
Problem Set 2
Spring 18

Due: Friday, March 30th, 11:59pm.

1. Floyd-Hoare Style Proofs

The following program purports to compute the factorial of a nonnegative integer n.
Prove the programs partial correctness (i.e. that if it halts, it computes the factorial
of n, for any nonnegative input n), by giving a Floyd-style proof. Do this by giving an
inductive invariant at every point in the program. Also, give the set of all individual
verification conditions (which must be valid, of course) that proves that the invariants
are really invariant. You can use either weakest pre-conditions or strongest post-
conditions to formulate the verification conditions.
Finally, write down a proof of termination, assuming the pre-condition on the input
that n > 0, by giving appropriate ranking functions that map states to a well-founded
ordering, and argue why this proves termination.

int r , t ;
r = 1;
t = n;
while (t > 0) {

r = r ∗ t ;
t = t − 1;

}
return r ;

2. Termination

Consider the following program:

int a,b;
a = 1000; b = 0;
while (a != 0 || b != 0) {

if (b == 0) {
a = a−1;
b = f();

}
else

b = b−1;
}

In the above, f() is a function that returns arbitrary positive numbers each time it
is called (it need not return the same number on two successive invocations). Think
of f() as, say, a function that returns a number from the environment (input). More
formally, all that we know is that f() returns a value greater than 0.
Prove that the above code terminates always by giving a proof based on ranking func-
tions.

1

3. Syntax-Guided Synthesis

For this problem, you will be synthesizing and analyzing strategies to solve the following
problem.

Suppose you have two copiers in a building copier[0] and copier[1]. Each copier can
hold capacity units of paper. Every morning, you can go to one of the copiers and add
up to maxfill units of paper to it, but you don’t have time to go to both of them, so you
have to chose which one to go to. However, the printers are online, so before choosing
one, you can look online to see how much paper each printer has left in it. Finally,
because of printing quotas, you know that the maximum amount of paper used on both
printers on a given day is maxuse units.

Your goal is to find a strategy that guarantees that none of the copiers ever runs out of
paper. For all the exercises you should use as a staring point the definitions provided
in copier.sk. You should submit one sketch for each question below.

(a) Let maxfill=27, capacity=27 and maxuse=13. Find a strategy within the space of
programs shown below that guarantees that the copiers never run out of paper
within a bounded horizon of 5 steps. We model the strategy as a boolean predicate
on the state. If true, we refill copier 0; if false, we refill copier 1.

pred ::= exp+?? > exp+?? | !pred | pred || pred | pred && pred
exp := copier [??] | step()%7 | 0

You will find it useful to restrict the range of ?? to a smaller number of bits.
If you use the syntax ??(N), this indicates an N-bit unknown. This notation,
however, cannot be used inside a regexp generator ||.

(b) Now we want to see if this generalizes to an unbounded number of steps. In order
to do that, we need to characterize the set of safe states. Use the same space of
predicates above to find a predicate that characterizes the set of safe states.

(c) Let maxfill = 27, capacity=27 and maxuse=10. Suppose that every Wednesday
(day()%7==2) the quotas are extended so that in addition to the maxuse units
of paper users are allowed to use, they can collectively use an additional 8 units
from copier 0, and every Saturday (day()%7==5), they can use an additional 8
units from copier 1. Find a strategy within the space of programs shown earlier
that guarantees that the copiers never run out of paper within a bounded horizon
of 14 steps (two weeks).

(d) Does your solution from problem 1 satisfy X G F full0, where fulli means that
copier i has ’capacity’ units of paper? Does your solution from problem 2 satisfy
this? Explain.

Hint 1: If you make the number of steps a parameter to the harness, the synthesizer
will first look for counterexamples with short horizon, and will only consider the full
14 steps when it is close to a correct solution, improving efficiency significantly. You
can use assume to ensure that this input number of steps is less than or equal to 14.

2

Hint 2: You need a relatively high depth in order to synthesize this from scratch from
the grammar above (I used 4, and it takes about 35 min). However, if you explicitly
tell the system that your strategy will be of the form

if (i%7 < ??){
return pred (...);

} else {
return pred (...);

}

you can have much smaller bounds for those preds and it will find a solution much
faster (about 3 min).

Hint 3: the default unroll factor for loops in sketch is 8, so you will need to explicitly
override that in the command line to get a solution.

3

	Homework 1 (Spring 18): Problem Set 2

