
When ML Training Cuts Through Congestion:
Just-in-Time Gradient Compression via Packet Trimming

Xiaoqi Chen∗
Purdue University

Shay Vargaftik
VMware Research

Ran Ben Basat
UCL

Abstract
Distributed training of ML models generates significant net-
work traffic when exchanging gradients and is sensitive to
packet drops and retransmission caused by congestion when
other traffic is sharing the network. While training processes
can tolerate gradient compression to reduce traffic volume, it
does not eliminate queue buildup in shallow-buffer switches,
causing high latency and extended training time.

Our observation is that the emerging capability of han-
dling temporal congestion through packet trimming provides
the perfect opportunity to enable just-in-time gradient com-
pression. Accordingly, we propose a novel approach where
gradient packets are specifically constructed to be compress-
ible via packet trimming, thus avoiding retransmission delays.
Preliminary evaluations indicate that our trimmable encoding
based on the Randomized Hadamard Transform has low com-
putational overhead and that it achieves good training quality
and shorter time to accuracy at high trim rates of up to 50%.

CCS Concepts
• Networks → In-network processing; Data center net-
works; Data path algorithms; Transport protocols; • Com-
puting methodologies → Artificial intelligence; Machine
learning; Distributed computing methodologies.

Keywords
Packet Trimming, Distributed Training, AllReduce, Gradient
Compression, Collective Communications

ACM Reference Format:
Xiaoqi Chen∗, Shay Vargaftik, and Ran Ben Basat. 2024. When
ML Training Cuts Through Congestion: Just-in-Time Gradient
Compression via Packet Trimming . In The 23rd ACM Workshop
on Hot Topics in Networks (HotNets ’24), November 18–19, 2024,
Irvine, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.or
g/10.1145/3696348.3696880

∗ This work was completed while the author was a postdoctoral researcher at
VMware Research Group.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotNets ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696880

1 Introduction
Distributed ML training requires a significant amount of data
transfer over the network: when running distributed stochas-
tic gradient descent with data parallelism, after each GPU
processes its own batch of input data, GPUs need to quickly
exchange their local gradients to compute a global average,
which is then used to update the model weights. While gra-
dient communication is often predictable, and scheduling
techniques can leverage that (e.g., [18]), in many settings,
background traffic adds significant uncertainty (e.g., when
the training does not use an isolated network). For example:

(1) For hyperscalers with hardware dedicated to distributed
training, the rapidly growing scale of today’s Large Lan-
guage Model training (25,000 GPUs or more) already ex-
ceeded the traditional limit of densely connected clusters
with dedicated network fabric (4,000-10,000 GPUs) [27,
29, 34]. A large-scale training job might thus span across
multiple such clusters, connected by an over-subscribed
second-layer network fabric [15].

(2) For many small and medium-sized businesses and aca-
demic institutions, due to limited power density in exist-
ing enterprise data centers, GPUs are often spread across
different racks, and there might not be another dedicated
network fabric for GPU traffic alongside the existing,
shared network.

(3) When an ML trainer bids for the cheapest GPUs in a
public cloud using spot instances, the underutilized (and
therefore cheap) GPU nodes could be located anywhere,
scattered across different racks in a data center far away
from each other, or even across multiple data centers in
a region. There might also be network jitter caused by
virtualization infrastructure. Similar situation arises when
a hyperscaler harvests [41] idle GPUs, which may be scat-
tered across different racks of a dedicated training cluster
due to fragmentation, to run low priority distributed train-
ing tasks using low-priority network traffic.

In all these cases, the network paths between GPU servers
are longer and more unpredictable due to cross-traffic: paths
may be shared by other (possibly higher priority) distributed
training jobs and other applications, and collisions between
different traffic flows lead to occasional congestion, high
queuing delays, or even packet loss [4, 26].

Meanwhile, the congestion control logic in today’s network
stack is decoupled from how ML training frameworks send
data. Gradients are sent as a black-box binary blob between
network endpoints, using bulk send/receive calls. The network

https://doi.org/10.1145/3696348.3696880
https://doi.org/10.1145/3696348.3696880
https://doi.org/10.1145/3696348.3696880


HotNets ’24, November 18–19, 2024, Irvine, CA, USA Xiaoqi Chen, Shay Vargaftik, and Ran Ben Basat

rarely modifies the gradients; even with in-network aggrega-
tion [21, 23, 31], where gradients are added on switches, the
servers or switches do not adjust the gradient compression
level based on network congestion. The transport protocols
for ML training, also referred to as the collective communi-
cation library or *ccl, provide strict reliability semantics to
the upper layer training process. They also require lossless
delivery from the underlying network, either via a lossless
fabric with Priority Flow Control (pause frames) or use re-
transmission to ensure data integrity [15, 19].

However, retransmission is costly: Reacting to packet loss
by re-sending the same gradient at the same precision ex-
acerbates the congestion, and more importantly, waiting for
retransmissions creates slow-finishing stragglers among the
many GPUs running a synchronous training batch. Other
GPUs must all wait in an idle mode for the slowest GPU
to complete sending its gradient unless and until a straggler
mitigation strategy kicks in. Therefore, the tail latency, i.e.,
the slowest flow completion time, is especially important in
achieving high-performance distributed ML training.

Our observation is that modern data center network sup-
ports packet trimming (e.g., for implementing NDP [17],
EQDS [28], and Ultra Ethernet [35, 36]) in shallow-buffer
switches to react to congestion. Namely, when a switch’s
queuing buffer fills up, instead of dropping incoming packets,
the switch can “trim” the majority of bytes in a packet and
preserve only a short header. The switch can then forward the
header with high priority, bypassing other payload-carrying
packets, such that the receiver and sender can both quickly re-
act to the congestion at this network hop and reduce sending,
similar to receiving Explicit Congestion Notification (ECN)
tags while also scheduling timely retransmission. Compared
to ECN, trimming allows switches to quickly mitigate queue
overflow caused by incast traffic; this also enables senders to
immediately ramp up new flows’ sending rate without wait-
ing for connection setup and congestion signals, ultimately
achieving low end-to-end latency and flow completion time
across the data center network.

Another extensively studied approach to improve the flow
completion time in distributed ML training is gradient com-
pression (e.g., [5–7, 12, 16, 20, 22, 24, 25, 33, 42]). By encod-
ing gradients at a lower precision before sending them across
the network, we can control the tradeoff between the number
of bits sent and the resulting model accuracy. However, such
methods need to decide on the compression ratio when en-
coding the data at the sender and cannot help in-flight packets
react to the unpredictable congestion and packet losses. Also,
directly coupling existing congestion control algorithms with
compression ratios may lead to occasional over-compressing
and sending too few bytes, not fully utilizing the available
bandwidth for the best accuracy.

In this paper, we set to achieve the best of both worlds. Ide-
ally, ML training should use more network bandwidth when
the network is free while compressing the gradients whenever
the network becomes congested. The challenge here is that it

is hard to predict whether a packet will encounter congestion
inside the network and whether reactions to a congestion sig-
nal will be delayed. Also, unnecessary compression may lead
to an accuracy drop or prolonged training time. Therefore,
the best place to compress gradients is within the congested
network switch itself: shrinking the gradient packets only
when the queue is congested, similar to packet trimming. This
allows all gradient transmission to finish on time without re-
transmission and immediately ramp up to use all the available
network bandwidth while compressing only when necessary.

Yet, implementing adaptive just-in-time gradient compres-
sion algorithms inside high-speed network switches is a chal-
lenging algorithmic and engineering feat. Running gradient
compression at line rate may require building many arith-
metic calculation circuits into the switch’s chipset. Mean-
while, packet trimming is already supported by many existing
data center switches using different chipsets, including Intel
Tofino, Broadcom Trident 4, and NVIDIA Spectrum 2 [3].

We, therefore, propose the trimmable gradients design,
illustrated in Figure 1, to allow widescale deployment of
in-network gradient compression. By rethinking how GPUs
prepare and send gradients, the network devices along the path
can compress the gradients whenever congestion is forming
in its queues. This way, the bandwidth-heavy distributed ML
training jobs can coexist with other bursty traffic in a shared
network while achieving consistent flow completion time
with no stragglers. The key idea of trimmable gradients is
to fit compressed gradients at the front of the packet and the
remainder terms in the back of the packet, such that switches
can activate compression simply by packet trimming.

Trimmable gradient achieves the right split of labor: the
compute-efficient GPUs are responsible for pre-computing
gradient transform and quantization, while the network switches
can rapidly decide and activate gradient compression upon
congestion, with minimal computational required.

The rest of this paper is arranged as follows. In Section 2,
we present how trimmable gradient packets are formatted,
trimmed, and received. In Section 3, we discuss our trimmable
compression algorithm for gradients based on stochastic quan-
tization, subtractive dithering, and Randomized Hadamard
Transform (RHT). In Section 4, we present a prototype evalu-
ation showing our trimmable gradient compression scheme
incurs low computation overhead, and RHT encoding leads to
faster time-to-accuracy when encountering heavy congestion
trimming despite the longer time spent in encoding. In Sec-
tion 5, we discuss some interesting future research questions
related to the wider adoption of trimmable gradients.

2 Arranging Gradients in Trimmable Packets
Next, we investigate how senders should lay out gradients in
packets to best prepare for trimming. Naively, gradient coor-
dinates are expressed as floating point numbers and packed
one by one following the packet header, as illustrated in Fig-
ure 2(a). In this case, packet trimming leads to keeping several
whole floating point numbers while discarding the rest.



Just-in-Time Gradient Compression via Packet Trimming HotNets ’24, November 18–19, 2024, Irvine, CA, USA

H Payload

𝑃 𝑄

1 00100…
0 01101… H P

Queue congested!
Start trimming

ayload

0 01101…

𝑃 𝑄

H P

H
Pa

yl
oa

d

H Payload

Pkt
Pkt

Pkt

Other applications
sharing network

Pk
t

Encode gradients Decode gradients, if trimmed

H P

H
P

H
PayloadH

P

Other applications
sharing network

H P

Figure 1: Our framework. The senders format the packets such that if the switch decides to trim a packet due to congestion,
the receiver gets the compressed form of the gradients and can still aggregate them without needing retransmissions.

Packet Header
f32
f32
f32
f32
f32

…

f32
f32
f32
f32

f32
Packet Header

1 0 1 1 0

…

1 0
q31 q31

0 …

q31 q31

(a) (b)

…

Figure 2: Instead of (a) keeping and discarding whole
floating point numbers upon packet trimming, we can
(b) rearrange the packet payload such that the first 𝑃=1
bits for each gradient coordinate are kept upon trimming.

As shown by MLT [40], distributed neural network training
can often tolerate a certain fraction of lost gradient, e.g., up
to 2.5%, without affecting training time and accuracy. Some
gradient coordinates are more important: if we sort all coordi-
nates by their magnitude, the training can typically tolerate
losing as much as 20% (the smallest 20% coordinates), but
only 0.4% of the largest 20% coordinates. Unlike MLT, which
exploits priority queueing to encourage switches to drop the
smaller coordinates, here we need to arrange the coordinates
in each packet such that trimming will cause the smaller coor-
dinates to be discarded. Thus, in the packet layout, the coor-
dinates with larger magnitudes are closer to the header and
vice versa: we can spread the largest-magnitude coordinates
across the beginning of multiple packets while spreading the
smaller coordinates across the tail of packets. Still, reducing
the packet size by at most 20% provides a limited effect in
alleviating queue congestion, and a real-world network may
require much more aggressive trimming.

Instead, we split each gradient coordinate into two parts: A
𝑃-bit head and a 𝑄-bit tail, and arrange all the heads in the
front of the packet before all the tails. That is, if we pack 𝑛

coordinates in a packet, the first 𝑃 · 𝑛 payload bits contain the
compressed coordinates while the remainder is the informa-
tion needed to recover the coordinates’ original precision. The
switch is then allowed to trim the packet to include only the
first 𝑃 ·𝑛 bits of payload, effectively enabling in-network com-
pression. This way, upon congestion, the switch can easily
trim its size by approximately 𝑄

𝑃+𝑄 .

As an example, we can keep 𝑃 = 1 bit for every full-
precision (32-bit) floating point. A typical MTU-sized packet
of 1500 bytes can accommodate about 𝑛 = 365 coordinates.
With 𝑃 = 1, the trimmed packet contains 45 bytes of com-
pressed payload. Accounting for a 42-byte standard header
(Ethernet, IP, UDP), we should configure the switches to trim
packets at 87 bytes upon congestion, achieving a compres-
sion ratio of 94.2%. This should be sufficient for a switch to
manage congestion and avoid packet loss.

Our proposal of in-network just-in-time compression to
combat the unpredictable congestion and packet loss is or-
thogonal to many traditional gradient compression bandwidth
decisions made ahead of time to reduce the amount of traffic
sent in the first place. That is, if a sender knows about the
extent of congestion at the time of transmission based on
a coarser-grained congestion control feedback loop, it may
adjust 𝑄 to change its bandwidth demand.1 Subsequently, if
a network switch nevertheless runs out of queueing buffer
due to unpredicted congestion, it still trims the packet to
keep 𝑃 < 𝑄 bits per coordinate. In the next section, we dis-
cuss how to efficiently encode gradients into 𝑃 = 1 bit heads.

3 Trimmable Gradient Compression
Although there is a rich literature discussing how to quantize
neural network weights and gradients (e.g., [5, 6, 8, 20, 22,
23, 33, 42]), they mostly discuss fitting into a pre-defined bit
budget, e.g., communicating 1 − 4 bits per coordinate. In this
work, we have a unique need to construct a two-part encoding
with 𝑃 +𝑄 bits: the first 𝑃-bits “head” should be an efficient
standalone compression when the tail bits are trimmed, while
the remaining “tail” of 𝑄 bits should not carry redundant
information that is already included in the head.

More generally, the trimmable quantization problem re-
quires efficiently encoding the gradient into two or more parts
of predetermined length, such that a decoder can decode us-
ing any number of parts forming a prefix of the encoding.
In this paper, we focus on the two-part case, although our

1We note that in this case, even for non-trimmed packets, the receiver cannot
obtain the original coordinate’s precision.



HotNets ’24, November 18–19, 2024, Irvine, CA, USA Xiaoqi Chen, Shay Vargaftik, and Ran Ben Basat

solution can be expanded to more parts. We now discuss how
to produce a two-part trimmable gradient packet.

3.1 Scalar Quantization
We first introduce a simple scheme for producing trimmable
gradient packets: applying quantization independently to each
gradient coordinate, a method known as scalar quantization.

For every gradient coordinate value 𝑣 , we need to produce
a 𝑃-bit quantization value ℎ(𝑣) as the head. In this work, we
focus on the 𝑃 = 1 bit case and discuss future extensions in
Section 5. We explain three natural approaches.
Sign-magnitude Quantization: The most straightforward 1-
bit encoding we could use is the sign bit, i.e., ℎ(𝑣) = sign(𝑣),
a natural choice assuming the gradients are symmetrically
distributed around zero (we later remove this assumption
(Section 3.2). The remaining 𝑄 = 31 bits are the mantissa
and exponent of the original floating point value 𝑣 , i.e., the
floating point number without its sign bit.

If trimming occurs, the receiver gets a mix of full precision
coordinates and quantized heads, i.e., sign bits. To help the
receiver scale these sign bits back to match the magnitude
of the original gradient, the sender also sends the standard
deviation of the original gradient 𝜎 separately in a small
packet that will not be trimmed. Using 𝜎 , the receiver then
decodes the sign bits {−1, +1} into {−𝜎, 𝜎}.

However, as we later demonstrate, this simple method se-
verely affects training convergence, even with only 2% of
packets being trimmed. We also implement two alternative
algorithms for calculating the 1-bit encoding, adapted from
prior works in gradient compression.
Stochastic Quantization (SQ): for a parameter 𝐿 ∈ R+, after
clipping gradient value to range 𝑣 ∈ [−𝐿, 𝐿], we encode 𝑣

to +1 with probability 𝑝+ = 𝐿+𝑣
2𝐿 , and to −1 with probabil-

ity 𝑝− = 𝐿−𝑣
2𝐿 . During decoding, {−1, +1} are decoded into

{−𝐿, 𝐿}. Compared to sending the sign-magnitude quantiza-
tion, Stochastic Quantization produces an unbiased encoding
for the unclipped coordinates (i.e., with values in [−𝐿, 𝐿]),
meaning the expectation of the decoded values is equal to the
original. Similar to TernGrad [43], we set 𝐿 = 2.5𝜎 , which is
also sent separately and reliably via a small packet.
Subtractive Dithering (SD): When considering worst-case
error, SQ can be improved by SD. For each coordinate 𝑥 ,
let 𝜖𝑥 ∈ R ∼ U(−𝐿/2, 𝐿/2) be its ‘dither’ where U is the
uniform distribution. Then, the quantization process employs,
𝑄 (𝑥) = 𝐿 · sign(𝑥 + 𝜖𝑥 ), and the de-quantization process em-
ploys, 𝑥 = 𝑄 (𝑥) − 𝜖𝑥 . The assumption here is that both the
sender and receiver can compute the same 𝜖𝑥 by using shared
randomness without extra communication; in our implementa-
tion, we use a pseudo-random generator on both sides sharing
the same seeds. Intuitively, the added dither helps to decorre-
late the quantization error with respect to the input, spreading
the error across the range and making it less perceptible. SD
improves the variance of the quantization in the sense that
it makes it smaller compared to SQ in the worst case and
independent of the input.

3.2 Exploiting Random Rotations
For those situations when the percentage of trimmed packets
is significant, we propose an improved encoding based on ran-
dom rotations, a technique that many state-of-the-art gradient
compression methods use [9, 10, 30, 33], such that different
gradient coordinates can share the impact of trimming while
each suffers from only a small inaccuracy.

In particular, to improve the decoding accuracy for 1-bit
trimmed gradients, we adapt the principles from DRIVE [38]
a state of the art 1-bit gradient compression algorithm.2 DRIVE
applies the Randomized Hadamard Transform (RHT) to the
gradients before quantization, as RHT can be implemented as
a fast, in-place transform on GPUs. Intuitively, after RHT, the
coordinates are symmetrically centered close to zero, which
results in both a smaller quantization error and a smaller
worst-case error in any single coordinate.3

Based on our measurement, applying RHT to an entire
collective communication message gradient blob (e.g., default
size 25MB, in Pytorch DDP) incurs a noticeable slowdown;
therefore, we further optimize the RHT step by splitting up
each collective communication message blob into smaller
rows of, e.g., 215 = 32, 768 entries, such that each row can
fit within the GPU’s L1 shared memory, and independently
perform RHT to each row in parallel. This not only saves GPU
computation but also reduces the communication latency.

Encoding: For each row 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣215−1}, we first
perform RHT using a pseudo-random seed 𝑠 to obtain the
rotated axis coordinates: 𝑅𝑠 (𝑉 ) = {𝑟0, 𝑟1, . . . , 𝑟215−1}. We also
calculate a scaling factor 𝑓 =

∥𝑉 ∥22
∥𝑅𝑠 (𝑉 ) ∥1 which helps us de-

code in an unbiased fashion. As with the standard deviation
discussed earlier, the row scaling factors are sent in small,
reliable packets to avoid getting trimmed.

We note that in the 𝑃 = 1 case, sending the sign bit 𝑠𝑖𝑔𝑛(𝑟 )
as the head is beneficial since each rotated coordinate 𝑟 fol-
lows a symmetric normal distribution with zero mean [38].
Therefore, for 𝑟 represented as a 32-bit floating point, we once
again rearrange each packet to contain the sign bits before
including all the remaining 31-bit tails (mantissa and expo-
nent bits). This means for the non-trimming case we achieved
precise encoding of the original 32-bit number, without using
any additional space overhead.

Decoding: The receiver decodes packets in groups based
on each row that performed RHT. If none of the packets were
trimmed, the receiver simply performs Inverse Randomized
Hadamard Transform (IRHT) on the received rotated row to
obtain the original row: 𝑉 = 𝐼𝑅𝐻𝑇 (𝑟0, 𝑟1, . . . 𝑟215−1). For a
trimmed packet, it only contains the sign bits of some coor-
dinates: 𝑠𝑖𝑔𝑛(𝑟𝑖 ) ∈ {−1, +1}; we scale these sign bits using
the unbiased scale 𝑓 . We can then decode an estimate of the
original row: �̃� = 𝐼𝑅𝐻𝑇 (𝑟0, 𝑟1, . . . , �𝑟215−1), where 𝑟𝑖 = 𝑟𝑖 if 𝑟𝑖
is not trimmed or 𝑟𝑖 = 𝑓 · 𝑠𝑖𝑔𝑛(𝑟𝑖 ) otherwise.

2DRIVE was extended to any number of bits by EDEN [37]. For simplicity,
we explain the 1-bit version.
3The system benefits of RHT were also recently demonstrated by THC [23].



Just-in-Time Gradient Compression via Packet Trimming HotNets ’24, November 18–19, 2024, Irvine, CA, USA

0 2 4
0%

20%

40%

60%

To
p-

1 
Ac

cu
ra

cy

0.5% Trimmed

0 2 4

1.0% Trimmed

0 2 4

5.0% Trimmed

0 2 4

10.0% Trimmed

0 2 4

30.0% Trimmed

0 2 4

50.0% Trimmed

2 3
55%

60%

65%

2 3
55%

60%

65%

2 3
55%

60%

65%

2 3
55%

60%

65%

2 3
55%

60%

65%

2 3
55%

60%

65%

Wall clock time (hour)

RHT-based encoding Per-coord: Sign Bit Only Per-coord: Subtractive Dithering Per-coord: Stochastic Quantization

Figure 3: Time To Accuracy (TTA) for different trimming rates. The sign-bit-only method diverges for trimming rates
higher than 1%. Also, the benefits of the more accurate RHT become evident for higher timing rates, especially 50%,
where it is the only one to reach baseline accuracy.

4 Implementation and Evaluation
In this section, we present our Pytorch-based prototype and
preliminary evaluation results indicating that trimmable gradi-
ents achieve low overhead and high resulting model accuracy
under different levels of simulated congestion.

We prototype the SD, SQ, and RHT-based trimmable gra-
dient encoder and decoder using customized communication
hooks in the Pytorch Distributed Data-Parallel framework
(version 2.3.0+cu121) to modify the gradient aggregation
communication step.

We use the fast-hadamard-transform Python li-
brary (version 1.0.4) [11] for RHT implementation in CUDA.
We set torch.cuda.manual_seed with a combination
of training epoch number and collective communication mes-
sage ID to create a shared pseudo-random number generator
across different GPU servers. Our prototype implementation
uses about 570 lines of Python code.

4.1 Testbed and Benchmark Setup
Our testbed consists of two server nodes, each hosting an
Nvidia BlueField-2 SmartNIC (ConnectX-6) and an Nvidia
A16 GPU, with CUDA 12.5 and Nvidia driver 5.5.0 installed.
The two servers are connected via 100Gbps Ethernet Direct
Attach Copper cables. Due to NCCL’s proprietary nature,
we cannot easily change the wire format; instead, for this
preliminary evaluation, we simulate the effect of congestion
using pre-set random probabilistic dropping/trimming, both
in the software layer and on our SmartNIC. When a gradient
coordinate is assigned as trimmed, we manually wipe its data
entry and replace it with its quantized encoding, according to
the decoding procedure discussed in Section 3.

For our training quality benchmark, we train the VGG-19
network from scratch on the CIFAR-100 visual recognition
dataset, using a standard training setup.4 In all settings, we
train the network for 150 epochs, which is sufficient for it to
converge, and measure its final top-1 and top-5 accuracy as
well as its time to convergence.

4SGD with momentum 0.9, initial learning rate 10−3 with StepLR scheduler,
cross-entropy loss, with batch size 64 and data augmentation.

The key of our experiment is to hold all hyper-parameters
constant while only changing how gradients are aggregated
between different servers. We use this benchmark to demon-
strate the effect of trimmable gradient encoding and gather
insights for eventual deployment in large-scale training.

4.2 Time To Accuracy
Depending on the different amounts of cross traffic and their
priority, distributed training could experience vastly different
fractions of packets dropped/trimmed. Here, we benchmark
different drop/trim packet percentages ranging from 0.1%
to 50%. A low percentage corresponds to normal priority
traffic sharing a well-managed network with minimal incast
or oversubscription, while the higher percentages correspond
to scenarios when distributed ML training traffic was sent at
low priority, sharing bottlenecks with much other traffic while
trying to salvage unused bandwidth on a best-effort basis.

In Figure 3, we measure the top-1 accuracy, as a function
of wall clock time, of the trained network with gradients sent
using different encoding schemes. As we can see, for all trim
rates, the RHT method learns slower in wall clock time due
to more computational overhead per epoch; however, at a
high trimming rate, it reaches higher accuracy faster. The
sign-magnitude quantization is a quick solution for when the
trimming rate is low, but its training diverges when the rate is
2% or higher. We note that a promising direction is, therefore,
to dynamically choose the quantization method based on the
anticipated congestion/trim rates.

4.3 Effect of Trimming on Training Time
We next compare the approaches by the time they require to
reach the accuracy of the uncompressed baseline. As shown
in Figure 4, when there is little to no congestion, and thus
the trim rate is less than ≈ 0.5%, all solutions are slower than
the baseline, consistently with Figure 5. For medium rates
of trimming (0.5%-20%), the computationally lightweight
methods of subtractive dithering and stochastic quantization
offer faster training than the RHT-based one. Finally, when
encountering a high level of congestion that causes substantial
trimming, the improved decoding accuracy of the RHT-based



HotNets ’24, November 18–19, 2024, Irvine, CA, USA Xiaoqi Chen, Shay Vargaftik, and Ran Ben Basat

Failed 
 (>100)

Time until 
Top 5 Acc >= 85%

Failed 
 (>100)

Time until 
Top 1 Acc >= 62%

0.
1%

0.
5% 1% 2% 5% 10
%

20
%

30
%

40
%

50
%

Fraction of trimmed packets

0

2

4

Ho
ur

s

0.
1%

0.
5% 1% 2% 5% 10
%

20
%

30
%

40
%

50
%

Fraction of trimmed packets

0

2

4

RHT-based encoding
Per-coord: Sign Bit Only

Per-coord: Subtractive Dithering
Per-coord: Stochastic Quantization

Figure 4: Time-To-Baseline-Accuracy for different trim-
ming rates. The horizontal gray line is the NCCL baseline
with no congestion. The benefit of RHT becomes evident
for higher trimming rates, as expected.

Time / BatchBaseline (NCCL)
Baseline + 0.25% drop

4.20s
5.05s

8.10s
timeout

Baseline + 0.5% drop
Baseline + ≥1% drop

Stochastic Quantization

Subtractive Dithering

Sign Bit Only

6.12s

6.32s

6.01s

7.09sRHT Encoding

Collective
Communication

Compute Encoding, Scaling
& Decoding

Figure 5: Time breakdown for each training round. RHT
has high computation overhead, which is compensated by
fewer training rounds needed to reach target accuracy.

compression comes in handy, and it is the fastest to reach the
target accuracy and the only one that can cope with large trim
rates (e.g., 50% for top-1).

4.4 Encoding Overhead
We next measure the computational overhead involved in
DDP collective communication steps following the additional
trimmable gradient encoding. As shown in Figure 5, using
trimmable encoding in our prototype implementation adds
42%-68% of time for one distributed training round. We be-
lieve a significant fraction of this is due to the overhead in the
hooking callback interface and can be further optimized. The
RHT encoding is about 18% slower compared to the simpler
per-coordinate scalar quantization methods, corresponding
to the computational overhead of the rotations. We also note
the baseline setup (unmodified NCCL) cannot tolerate much
congestion: it can only tolerate 0.15%-0.25% packet drops
(retransmissions) without disproportional slowdown, and with
only 1%-2% drops, the training round becomes 5x-10x slower
or start reporting timeout errors.

The encoding and scaling computation can be potentially
fused with the neural network’s backward pass computation,
further reducing the computational overhead. That is, it may
be possible to employ kernel fusion (e.g., [13]) such that
the gradient computation during the backward pass already
outputs the gradient in a format that supports trimmable en-
coding, requiring no further overhead.

5 Discussion and Future Work
This paper presents the initial benefit of trimmable gradients.
Here, we discuss promising directions for future investigation.

5.1 Multi-Level Trimming
In this paper, we evaluated two-tier encoding with 𝑃 = 1 bit as
the trimming level. More generally, a switch can have multiple
trimming actions to account for different congestion levels.
For example, a switch can be configured to trim packets to
either 25% size or 3% size (corresponding to trimming 32-bit
floating point gradients into either 1 or 8 bits) or a mixture of
both. Thus, we need to design versatile trimmable encodings
that support different bit lengths and trimming levels.

Such a capability introduces two exciting challenges. First,
one needs to design an accurate encoding that would allow
the switch to choose the trimming level. Second, this opens
the door to switch algorithms that decide which packets to
trim and by how much. For example, is it better to have more
packets trimmed to 50%, or have fewer packets trimmed, but
to 3%? In a closed-loop setting, when a switch handles bursty
incoming traffic, the two different trimming sizes lead to dif-
ferent congestion control behaviors and, therefore, different
fractions of packets trimmed. We plan to run full-scale simu-
lations or testbed studies to fully understand the confounding
effect between queuing and congestion, trimming size, and
the resulting fraction of trimmed packets. These results can
help us solve the nontrivial optimization problem of achieving
the shortest time-to-accuracy in the presence of congestion.

5.2 Other Gradient Compression Schemes
While quantization is a prominent approach to gradient com-
pression, other works follow other techniques such as sparsi-
fication (e.g., [12, 40]) or low-rank decomposition (e.g., [39,
44]). It is an interesting future work to design trimming
schemes for these approaches and shed light on what is the
best method or a combination of methods.

In sparsification methods, workers decide on a subset of the
gradient coordinates to communicate in a way that minimizes
the error for a given sparsification ratio. For example, In
MLT [40], the importance of gradient elements are decided
by their magnitude; the authors observe they can discard as
much as 20% of the smallest gradients without noticeable
impact on training accuracy.

In Low-rank decomposition methods, gradients of param-
eter matrices are decomposed into low-rank representations



Just-in-Time Gradient Compression via Packet Trimming HotNets ’24, November 18–19, 2024, Irvine, CA, USA

and, given a different communication bandwidth budget, dif-
ferent compression levels can be constructed by choosing the
ranks with the largest eigenvalue.

These methods require presetting the compression ratio
ahead of time, and it is an interesting research challenge to
adapt them into or combine them with trimmable encoding
for just-in-time compression, as we discuss next.

5.3 Interacting with Congestion Control
Congestion feedback signals allow senders to sense band-
width over-subscription in their bottleneck link and adjust
their sending rates accordingly. For a distributed training
setup, we could adjust 𝑄 in our trimmable encoding, or apply
other gradient compression methods discussed in Section 5.2,
to change the size of data sent based on expected congestion
in the network and the desired accuracy.

However, the switches in the network may still suffer from
unpredictable congestion caused by new flows ramping up or
new incast starting. In this case, an additional trimming-based
just-in-time compression must be applied separately, even if
gradients are already compressed ahead of time. Thus, we
seek a gradient encoding design that supports both ahead-of-
time compression and just-in-time trimming of any fraction
of packets. This is an exciting direction for future work.

For example, if we use gradient sparsification, the sender
can first discard a certain ratio of gradient coordinates ac-
cording to the congestion control signal and subsequently
send them using RHT-based trimmable encoding. If we use
low-rank decomposition, we need to find a certain encoding
format for laying out different ranks in the packet payload,
such that trimming arbitrary packets always affects only the
ranks with the least importance (smallest eigenvalue).

Also, we note conventional congestion control algorithms
are designed to avoid queue buildup using more conservative
sending rates. Performing ahead-of-time compression based
on this logic will lead to slight over-compression and under-
sending (unused link capacity). Instead, we want to adjust the
congestion control logic to always slightly under-compress
and over-send so that the gradient traffic always saturates
the link. We can let the switch decide how much additional
trimming-based just-in-time compression needs to be applied.

5.4 Reproducibility
With trimmable gradient encoding, every distributed training
run becomes unique due to the unpredictable nature of net-
work congestion and how it affects which packets are trimmed
and to what extent. However, ML practitioners are increas-
ingly advocating for the reproducibility of training runs for
both debugging and transparency purposes.

To assist in reproducing the training results with packet
trimming, the distributed training framework can record the
indices of packets that were trimmed across the entire training
episode. This allows the replaying of this trimming “transcript”
in a future training run. During a replay, the distributed train-
ing framework should send all the collective communication

messages in the slower, reliable channel (with trimming dis-
abled and retransmission enabled), while simulating the con-
gestion and trimming effect on the receiver end. This, together
with GPU-side reproducibility techniques (e.g., see [2]), al-
lows the user to reproduce a previous run with high fidelity.

5.5 Fully Sharded Data Parallel
To train even larger models that can no longer fit into a single
GPU server’s VRAM, we must use Fully Sharded Data Par-
allel (FSDP) [1, 32], where a single copy of model weights
is stored across multiple servers. Besides gradient all-reduce,
FSDP frequently performs gathering: Before calculating a
matrix multiplication, a GPU must gather the weights of a
matrix stored on other GPUs through scatter-gather collective
communication. Thus, FSDP performance is heavily bounded
by communication bandwidth between GPU servers.

We believe a small fraction of imperfection in copied
weights has limited impact on training quality, due to the
redundant nature of large neural networks (e.g., [14]). Thus,
trimmable packets are also useful in FSDP training across
shared network fabric with unpredictable congestion. By
avoiding retransmission for both scatter-gather and all-reduce
steps, we can avoid stragglers and maintain tighter synchro-
nization between GPUs, which has the potential to reduce
overall training time-to-accuracy for FSDP. This is an exciting
future direction to explore and experiment.

5.6 Trimmable Inference
In this paper, we investigated the benefits of just-in-time gra-
dient compression in accelerating distributed ML training. An
intriguing research question is whether just-in-time compres-
sion can be useful for ML inference use cases as well.

6 Conclusion
In this paper, we introduced the trimmable gradients method,
a novel approach enabling switches to perform just-in-time
gradient compression via packet trimming. Trimmable gradi-
ents allow distributed ML training workloads to better utilize
shared network fabric while tolerating unpredictable con-
gestion and avoiding costly retransmissions. We designed
1-bit trimmable gradient encodings that cost no additional
space and minimum computational overhead, using Stochas-
tic Quantization, Subtractive Dithering, and Randomized
Hadamard Transform. A preliminary evaluation showed Sto-
chastic Quantization allows distributed training to tolerate up
to 10%-20% trimmed packets without a noticeable increase
in time-to-accuracy, and at higher trim rates, RHT-based en-
coding achieved the shortest time to accuracy, despite its
higher computational overhead and per-round time. Our pa-
per opens up exciting future work on tighter integration of
the collective communication layer in distributed ML training
and trimming-enabled data center network transport.

Acknowledgments: We thank the anonymous reviewers and
Sujata Banerjee for their insights and suggestions. Ran Ben
Basat was partially funded by a gift funding from Huawei.



HotNets ’24, November 18–19, 2024, Irvine, CA, USA Xiaoqi Chen, Shay Vargaftik, and Ran Ben Basat

References
[1] [n. d.]. Huggingface - Fully Sharded Data Parallel. https://huggingface.

co/docs/transformers/en/fsdp. Accessed: 2024-10-21.
[2] [n. d.]. Pytorch Reproducibility. https://pytorch.org/docs/stable/notes/

randomness.html. Accessed: 2024-10-21.
[3] Popa Adrian, Dumitrescu Dragos, Handley Mark, Nikolaidis Georgios,

Lee Jeongkeun, and Raiciu Costin. 2022. Implementing packet trim-
ming support in hardware. arXiv preprint arXiv:2207.04967 (2022).

[4] Saksham Agarwal, Qizhe Cai, Rachit Agarwal, David Shmoys, and
Amin Vahdat. 2024. Harmony: A Congestion-free Datacenter Architec-
ture. In NSDI. 329–343.

[5] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dim-
itris Papailiopoulos. 2022. On the utility of gradient compression in
distributed training systems. In MLSys, Vol. 4. 652–672.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong, Feng Yan,
Ruichuan Chen, and Yinlong Xu. 2021. Gradient compression super-
charged high-performance data parallel dnn training. In SOSP. 359–
375.

[7] Ran Ben Basat, Yaniv Ben-Itzhak, Michael Mitzenmacher, and Shay
Vargaftik. 2024. Optimal and Approximate Adaptive Stochastic Quan-
tization. In NeurIPS.

[8] Ran Ben Basat, Michael Mitzenmacher, and Shay Vargaftik. 2021. How
to Send a Real Number Using a Single Bit (And Some Shared Random-
ness). In 48th International Colloquium on Automata, Languages, and
Programming (ICALP 2021).

[9] Ran Ben Basat, Amit Portnoy, Gil Einziger, Yaniv Ben-Itzhak, and
Michael Mitzenmacher. 2024. Accelerating Federated Learning with
Quick Distributed Mean Estimation. In ICML.

[10] Sebastian Caldas, Jakub Konečný, H Brendan McMahan, and Ameet
Talwalkar. 2018. Expanding the Reach of Federated Learning by Reduc-
ing Client Resource Requirements. arXiv preprint arXiv:1812.07210
(2018).

[11] Tri Dao. 2024. Fast Hadamard Transform in CUDA, with a PyTorch
interface. https://pypi.org/project/fast-hadamard-transform/.

[12] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sa-
pio. 2021. Efficient sparse collective communication and its application
to accelerate distributed deep learning. In SIGCOMM. 676–691.

[13] Jiří Filipovič, Matúš Madzin, Jan Fousek, and Luděk Matyska. 2015.
Optimizing CUDA code by kernel fusion: application on BLAS. The
Journal of Supercomputing 71, 10 (2015), 3934–3957.

[14] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023.
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained
Transformers. In ICLR.

[15] Adi Gangidi. 2023. Scaling RoCE Networks for AI Training. https://at
scaleconference.com/videos/scaling-roce-networks-for-ai-training/.
https://atscaleconference.com/videos/scaling-roce-networks-for-ai-
training/ In Networking @ Scale 2023 Conference.

[16] Wenchen Han, Shay Vargaftik, Michael Mitzenmacher, Brad Karp, and
Ran Ben Basat. 2024. Beyond Throughput and Compression Ratios:
Towards High End-to-end Utility of Gradient Compression. In HotNets.

[17] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
Architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In SIGCOMM. 29–42.

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. 2019.
Tictac: Accelerating distributed deep learning with communication
scheduling. In MLSys, Vol. 1. 418–430.

[19] Ziheng Jiang et al. 2024. MegaScale: Scaling Large Language Model
Training to More Than 10,000 GPUs. In NSDI. 745–760.

[20] Jakub Konecnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 8 (2016).

[21] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network aggregation
for multi-tenant learning. In NSDI. 741–761.

[22] Haoyu Li, Yuchen Xu, Jiayi Chen, Rohit Dwivedula, Wenfei Wu, Ke-
qiang He, Aditya Akella, and Daehyeok Kim. 2024. Accelerating
Distributed Deep Learning using Lossless Homomorphic Compression.
arXiv preprint arXiv:2402.07529 (2024).

[23] Minghao Li, Ran Ben Basat, Shay Vargaftik, ChonLam Lao, Kevin
Xu, Michael Mitzenmacher, and Minlan Yu. 2024. THC: Accelerating
Distributed Deep Learning Using Tensor Homomorphic Compression.
In NSDI. 1191–1211.

[24] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2018.
Deep gradient compression: Reducing the communication bandwidth
for distributed training. In ICLR.

[25] Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini,
and Marco Canini. 2021. An efficient statistical-based gradient com-
pression technique for distributed training systems. In MLSys, Vol. 3.
297–322.

[26] Jeffrey C Mogul and Lucian Popa. 2012. What we talk about when we
talk about cloud network performance. ACM SIGCOMM Computer
Communication Review 42, 5 (2012), 44–48.

[27] Timothy Prickett Morgan. 2023. Inside the Infrastructure that Microsoft
Builds to Run AI. https://www.nextplatform.com/2023/03/21/inside-
the- infrastructure- that-microsoft-builds- to-run-ai/. Accessed:
2024-06-25.

[28] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa,
Cristi Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley,
and Costin Raiciu. 2022. An edge-queued datagram service for all
datacenter traffic. In NSDI. 761–777.

[29] Mark Russinovich. 2023. Inside Microsoft AI Innovation with Mark
Russinovich. https://build.microsoft.com/en-US/sessions/984ca69a-
ffca-4729-bf72-72ea0cd8a5db. In Microsoft Build 2023 Conference.

[30] Mher Safaryan, Egor Shulgin, and Peter Richtárik. 2020. Uncertainty
principle for communication compression in distributed and federated
learning and the search for an optimal compressor. Information and
Inference: A Journal of the IMA (2020).

[31] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kal-
nis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan
Ports, and Peter Richtárik. 2021. Scaling distributed machine learning
with in-network aggregation. In NSDI. 785–808.

[32] Hamid Shojanazeri, Yanli Zhao, and Shen Li. [n. d.]. Getting Started
with Fully Sharded Data Parallel (FSDP). https://pytorch.org/tutorials/
intermediate/FSDP_tutorial.html. Accessed: 2024-10-21.

[33] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan
McMahan. 2017. Distributed mean estimation with limited communi-
cation. In ICML. 3329–3337.

[34] P.K Tseng. 2023. TrendForce Says with Cloud Companies Initiating AI
Arms Race, GPU Demand from ChatGPT Could Reach 30,000 Chips
as It Readies for Commercialization. https://www.trendforce.com/pre
sscenter/news/20230301-11584.html. Accessed: 2024-06-25.

[35] Ultra Ethernet Consortium. 2024. UEC Progresses Towards v1.0 Set of
Specifications. https://ultraethernet.org/uec-progresses-towards-v1-0-
set-of-specifications/. Accessed: 2024-10-21.

[36] Ultra Ethernet Consortium. 2024. Ultra Ethernet Specification Update.
https://ultraethernet.org/ultra-ethernet-specification-update/. Accessed:
2024-10-21.

[37] Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson,
Yaniv Ben Itzhak, and Michael Mitzenmacher. 2022. Eden:
Communication-efficient and robust distributed mean estimation for
federated learning. In ICML. 21984–22014.

[38] Shay Vargaftik, Ran Ben Basat, Amit Portnoy, Gal Mendelson, Yaniv
Ben-Itzhak, and Michael Mitzenmacher. 2021. Drive: One-bit dis-
tributed mean estimation. Advances in Neural Information Processing
Systems 34 (2021), 362–377.

[39] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. 2019. Pow-
erSGD: Practical low-rank gradient compression for distributed opti-
mization. In NeurIPS, Vol. 32.

[40] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
2024. Towards Domain-Specific Network Transport for Distributed

https://huggingface.co/docs/transformers/en/fsdp
https://huggingface.co/docs/transformers/en/fsdp
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://pypi.org/project/fast-hadamard-transform/
https://atscaleconference.com/videos/scaling-roce-networks-for-ai-training/
https://atscaleconference.com/videos/scaling-roce-networks-for-ai-training/
https://atscaleconference.com/videos/scaling-roce-networks-for-ai-training/
https://atscaleconference.com/videos/scaling-roce-networks-for-ai-training/
https://www.nextplatform.com/2023/03/21/inside-the-infrastructure-that-microsoft-builds-to-run-ai/
https://www.nextplatform.com/2023/03/21/inside-the-infrastructure-that-microsoft-builds-to-run-ai/
https://build.microsoft.com/en-US/sessions/984ca69a-ffca-4729-bf72-72ea0cd8a5db
https://build.microsoft.com/en-US/sessions/984ca69a-ffca-4729-bf72-72ea0cd8a5db
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html
https://www.trendforce.com/presscenter/news/20230301-11584.html
https://www.trendforce.com/presscenter/news/20230301-11584.html
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
https://ultraethernet.org/ultra-ethernet-specification-update/


Just-in-Time Gradient Compression via Packet Trimming HotNets ’24, November 18–19, 2024, Irvine, CA, USA

DNN Training. In NSDI. 1421–1443.
[41] Yawen Wang, Kapil Arya, Marios Kogias, Manohar Vanga, Aditya

Bhandari, Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety,
Christos Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: Har-
vesting Idle CPUs Safely and Efficiently in the Cloud. In EuroSys.

[42] Zhuang Wang, Haibin Lin, Yibo Zhu, and TS Eugene Ng. 2023. Hi-
Speed DNN Training with Espresso: Unleashing the Full Potential of
Gradient Compression with Near-Optimal Usage Strategies. In EuroSys.

867–882.
[43] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. 2017. TernGrad: ternary gradients to reduce commu-
nication in distributed deep learning. In NeurIPS, Vol. 31. 1508–1518.

[44] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On
compressing deep models by low rank and sparse decomposition. In
CVPR. 7370–7379.


	Abstract
	1 Introduction
	2 Arranging Gradients in Trimmable Packets
	3 Trimmable Gradient Compression
	3.1 Scalar Quantization
	3.2 Exploiting Random Rotations

	4 Implementation and Evaluation
	4.1 Testbed and Benchmark Setup
	4.2 Time To Accuracy
	4.3 Effect of Trimming on Training Time
	4.4 Encoding Overhead

	5 Discussion and Future Work
	5.1 Multi-Level Trimming
	5.2 Other Gradient Compression Schemes
	5.3 Interacting with Congestion Control
	5.4 Reproducibility
	5.5 Fully Sharded Data Parallel
	5.6 Trimmable Inference

	6 Conclusion
	References

