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ABSTRACT 
The integration of building Energy Simulation (ES) and Computational Fluid Dynamics (CFD) programs 
eliminates many assumptions employed in the separate applications, resulting in more accurate predictions of 
building performance. This paper discusses the methods used to determine convective heat transfer on interior 
surfaces of building envelope, which is the key linkage between ES with CFD programs. The study found that 
the size of the first grid near a wall in CFD is crucial for the correct prediction of the convective heat. A finer 
grid resolution in CFD does not always lead to a more accurate solution when using zero-equation turbulence 
models. Through numerical experiments, the paper suggests a universal first grid size at 0.005m for natural 
convection room airflows and 0.1m for forced convection indoor airflows. The investigation also found that 
negative convective heat transfer coefficients may cause divergence and instability of the coupled simulation.  
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INTRODUCTION 
A building energy simulation (ES) program predicts building thermal performance, while a computational fluid 
dynamics (CFD) program calculates detailed airflow characters. Both of them are important tools for building 
performance evaluation and have been widely used in building and system design practices. Many literatures on 
this topic are available, such as those by Clarke [1], Chen [2], Martin [3], Chen and Srebic [4] etc. The coupling 
of ES and CFD can take full advantages of the individual programs and produce more accurate and complete 
results, because they can provide complementary boundary conditions to each other. For example, ES can 
provide interior surface temperatures of building envelopes and heating/cooling load to CFD as boundary 
conditions while CFD can determine accurate surface convective heat fluxes for ES. The benefits of the 
integration have been discussed in many previous studies, such as, by Clarke [5], Nielsen and Tryggvason [6], 
Srebric et al. [7], Beausoleil-Morrison et al. [8], and Zhai et al. [9]. 

In a coupled simulation, ES calculates the heat conduction through building envelopes and CFD determines air 
movement in an indoor space. The convective heat transfer on interior surfaces of building envelope is the most 
important linkage to couple these two programs [9]. In the coupling, CFD provides ES convective heat transfer 
on each enclosure surface. The convective heat transfer calculated by CFD is highly sensitive to the numerical 
methods and turbulence models employed in CFD. This study analyzes the effect of the size of the first grid to a 
wall used in CFD on the heat transfer and examines how turbulence models determine the convective heat 
transfer. In addition, with traditional definition of convective heat transfer coefficient, which is based on the 
temperature difference of an interior surface and room air, the coefficient value can be negative. The impact of 
negative coefficient on the coupled simulation is another subject of this study.  

FACTORS TO NUMERICAL SOLUTION OF CONVECTIVE HEAT TRANSFER  
CFD discretizes the computational domain into many grid cells and solves the governing conservation equations 
of flow on these grid cells. As shown in Figure 1(a), CFD calculates convective heat transfer from a rigid surface 
through: 

( )1surface T-ThAQ =      (1) 
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where h is convective heat transfer coefficient, A is surface area, Tsurface is surface temperature, T1 is air 
temperature at the first grid node that is at a normal distance of D to the surface, Cp is the specific heat of air, Pr 
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is Prandtl number, ρ is air density, νt is turbulence viscosity determined by turbulence models at the first grid 
node, and ν is the molecular viscosity of air. According to Equations (1) and (2), the convective heat transfer is 
determined by the convective heat transfer coefficient and temperature difference between the surface and air at 
the first grid node, and the convective heat transfer coefficient is determined by effective viscosity of air 
(turbulence viscosity plus molecular viscosity) at the first grid node. In order to obtain accurate surface 
convective heat transfer, it is important to find its relationship with the D and turbulence model.  

Since the size of the first grids in CFD can be adjusted according to the resolution requirement, the convective 
heat calculated in this manner could be grid-dependent. Another method is to use a prescribed distance, D2, to a 
wall surface and calculate convective heat transfer based on the air temperature and effective viscosity there, as 
illustrated in Figure 1(b). Since the D2 is a prescribed value, this method would eliminate the grid dependence 
problem. 

However, the convective heat transfer calculated with the second method could be different from that calculated 
based on the information at the first grid node. For example, if assuming laminar flow and D2 = 2D, the same 
heat transfer would require Tsurface-T2 = 2(Tsurface-T1). This implies a linear air temperature profile in the region, 
which is true only at the very close vicinity of the surface for laminar flow. Such a condition is difficult to meet 
for most indoor airflows. 

Therefore, the calculation of convective heat transfer should use the first method. The question now is how to 
avoid the grid dependence problem or what the size of first grids should be for the correct prediction of 
convective heat transfer. CFD theory indicates that finer grids provide more accurate results [10]. This may not 
be true when using simple turbulence models. This paper discusses the grid dependence problem in the following 
sections by using laminar and turbulent flows over a flat plate as examples.  

CONVECTIVE HEAT TRANSFER IN LAMINAR FLOWS 

First this investigation considers a laminar flow of forced convection along a horizontal plate and that of natural 
convection along a vertical plate, as illustrated in Figure 2. The convective heat transfer computed by CFD is 
compared with the analytical and empirical solutions to identify the impact of the size of first grid on the heat 
transfer.  

The convective heat transfer through the thermal boundary layer of the plate is: 
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where k is the fluid conductivity, Tsurface is the plate surface temperature, T∞ is the temperature of the free stream 
outside of the thermal boundary layer. Equation (3) shows that the heat conduction is the same as the convective 
heat transfer, because there is no fluid motion in the direction of heat transfer. 

(1) Forced Convection 

The exact solution of the laminar plate flow of forced convection is [11] 
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where δt is the thickness of thermal boundary layer and k = ρ Cpν/Pr.  

The analytical solution of the boundary layer equations shows δ = δt when Pr = 1, where δ is the thickness of 
velocity boundary layer. The exact solution of the boundary layer equations produces [11] 

xRex92.4δ =        (6) 

where 
ν

xU
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∞=  is the Reynolds number of plate flow. For example, if the velocity is 0.1m/s over a 5m long 

plate,  
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the δt at the middle length of the plate is m09.0δδ t ≈= . 

A CFD program would calculate the convective heat transfer from the plate as 
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where D is the normal distance from the center of the first grid cell to the surface (half of the cell size) and TD is 
the air temperature at cell center. In order to analyze possible errors associated with grid sizes, this study 
considers two different grid sizes: D is smaller than δt and D is larger than δt. 

• D < δt 

When D is smaller than δt, the possible numerical error is 
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Because the temperature profile in the thermal boundary can be approximated as [11] 
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the relative error of convective heat transfer due to D then becomes 
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Equation (11) verifies that the smaller the D the more accurate the calculated convective heat transfer. The error 
of convective heat transfer due to D is on the order of O(D2) for this case.   

• D ≥ δt 

The same analysis can be conducted when D is equal to or larger than δt, where TD = T∞. Then, 
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Equation (12) shows that the minimum error of the calculated heat flux is one-third of the analytical solution in 
Equation (5) as D equals δt. The convective heat transfer calculated will deviate significantly from the actual 
solution if the size of first grids is unreasonably large. 

(2) Natural Convection 

For the natural convection case, the analytical solution shows [11]  
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With this equation, one can roughly estimate the scale of δt due to natural convection in the middle of a 3m 
vertical wall at 40°C and room air temperature at 25°C to be 0.024m.  

The analytical solution of the convective heat transfer for natural convection is [11]  
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while the CFD equation for natural convection is the same as Equation (8) for forced convection.  

Therefore,  
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• D < δt 

When D is smaller than δt,  
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Hence, the smaller the size of first grids, the better the accuracy. The calculation error of the convective heat 
transfer due to the size of first grids (2D) is on the order of O(D) for natural convection.   

• D ≥ δt 

Since TD = T∞ when D ≥ δt, Equation (15) becomes 
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The equation is very similar to Equation (12) for forced convection, except that the analytical heat flux is 
different. 

CONVECTIVE HEAT TRANSFER IN TURBULENT FLOWS 
The study on laminar flows verifies that finer grid distribution provides more accurate solutions. However, most 
indoor airflows are turbulent. The analysis for turbulent flows is more complicated than that for laminar flow, 
because the accuracy of convective heat transfer predicted in turbulent flows depends on both the size of first 
grids and turbulence model used. This study has examed the accuracy by using three zero-equation turbulence 
models and different grid resolutions for a forced convection flow along a plate. The zero-equation turbulence 
models are frequently used in the CFD simulation for building design due to their simpleness and efficiency. The 
three zero-equation turbulence models tested here are: 

(1) Constant viscosity model:  

ν100ν t =           (19) 

(2) Xu’s zero-equation model [12]: 

lU03874.0ν Dt =         (20) 

where l is the normal distance to the surface and UD is the airflow speed at this location. 

(3) Prandtl’s zero-equation model [13]: 
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where κ = 0.41 and y is the distance to the surface. 

The convective heat transfer in turbulent flows is related to turbulence as defined by  
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where νt is turbulence eddy viscosity and T represents Reynolds-averaged temperature. In Equation (22), νt >> ν 
for the flow region away from walls, and νt << ν for the near wall region, which is called viscous sub-layer. It is 
obvious that if the first grid is located in the viscous sub-layer, the relationship between the convective heat 
transfer predicted and the size of first grids is similar to that for laminar flow. The heat transfer computed does 
not directly depend on the turbulence model, although the turbulence model does influence the velocity and 
temperature profiles. According to the empirical equation [11], 

δturbulence=0.057[(n+1)(n+2)/n]0.8Rex
-0.2

 x   (23) 

where n=7 for a common velocity profile in the boundary layer, δturbulence for a forced convection with a velocity 
0.1m/s over a 5m long plate is  

δturbulence = 0.13 m      (24) 

and δsub-layer ≈ 0.15~0.2δturbulence = 0.02~0.03m. When the velocity is increased to 1m/s, δturbulence and δsub-layer are 
reduced to 0.08m and 0.01~0.02m, respectively. 

The empirical solution for the turbulent plate flow and heat transfer gives [11]  
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Considering the heat transfer in the middle of the plate with a velocity of 0.1m/s,  
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As a result, 
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On the other hand, with the assumption of Prt = Pr, a CFD program would calculate the heat transfer as, 
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• D ≥ δt 

Since TD = T∞ as D ≥ δt, 
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With constant viscosity model:  
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With Xu’s zero-equation model:  
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With Prandtl’s zero-equation model:  
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• D < δt 
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The temperature and velocity profiles in the boundary layer are approximated as [11] 
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Hence, 
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and 
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With constant viscosity model:  
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With Xu’s zero-equation model:  
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With Prandtl’s zero-equation model:  
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Equations (30)-(32) and (36)-(38) can be illustrated as Figure 3 by using the common velocity profile of n=7 and 
δ=0.13m.   

Figure 3 indicates that: 

(1) The use of small first grid with the constant viscosity turbulence model would increase the error in 
predicting the heat flux. A large first grid seems better than a small one. 

(2) The error in predicting the heat flux increases as the grid resolution decreases when the other two zero-
equation models are used. A finer grid solution is preferred with the two zero-equation models.  

Further analysis of Equation (37) indicates that qCFD = qsurface only when D/δ = 0.0004. In fact, under this 
condition, the first grid falls into the viscous sub-layer (δsub-layer/δ = 0.15~0.2). In other words, the first grid 
should be placed in the sub-layer so as to obtain the correct heat flux. Since νt << ν  in the sub-layer, Equation 
(35) can be re-arranged 
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To achieve Δq = 0, D should be 0.03m if n=7 and δ=0.13m. The value is obtained based on the simple plate 
flow. Real indoor airflows are more complicated. Usually, the momentum and thermal boundary layer in room 
airflows are thicker than those in the plate flow. The simulation experience from the literatures (e.g. [14]) 
indicates that D = 0.05m is a good value for most indoor airflows. The following section attempts to validate this 
value through two case studies by using Xu’s zero-equation turbulence model.  
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NUMERICAL EXPERIMENTS FOR TWO TYPICAL ROOM AIRFLOWS 

(1) Natural Convection in a Room with an Aspect Ratio of 2.5:7.9 

In order to define a reasonable CFD grid for room airflows, this study first models a natural convection flow in a 
full-size room as shown in Figure 4. The room was with a hot wall on one end and a cold wall on its opposite. 
The room was used by Olsen et al. [15] to measure flow and heat transfer. Olson also used a 1:5.5 scale physical 
model containing R114 gas. The small-scale model was geometrically similar, had the same Reyleigh number, 
and had the same dimensionless side wall temperature as the full-scale room. The measurement found a good 
agreement between the full-scale room and the scale model in flow patterns, velocity, temperature distributions, 
and heat transfer. This study is particularly interested in the convective heat transfer at the hot and cold walls and 
compares both full-scale and model experimental results with the computed results.   

Figure 5 presents the convective heat transfer at the hot and cold walls for both the measurement and simulation 
where Nusselt number is plotted as a function of Reyleigh number. Also included in the figure is the correlation 
from Bohn et al. [16], Nu=0.31Ra1/4, for enclosure flows. The Nu and Ra number are based on the temperature 
difference between the hot and cold walls. The experimental uncertainty is approximately 10 percent for the 
scale model and 30 percent for the full scale room. The results show that the simulations with the first grid size 
of 0.002-0.005m agree very well with the data, exhibiting the expected trend of increasing Nu with Ra. The other 
first grid sizes produce the solutions that are more deviated from the measurements, as illustrated in Figure 6. 
Note that finer grids do not give more accurate results with the zero-equation model as analyzed. Figure 5 and 6 
indicate that the first grid size at 0.005m is reasonably good for the indoor natural convection cases.  

 (2) Forced Convection in a Room with an Aspect Ratio of 5.5:3.7:3.4 

The study further investigates a forced convection flow in an experimental chamber with the side-wall jet [17]. 
The configuration of the experimental facility is shown in Figure 7. The simulation uses three different grid 
densities:  fine grid (66×51×45 = 151,470 cells) has the first grid size at 0.05m to wall; moderate grid (44×34×30 
= 44,880 cells) has the first grid at 0.1m; and coarse grid (22×17×15 = 5,610 cells) has the first grid at 0.2m. The 
area-averaged heat fluxes at the room enclosures are then calculated and compared with the measured data, as 
presented in Figure 8. 

The results show that the simulation with the first grid size at 0.05-0.1m can provide reasonable solutions for 
such a forced-convection flow.  This conclusion confirms that by Chen [14] who indicated that the first grid size 
at 0.1m is a good value for most indoor airflows.   

NEGATIVE h VERSUS CONVERGENCE AND STABILITY OF ES 
ES and CFD programs can exchange the convective heat information on envelope interior surfaces through 
different methods. Zhai et al. [18] enumerated the possible data exchange methods and comparatively studied 
each of them through theoretical analysis and numerical experiment. According to the study, the fastest and most 
robust method to exchange convective heat between ES and CFD is that ES provides interior surface 
temperatures in a room to CFD while CFD returns the convective heat transfer coefficients h and the air 
temperatures TD near the surfaces to ES. In order to minimize the modifications in ES programs that use the 
traditional definition of convection coefficient h based on the temperature difference of an interior surface and 
room air, a corrected convective heat transfer coefficients, hcorrected, rather than h and TD,  can be calculated from 
CFD results and used in ES. The hcorrected is calculated in CFD through:    

( ) ( )roomsurfaceDsurfacecorrected T-TAT-ThAh =     (41) 

The h, calculated in CFD based on the flow viscosity (Equation (2)), is always positive. However, hcorrected can be 
negative in some particular cases.  

Figure 9 illustrates such an example in a room with displacement ventilation. If assuming h = 4W/m2°C, at the 
floor surface, the heat gain from the floor Q = h(Tfloor-Tair) = 4W/m2. If Q is represented by the temperature 
difference between Tcontrol and Tfloor, then Q = hcorrected(Tfloor-Tcontrol) = hcorrected (20-24) = 4W/m2, one would obtain 
hcorrected = -1W/m2°C. It may even cause the singularity problem if  Tcontrol=20°C. 

Negative h may cause divergence and instability of an ES simulation. ES solves the following matrix equation 
for surface energy balance 

H⋅T=q        (42) 

where,  
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and Ti is the temperature of interior surface i, hi,c is the convective heat transfer coefficient of surface i, hij,r is the 
radiative heat transfer coefficient between surface i and surface j, qi,in is incoming heat to surface i (e.g. the 
conductive heat through the envelopes), N is the total surface number. 

Therefore, 

T=q/H        (46) 

From matrix theory [19], T has a unique solution if only if |H|≠0, i.e. H is nonsingular. H is singular if and only 
if the rank of n×n matrix H < n, which means that at least one row in H could be represented by the algebraic 
combination of the others. Due to the randomness of the coefficients in H, it is impossible to anticipate the 
determinant of matrix H in general. However, the energy equation for each surface (each row in Equation (42)), 
although connected with other surfaces, cannot be determined by energy balances of the other surfaces. 
Therefore, matrix H is nonsingular, regardless of the sign of h.  

When iteratively solving Equation (42) in ES, one may still meet the instability and divergence problems. Matrix 
theory [19] proves that the matrix should possess some properties to guarantee a converged solution. Following 
is a brief discussion on the issue with Jacobi method. 

Equation (42) can be rewritten in the following manner 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− N,NN

2,22

1,11

N

2

1

N,N1N,NN,N1,N

2,2N,22,21,2

1,1N,11,12,1

hq
...
hq
hq

T
...
T
T

1hh...hh
............

hh...1hh
hh...hh1

  (47) 
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⎥
⎥
⎥
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⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− N

2

1

N,N1N,NN,N1,N

2,2N,22,21,2

1,1N,11,12,1

N,NN

2,22

1,11

N

2

1

T
...
T
T

0hh...hh
............

hh...0hh
hh...hh0

hq
...
hq
hq

T
...
T
T

 (48) 

By iteratively solving (48), one can obtain the solution with a prescribed accuracy. Assuming after the mth 
iteration,  

Tm=q’-H’Tm-1
      (49) 

And if T is the exact solution, i.e. 

T=q’-H’T      (50) 
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It can be easily seen, upon subtraction, that 

Tm-T=-H’(Tm-1-T)= H’2(Tm-2-T)=(-1)m H’m (T0-T)   (51) 

Hence 

( ) 0TTlim mm
=−

→∞
 if 0'lim m

m
=

∞→
H      (52) 

In other words, a necessary and sufficient condition for the convergence of the Jacobi method is that H’m tends 
to zero as m tends to infinite. Such a limit occurs if the spectral radius of H is less than unit. For the moment, a 
sufficient condition can be  

|H|<1       (53) 

since  

|Hm|≤|H|m      (54) 

From matrix theory, a sufficient condition when |H| is less than unity is to satisfy the following condition 

1
h
hN

ij
1j i,i

j,i <∑
≠
=

,  i=1, 2, .., N     (55) 

With positive h values, the elements in the matrix H of Equation (42) always satisfy 

∑∑
≠
==
−>+

N

ij
1j

r,ij

N

1j
r,ijc,i hhh     (56) 

which makes H a diagonal dominant matrix, assuring that there exists a unique solution for the vector T. 

When hi,c is negative, Equations (55) or (56) may not be satisfied, which could cause divergence and instability 
during a calculation. The divergence and instability may not always occur, since satisfying Equation (55) is only 
a sufficient condition. In general, the larger the real situation departs from Equation (55) (i.e. the larger negative 
hi,c), the higher the probability of divergence and instability.   

CONCLUSIONS 
In a coupled simulation of ES and CFD, CFD provides convective heat transfer on interior surfaces of building 
envelope to ES. Accurate prediction of the convective heat transfer by CFD is crucial to the accuracy of building 
energy calculation. The size of first grid to an interior surface and turbulence model in CFD are most important 
to the calculation of convective heat transfer. The convective heat transfer determined from the first grid cell, 
rather than from a prescribed location, should be used in the coupled simulation.  

This investigation found that the calculated convective heat transfer depends on the size of first grids by 
analyzing laminar flows of forced and natural convection over a flat plate. The error of convective heat transfer 
due to the size of first grids (2D) is on the order of O(D2) for laminar forced convection and O(D) for natural 
convection.  

This study further discussed the combined effect of the size of first grids and turbulence model on the convective 
heat transfer. Three zero-equation models have been used: the costant viscosity model, Xu’s model, and the 
Prandtle mixing length model. A finer grid distribution in CFD does not always lead to a more accurate solution 
when the constant viscosity turbulence model is used or when the first grid is in the sub-layer boundary with the 
other zero-equation turbulence models. Based on the theoretical analysis and numerical experimentation, the 
study suggests a universal first grid size of 0.005m for indoor natural convection airflows and 0.1m for indoor 
forced convection airflows. 

This investigation also found that the convective heat transfer coefficients, using traditional definition for 
building energy simulation, could become negative for room with strong temperature stratification, such as with 
displacement ventilation. The theoretical analysis shows that a negative convective heat transfer coefficient may 
cause divergence and instability in energy simulation. 
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Figure 1 Illustration of the grid, cell, node, and distance to the surface in CFD 

Figure 2 Laminar plate flows of forced and natural convection 

Figure 3 Impact of turbulence model and first grid size on the error of convective heat transfer predicted by CFD 
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Figure 5 Comparison of simulated heat transfer at enclosures with the data from [15] 

Figure 6 Influence of first CFD grid size on the calculation of Nu at Ra=2. 6×1010 

Figure 7 Schematic of experimental facility [17] 

Figure 8 Comparison of simulated heat flux at enclosures with the measurement 

Figure 9 Illustration of negative h 
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Figure 1 Illustration of the grid, cell, node, and distance to the surface in CFD 
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Figure 4 Configuration of the experiment (Olson et al. 1990) 
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Figure 5 Comparison of simulated heat transfer at enclosures with the data from Olsen et al. (1990). 
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Figure 6 Influence of first CFD grid size on the calculation of Nu at Ra=2. 6×1010 
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Figure 7 Schematic of experimental facility (Fisher 1995) 
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Figure 8 Comparison of simulated heat flux at enclosures with the measurement 
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Figure 9 Illustration of negative h 
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