluated in a preference clustering framework. Since the
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Fig. 8. Average delay at leaf servers (uni-uni)
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Fig. 9. Average messages received at internal
servers (uni-uni)
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Fig. 10. Average matches performed at internal
servers (uni-uni)
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Fig. 11. Average delay at leaf servers (uni-
uni:20%)
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Fig. 12. Average messages received at internal
servers(uni-uni:20%)
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Fig. 13. Average matches performed at internal
servers (uni-uni:20%)
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Fig. 14. Average delay at leaf servers (zipf-uni)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D

F
 o

f i
nt

er
na

l s
er

ve
rs

events (%)

content-based
hybrid+shortcuts:10%
hybrid+shortcuts:20%

hybrid+shortcuts:100%

Fig. 15. Average messages received at internal
servers (zipf-uni)
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Fig. 16. Average matches performed at internal
servers (zipf-uni)
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Fig. 17. Average delay at leaf servers (zipf-
uni:20%)
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Fig. 18. Average messages received at internal
servers(zipf-uni:20%)
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Fig. 19. Average matches performed at internal
servers (zipf-uni:20%)
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Fig. 20. Average delay at leaf servers (zipf-zipf)
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Fig. 21. Average messages received at internal
servers (zipf-zipf)
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Fig. 22. Average matches performed at internal
servers (zipf-zipf)
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Fig. 23. Average delay at leaf servers (zipf-
zipf:20%)
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Fig. 24. Average messages received at internal
servers(zipf-zipf:20%)
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Fig. 25. Average matches performed at internal
servers (zipf-zipf:20%)

“clustering” approach usually assumes a fixed number of avail-
able IP multicast channels, the problem of mapping clusters
to these multicast channels was studied in [1]. In [16], a set
of schemes for using a small number of IP multicast groups
in a content-based pub/sub network were also investigated.

In the “exact-matching” category, Gryphon [4] organizes the
pub/sub network into a single-source tree and proposes a link
matching algorithm to forward content towards directions of
matching subscriptions. In [18], a similar pub/sub topology
was assumed, but this work considers a different problem
of filter placement, i.e., how to find the optimal positions
for a fixed number of matching points in a pub/sub tree.
Siena [7] builds a symmetric spanning tree, and each pub/sub
server can be a potential publisher or subscriber. Kyra [6]
proposes to create multiple pub/sub networks based on content
clustering, with each network responsible for a subset of the
content space, and thus requires a pre-processing stage of
clustering. In [8], a fast matching algorithm was proposed
and it can achieve matching time of milliseconds in a highly
complex content space. INS/Twine [3] uses a peer-to-peer
based pub/sub architecture for resource discovery. Herald [5]
aims to build a distributed event notification system at the
global scale. Other work on pub/sub can be found in [13],
[10], [12], [17].

VII. CONCLUSION

In this paper, we have presented a new hybrid approach to
content-based pub/sub systems. The hybrid approach leverages
shared interests in a distributed content delivery environment
by identifying virtual groups. These virtual groups serve as
expressways for the content-based pub/sub network. Messages
are only matched once at the entry point and then forwarded to

the rest of the virtual group, similar to in subject-based pub/sub
systems. In addition, these expressways can be made faster
by adding shortcuts to the virtual group tree. We have also
proposed distributed protocols for virtual group management
and shortcut construction. Simulations under various settings
have shown that the hybrid approach is highly effective
in minimizing content delivery delay and in improving the
pub/sub network efficiency.
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