A Case for a Spam-Aware Mail Server Architecture

Abhinav Pathak
Dept. of ECE
Purdue University
West Lafayette, IN 47907

pathaka@purdue.edu

ABSTRACT

The current mail server architecture spawns a new process
upon every new connection it receives. The new process
deals with the handling of the mail from accepting “Helo”
information till the end of the connection. While forking a
new process for each separate connection has many advan-
tages in terms of security and modularity, this architecture
has severe performance implications in view of increasing
unsolicited emails - spams and emails with rogue connec-
tions. We propose a new architecture for mail servers, that
retains the advantages of the process architecture for receiv-
ing mails, but at the same time wastes little server resources
in case of bounced emails/rogue connections. Essentially,
the new architecture does not fork off a new process until
it is certain that the mail will not get bounced. We experi-
mentally show that the new architecture use server resources
more efficiently.

1. INTRODUCTION

Recently there has been a steep rise in the amount of un-
solicited emails (spams) [13]. Such emails overwhelm users’
mailboxes, consume server resources and cause delays in
mail delivery. Numerous techniques have been proposed to
stop or mitigate spams. Such techniques include content-
based filtering [3], IP-based blacklisting [1, 11], quota en-
forcement [16], and relationship inference between senders
and receivers [4], [18]. Although such techniques focus on
reducing the impact of spams on the end-user, they assume
mail servers to be over-provisioned. With the increasing
trend witnessed in the amount of spams [13], it is evident
that no matter how much over-provisioned the mail servers
are, the need to design “smart” mail servers that can op-
timize their resource utilization by expending minimal re-
sources on rogue emails is inevitable.

In this paper, we focus on a class of spams and make the
case for optimizing mail servers to be spam-aware. Never-
theless, the same idea can be extended to other forms of
illicit mails.

Figure 1 shows the percentage of the total number of
emails that arrive at a representative mail server that even-
tually get bounced. The data is collected at the mail server
maintained by the Engineering Computer Network (ECN)
at Purdue University over a period of three months start-
ing from Dec 2006. The ECN network hosts about 20,000

CEAS 2007 - Fourth Conference on Email and Anti-Spam, August 2-3, 2007,
Mountain View, California USA

Sabyasachi Roy
Dept. of ECE
Purdue University
West Lafayette, IN 47907

roy0O@purdue.edu

Y. Charlie Hu
Dept. of ECE
Purdue University
West Lafayette, IN 47907

ychu@purdue.edu

mail users. We can observe that about 20 to 25% of the
emails reaching the ECN mail server are bounced, i.e., there
are no real users associated with the “to address” of the
mail. Such a large number of bounces largely result from a
well-known spamming technique: random guessing (RG) [9].
Using RG, spammers send mails to commonly used email ad-
dresses with the hope of hitting on valid ones. It is likely
that in the future this percentage will continue to increase
with the increase of spams, and become the “common case”
among all the emails received. In fact, Figure 1 shows a
slight increase in the percentage of bounces from 19% to
23% within a period of 3 months.

The server architectures used in popular mail servers del-
egate a new process for each SMTP connection received.
Such an architecture has a myriad of advantages but par-
ticularly wastes a lot of server resources in case of bounced
emails and is potentially vulnerable to DDoS. For instance,
Figure 2 depicts the degradation of the postfix mail server’s
goodput performance as the fraction of bounces received in-
creases (details in Section 3). Using experiments on a ran-
dom set of mail servers in the Internet, we show that at least
20% of the mail servers are vulnerable to very small scale
DoS attacks.

Based on these observations, we propound a novel hybrid
mail server architecture that improves the performance of
mail servers by early differential treatment of legit and illicit
emails. We commit server’s resources to an incoming email
only after knowing the legitimacy (w.r.t to bounce/non-
bounce nature) of the email.

2. CURRENT MAIL SERVER ARCHITEC-
TURE

Current mail server [12, 8, 10] architectures have a process-
based model and differ only in the degree of multiprocessing.
Specifically, on receiving an SMTP connection, each of them
forks a new process or uses a pre-forked process to handle
the incoming connection. Such an architecture is inherently
inefficient, particularly under high load. However, there are
myriad advantages of using such an architecture. Below we
describe the pros and cons associated with such an architec-
ture.

2.1 Pros

The architectural requirements of mail servers are secu-

rity, reliability, robustness, performance, availability, extendibil-

ity, maintainability, testability and portability in decreasing
order of importance [5]. A process-based model naturally
captures the requirements of security, reliability, robustness



50
45
40
35

30
25 B — Lol [t
ARY, eEAY T !
20 il Sabeie AT .
VAN \ YW
15
10
5

0

T T T T
Percent bounce —+—

Percentage of bounces over total mails

0 10 20 30 40 50 60 70 80 90
Days

Figure 1: Percentage of the bounces w.r.t total emails at

ECN mail server at Purdue University.
90000
80000

T~ Goodpu‘t —

70000
60000
50000

Mails

40000

30000

20000
10000
0

0 20 40 60 80 100
Bounce percent

Figure 2:
bounces.

and extendibility better than a thread/event-based model.
In fact, the sendmail architecture that was composed of a
single monolithic root process per connection was modified
to spawn multiple small processes in postfiz and gmail. Such
a modification was necessary to get around security loop-
holes in sendmail. Specifically, using many small processes
with different privileges for different tasks led to a more
modular architecture. Moreover, such a design limited se-
curity breaches to the small underprivileged processes and
obviated the need for subtle security checks thereby reduc-
ing the risk of coding lapses. Postfix optimized the multi
process architecture by creating a process pool apriori, thus
eliminating the frequent process creation and termination
overhead.

2.2 Cons

Web servers have long ago switched to multithreaded /event-

based architectures to satisfy the ever growing performance
demands [6, 14, 2, 15]. However, due to the less strict
latency and response time requirements in case of SMTP
traffic, a process-based architecture has sufficed for mail
servers till now. But, the downsides in terms of performance
and availability are getting pronounced with the increase in
email traffic. The poor performance of this architecture in
turn makes it vulnerable to DoS attacks. To prevent such
attacks, current mail servers put a source IP based limit on
the number and rate of connections served at a time. But
such limits are configurable parameters and finding the cor-
rect parameter value is a challenge in itself. Also, using the
same parameter value for all source IPs may not be appro-
priate. For instance, a large amount of SMTP traffic is likely
between the mail servers of Yahoo and Google. In such a
case a predefined limit is not desirable. All such concerns

Performance degradation of postfix due to

justify the need to rethink the mail server architecture.

3. PERFORMANCE PROBLEM

We consider the problem of performance penalty that ac-
companies a process-based mail server architecture from two
perspectives. First, we estimate the gravity of the prob-
lem by quantifying the performance degradation due to a
process-based architecture such as process creation and con-
text switching overhead. Second, we show that the above
problem is widespread in today’s Internet by using data col-
lected from our Internet experiments.

3.1 How serious is the problem?

For the purpose of demonstrating the seriousness of the
problem, we focus on a case where a mail server receives a
large number of bounces. By allocating processes to han-
dle such bounces, mail servers often unnecessarily waste
resources. We conducted our experiments on postfix [8]
as a representative MTA. We hosted our mail server on a
machine with Intel Celeron 3.06GHz processor, 256 MB of
RAM, and the client sending mails was running on a similar
machine. A large number of mails were sent continuously
over a period of 15 minutes. Postfix was configured to han-
dle only 100 (by default) connections at any time. The client
generating mails always maintained at least 200 connections
to keep the MTA busy. The client sent a mix of mails to
valid and invalid users (bounces). The proportion of the two
types of mails was varied. Figure 2 plots the goodput of the
postfix MTA, i.e., number of valid mails that postfix could
accept during the 15-minute period. We can observe that as
the percentage of bounces increases, the goodput decreases.
After the mix reaches a point where more than 50% of mails
are bounces, the goodput drops alarmingly. Ideally, the pro-
cessing of bounces should take little time. However, due to
the context switches involved among processes processing
bounces, a large portion of the processing time is wasted.

3.2 How prevalent is the problem?

Because of the high overhead associated with the process-
based model, most of the mail servers have a configurable
limit on the number of processes they can fork for accepting
incoming connections. When the upper limit on the number
of processes to be forked is reached, mail servers either drop
down the new connections or send back a message “421 Too
many connections” and close the connection. A practical
scenario when the above can happen is when a mail server is
hit by spammers, leading to a large number of connections
being served for the emails from the spammer which may
eventually get bounced and thus, leaving little room for valid
emails to connect to the mail server.

To demonstrate the prevalence of the performance prob-
lem, we conducted a simple experiment on a set of randomly
selected mail servers currently running in the Internet. We
randomly picked a list of one thousand mail servers in the In-
ternet from the “whois” [17] database. For each mail server
in the list, we tried to achieve the maximum possible num-
ber of simultaneous SMTP connections to it as follows. We
ran an SMTP client on one machine that tries to create up
to 1000 connections to that mail server for 20 seconds. At
the same time, we ran a second SMTP client from a sec-
ond machine (and hence different IP) that tries to create 5
connections to the same mail server. For each mail server
that did not accept connections from the second machine,



connections served

1000

500000 . . —
Throughput-hybrid ——

»

2

5

E bounce 450000 Throughput-postfix -

2 L Goodput-hybrid -

g 800 400000 Goodput-postfix -

8 | , 350000

M

3 ncoming 300000

2 600 C w

s onns. Tork T 250000

£ 400 Conventional Mail Servers 200000

2 i 150000 |-

5 Incoming @ @ T

> Ga-Q@id

5 @ccep>—GED 100000 fserre

g 20 Conns. for . =

£ ISR S

2 0 — éJounc 0 ;
0 100 200 300 400 500 600 700 800 ropp 0 20 40 60 80 100

Mail servers Spam Aware Mail Server Bounce percent

Figure 3: Limit on number of pro-
cesses forked by mail servers.
chitectures.

we concluded that it was choked by the connections from
the first machine. For such mail servers, we recorded the
number of connections that were successfully served before
getting choked.

Figure 3 plots a distribution of the number of connections
that were successfully served by the mail servers. We see
that out of about 800 mail servers plotted, about 300 choked
under 100 connections. About 200 of the mail servers choked
at 100 connections (300 to 500 on x - axis). This shows that
a lot of SMTP servers deployed use the default setting of
100 (common for postfix). We also see that a few of them
were able to serve all 1000 connections. Importantly, at
least 20% of the mail servers were vulnerable under a spam
attack from the spammers, which eventually would lead to
legitimate connections suffering.

4. ANEWARCHITECTURAL MODEL FOR
SPAM-AWARE MAIL SERVERS

In Section 3.1 we explained how the number of bounces
seen by mail servers are expected to increase and how such
an increase would degrade the performance of traditional
mail servers. Citing such imminent problems, we make a
case for a new mail server architecture. The basic idea be-
hind a new architecture is derived from the observation that
as the percentage of bounces increases, mail servers spend
increasingly more resources processing illicit mails. The cur-
rent mail servers delegate the responsibility of each incom-
ing connection to a new process. This leads to a significant
amount of pure CPU overhead for processing invalid mails
such as bounces. Our solution aims to reduce this overhead
by delaying the event of such a delegation. In particular, a
new email is not delegated to a new process until the validity
of the “to address” is determined. Until that time the mail
server keeps all such new and undecided connections in a list
of sockets (S). Any event happening due to data arriving at
a socket in S is caught by waiting on them in a “select/poll”
loop. Thus, the overhead of process creation and/or con-
text switching for bounces is avoided by using a hybrid of
an event-based architecture and a process-based architec-
ture. The event-based architecture is used until the validity
of the “to address” is determined, after which the process-
based architecture is invoked as described in Figure 4. Such
a hybrid architecture keeps the pros and removes the cons,
as discussed in Section 2, of the process architecture.

We implemented a simple prototype of the above architec-
ture by designing a wrapper [7]. The wrapper is a front-end
of the mail server running on port 25 of a public IP ad-

Figure 4: The conventional multi-
process and the proposed hybrid ar-

Figure 5: Performance of the cur-
rent mail server architecture (post-
fix) and our model.

dress. The wrapper has an event-based architecture that
accepts connections and completes the entire SMTP trans-
action. The wrapper determines if the “to address” is valid
and forwards it to the traditional mail server, the “back-
end”; which in our case was postfix running on another
machine connected to the same switch. This approximates
our intended architecture. In this way, postfix never sees a
bounced email and hence does not fork out a new process for
it. However, note that this architecture incurs extra over-
head due to the extra level of indirection every mail goes
through (once to the wrapper then to the final mail server).

Figure 5 compares the goodput (Goodput-hybrid) of our
architecture to the goodput of vanilla postfix (Goodput-
postfix) as the ratio of the bounces in the mix of emails
sent is increased. We observe that the goodput of our archi-
tecture is less than that of the original postfix MTA initially
(up to 50% mark). We attribute this to the extra over-
head our scheme incurs (store and forward) and we consider
it as a future work to mitigate this overhead. After the
mix of bounces is increased to above 50%, the number of
valid emails received by our scheme outperforms the vanilla
postfix. This is because the backend never sees an email
that would get bounced and hence does not waste resources
on it. We also plot the total number of emails (bounced
+ non-bounced) that were handled for the case of our ar-
chitecture (throughput-hybrid) and for postfix (throughput-
postfix). We see that our architecture handles more emails
compared to postfix after the mix contains more than 50%
bounces.

5. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that a significant and
ever increasing portion of current mail servers processing
power is wasted due to processing of invalid mails. We also
demonstrated that despite several advantages, current mail
server architectures are vulnerable to DDOS attacks owing
to their process-based model. Hence, we proposed a hy-
brid mail server architecture that combines the strengths
of event-based (efficiency) and process-based (security) ar-
chitectures. Using a prototype implementation, we demon-
strate that our architecture performs better in comparison
to the state-of-the-art mail server architecture such as post-
fix, as the percent of bounces increases. As our future work,
we are developing an integrated implementation of the hy-
brid architecture to eliminate the overhead from the wrapper
implementation.



6.
[1]

2]
3]

[4]

[5]

(6]

[7]

8]
[9]

REFERENCES

N. F. A. Ramachandran, D. Dagon. Can dns-based
blacklists keep up with bots? In Proc. of CEAS, 2006.
B. Bradel and C. Drula. A study of the thread and
event concurrency models for web servers. 2003.

G. Cormack and A. Bratko. Batch and online spam
filter comparison. In Proc. of CEAS, 2006.

S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,
D. Mazieres, and H. Yu. Re: Reliable email. In Proc.
of NSDI, 2006.

M. Hafiz. Security patterns and evolution of mta
architecture. In Proc. of OOPSLA, 2005.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In In Proceedings of
the USENIX 1999 Annual Technical Conference, 1999.
K. Park and V. S. Pai. Connection conditioning;:
Architecture-independent support for simple, robust
servers. In Proc. of NSDI, 2006.

Postfix. http://www.postfix.org.

M. Prince, B. Dahl, L. Holloway, A. Keller, and

E. Langheinrich. Understanding how spammers steal
your email addresses: An analysis of the first six
months of data from project honeypot. In Proc. of
CEAS, 2005.

Qmail. http://www.qmail.org.

A. Ramachandran and N. Feamster. Understanding
the network-level behavior of spammers. In Proc. of
SIGCOMM, 2006.

Sendmail. http://www.sendmail.org.

Spamnation. http://www.spamnation.info/stats/.

R. von Behren, J. Condit, and E. Brewer. Why events
are a bad idea (for high-concurrency servers). In Proc.
of HotOS, 2003.

R. von Behren, J. Condit, F. Zhou, G. Necula, and

E. Brewer. Capriccio: Scalable threads for internet
services. In Proc. of SOSP, 2003.

M. Walfish, J. D. Zamfirescu, H. Balakrishnan,

D. Karger, and S. Shenker. Distributed quota
enforcement for spam control. In Proc. of NSDI, 2006.
Whois. http://www.whois.ws.

J. Yeh and A. Harnly. Email thread reassembly using
similarity matching. In Proc. of CEAS, 2006.



