
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

Designing Heavy-Hitter Detection Algorithms
for Programmable Switches

Ran Ben Basat , Xiaoqi Chen , Gil Einziger, and Ori Rottenstreich

Abstract— Programmable network switches promise flexibil-
ity and high throughput, enabling applications such as load
balancing and traffic engineering. Network measurement is a
fundamental building block for such applications, including tasks
such as the identification of heavy hitters (largest flows) or the
detection of traffic changes. However, high-throughput packet
processing architectures place certain limitations on the pro-
gramming model, such as restricted branching, limited capability
for memory access, and a limited number of processing stages.
These limitations restrict the types of measurement algorithms
that can run on programmable switches. In this paper, we focus
on the Reconfigurable Match Tables (RMT) programmable
high-throughput switch architecture, and carefully examine its
constraints on designing measurement algorithms. We demon-
strate our findings while solving the heavy hitter problem.
We introduce PRECISION, an algorithm that uses Partial Recir-
culation to find top flows on a programmable switch. By recir-
culating a small fraction of packets, PRECISION simplifies the
access to stateful memory to conform with RMT limitations and
achieves higher accuracy than previous heavy hitter detection
algorithms that avoid recirculation. We also evaluate each of the
adaptations made by PRECISION and analyze its effect on the
measurement accuracy. Finally, we suggest two algorithms for
the hierarchical heavy hitters detection problem in which the
goal is identifying the subnets that send excessive traffic and are
potentially malicious. To the best of our knowledge, our work is
the first to do so on RMT switches.

Index Terms— Software defined networking, measurement.

I. INTRODUCTION

PROGRAMMABLE network switches enable rapid
deployment of network algorithms such as traffic

engineering, load balancing, quality-of-service optimization,
anomaly detection, and intrusion detection [9], [21], [25],
[28], [41] Measurement capabilities are often at the core of

Manuscript received March 6, 2019; revised September 16, 2019 and
February 15, 2020; accepted February 26, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor P. Giaccone. This work was
supported in part by the NSF under Grant CCF-1535948, in part by the
Taub Family Foundation, in part by the Technion Hiroshi Fujiwara Cyber
Security Research Center, in part by the Cyber Security Research Center at
Ben-Gurion University, in part by the Israel National Cyber Directorate, in part
by the Zuckerman Foundation, in part by the Alon Fellowship, in part by the
German-Israeli Science Foundation (GIF) Young Scientists Program, and in
part by the Gordon Fund for System Engineering. (Corresponding author:
Ori Rottenstreich.)

Ran Ben Basat is with the School of Engineering and Applied Sciences, Har-
vard University, Cambridge, MA 02138 USA (e-mail: ran@seas.harvard.edu).

Xiaoqi Chen is with the Department of Computer Science, Princeton
University, Princeton, NJ 08544 USA (e-mail: xiaoqic@cs.princeton.edu).

Gil Einziger is with the Department of Computer Science, Ben Gurion
University, Beer Sheva 84105, Israel (e-mail: gilein@bgu.ac.il).

Ori Rottenstreich is with the Technion, Haifa 3200003, Israel (e-mail:
or@technion.ac.il).

Digital Object Identifier 10.1109/TNET.2020.2982739

such applications, as they extract information from traffic
to make informed decisions [22]. The current trend is to
allow application designers to code applications by invoking
measurement tasks as primitives [26], [31], [42], [45], [52],
[55]. For example, traffic engineering [9] may want to
optimize the steering of the largest (heavy hitter) flows [5],
[32], and an intrusion detection system [23], [40], [43], [48]
may be interested in hierarchical heavy hitters [6], [39], or in
the flows’ entropy [34], [35].

Zooming in on the implementation of a single measurement
task, the main challenge is the traffic volume. Typically
there are millions of network flows to monitor [46], [49] and
ideally each flow is allocated some memory for storing its
measurement statistics. Coping with the 100 Gbps line rate
requires various optimization techniques that depend on the
target platform; e.g., utilizing sampling [34], SIMD instruc-
tions [44], or FPGAs [53], [54] to accelerate the performance.

Heavy Hitter algorithms only store flow state for the largest
flows to overcome this limitation. This approach exposes a
trade-off between memory space and accuracy, where addi-
tional space improves the accuracy.

There are two types of solutions for heavy hitter detec-
tion problem — counter-based algorithms and sketch-based
algorithms. Counter-based algorithms maintain a bounded-size
flow cache. Only a small portion of the flows are measured,
and each monitored flow has its own counter [16], [37]. Exam-
ples of counter-based algorithms include Lossy Counting [37],
Frequent [29], Space-Saving [38], and RAP [5]. In sketch-
based algorithms, counters are implicitly shared by many
flows. Examples of sketch-based algorithms include Multi
Stage Filters [24], Count-Min Sketch [19], Count Sketch [12],
Randomized Counter Sharing [32], Counter Tree [13], and
UnivMon [35].

Heavy hitter measurement has two closely related goals. In
the frequency estimation problem, we wish to approximate the
size of a flow whose ID is given at query time. Alternatively,
in the top-k problem, the algorithm is required to list the
k top flows. In general, sketch algorithms solve the frequency
estimation problem but require additional efforts to address
the top-k problem. For example, UnivMon [35] uses heaps
alongside the sketches to track the top flows. FlowRadar [33]
and Reversible Sketch [47] encode flow ID in the sketch, and
have a small probability to fail to decode. In contrast, counter
algorithms already store flow identifiers and can directly
solve the top-k problem. While sketch algorithms are readily
implementable in programmable switches, supporting top-k
measurements is a strong motivation for deploying counter
algorithms in such switches. Unfortunately, high-performance

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0196-9190
https://orcid.org/0000-0003-4131-4113
https://orcid.org/0000-0002-4064-1238

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

packet processing imposes severe restrictions on the pro-
gramming model which makes implementing counter algo-
rithms a daunting task.

Some applications such as attack mitigation and intrusion
detection require something more sophisticated than (plain)
heavy hitters [23], [40], [43], [48]. For example, in a Dis-
tributed Denial of Service (DDoS) attack, a large number of
devices collaborate to overwhelm an Internet service. In many
cases, the source IP addresses of the attacking devices are
different from the legitimate traffic. That is, the attack shares
common prefixes which correspond to several sub-networks
that do not deliver much legitimate traffic. Hierarchical Heavy
Hitters (HHH) identify frequently appearing sub-networks.
These can be used to either white-list traffic from the most
frequent sub-networks of the legitimate traffic or to detect that
traffic from specific sub-networks is likely due to an attack
and blacklist them. Since programmable switches are powerful
enough to cope with the current volume of DDoS attacks,
performing HHH analysis on such switches offers exciting
opportunities. Unfortunately, even (plain) heavy hitters are non
trivial to implement in programmable switches.

Contribution: Our work summarizes the restrictions of the
Reconfigurable Match Tables (RMT) [11] switch program-
ming model in the context of measurement algorithm design.
The RMT breakthrough design allows a pipeline multiple
match-action tables of different widths and depths and was
recently described as a “key enabling technology for the
support of the emerging P4 data plane programming” [20].
We divide the RMT restrictions into four easy-to-understand
rules: limited branching, limited concurrent memory access,
single stage memory access, and fixed number of stages.
We used several techniques to fit our implementation into
RMT restrictions, and these techniques are also applicable to
implementing other measurement algorithms in the data plane.

We present Partial RECirculation admisSION (PRECI-
SION) – a heavy hitter algorithm that is fully compatible with
the RMT high-performance programmable switch architecture.
We implemented PRECISION in the P4 language [10] on
the newly released Barefoot Tofino [1] programmable switch
that achieves multiple Tbps of aggregated throughput, and
deployed it in Princeton University’s campus network to
measure real-world heavy hitter flows. The P4 source code
of PRECISION can be found at [2]. The core idea behind
PRECISION is Partial recirculation; PRECISION recirculates
a small portion of packets from unmonitored flows; we decide
probabilistically or deterministically if the packet should be
recirculated and pass again through the programmable switch-
ing pipeline. In the first pipeline pass, we try to match a packet
to an existing flow entry; if this succeeds, we increment its
counter. If unmatched, we sometimes recirculate it to claim
an entry with the new packet’s flow ID. Using the packet
recirculation feature greatly simplifies the memory access
pattern without significantly degrading throughput, while by
carefully setting the recirculation portion we achieve high
monitoring accuracy.

Previous suggestions include HashParallel and
HashPipe [51], two counter-based heavy hitter detection algo-
rithms proposed specifically for running on high-throughput

programmable switches. They both maintain a d-stage flow
table tailored to the pipeline architecture of programmable
switches but differ in whether to recirculate an unmatched
packet.HashPipe never recirculates packets and always inserts
the new entry, which yields high throughput but lower
accuracy. Instead, HashParallel recirculates every unmatched
packet, which achieves much better accuracy but lowers the
throughput. In contrast, PRECISION only recirculates a tiny
portion of the unmatched packets with a minimal impact on
performance. This approach allows PRECISION to conform
to the RMT memory access restrictions and also improves
accuracy over HashPipe, especially for heavy-tailed work-
loads. We then analyze the impact of each RMT constraint
individually and find that most limitations have little effect
in practice. We also show that HashPipe [51] cannot satisfy
both the limited branching rule and the single stage memory
access rule. Within the terminology of Domino [50], HashPipe
requires the more complex Paired atoms (one pipeline stage
supports reading two values, performing two nested branching,
and writing two values back) while PRECISION can be
implemented with the simpler RAW atoms (one stage supports
reading one value, add to it, and write it back).

Next, we suggest two methods to implement Hierarchical
Heavy Hitters (HHH) detection on programmable switches.
These, utilize PRECISION as a black box, and demonstrate
the feasibility of HHH detection entirely in the data plane of
a high performance switch. Such a capability is an important
enabler for attack mitigation systems.

Finally, we evaluate PRECISION on real packet traces
and show that it improves on the state-of-the-art for
high-performance programmable switches (HashPipe) for the
two variants of the heavy hitter problem. It is up to 1000 times
more accurate than HashPipe for the frequency estimation
problem and reduces the space required to correctly identify
the top-128 flows by a factor of up to 32 times. When
compared to general (software) heavy hitter algorithms, PRE-
CISION often has similar accuracy compared to Space-Saving
and RAP. Interestingly, approximating the desired recircula-
tion probability appears very important, with a stage-efficient
2-approximate solution PRECISION requires at most four
times as much memory as RAP. When we dedicate more hard-
ware pipeline stages to achieve a better approximation, the per-
formance gap between PRECISION and RAP diminished.

Paper Outline: The paper is structured as follows.
Section II outlines the programming restrictions of the RMT
high-performance switch architecture and their impact on
designing data plane algorithms. Section III introduces the
reader to the heavy hitter detection problem and surveys
related work. Section IV discusses the implementation of
PRECISION, specifically how we adapt to the limitations
imposed by the RMT architecture to achieve probabilistic
recirculation; we also discussed a deterministic variant of
PRECISION. We present theoretical analysis on bounding the
amount of recirculation in Section V. Section VI shows an
extension of our work to perform the Hierarchical Heavy
Hitters (HHH) measurement. In Section VII, we evaluate
PRECISION, by first quantifying the impact of each adaptation
on the accuracy, and then position it within the field by

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 3

comparing it with other heavy-hitter detection algorithms.
Finally, we conclude in Section VIII.

II. CONSTRAINTS OF PROGRAMMABLE SWITCHES

The emergence of P4-based programmable data plane [10]
is an exciting opportunity to push network algorithms to
programmable switches. In this section, we give a brief intro-
duction of the recently developed RMT [11] high-performance
programmable switch architecture and explain its program-
ming model and restrictions in the context of network mea-
surement algorithm design.

The RMT architecture uses a pipeline to process packets.
At a glance, the packet first goes into a programmable packet
header parser that extracts the header fields, and then traverses
a series of pipeline stages, and finally is emitted through a
deparser. Each stage includes a Match-Action Table, which
first performs a Match that reads some packet header fields
and matches them with a list of values. Then, it performs
the corresponding Action on the packet, which can be routing
decisions or modifying header field variables. RMT promises
Tbps-level throughput which is achieved by limiting the com-
plexity of pipeline stages. These typically run at a fixed clock
cycle ≥ 1 GHz (i.e., ≤ 1μs processing time), permitting only
elementary actions. Flexibility is achieved by allowing many
parallel actions in the same stage, and by connecting many
simple stages into a pipeline. Our case-study of heavy hitter
measurement in this model exposed the following restrictions
which we survey below.

Simple Per-Stage Actions (Limited Branching): Also,
branching operations are expensive, and the hardware pipeline
may only support very limited branching within stages (but can
perform complex branching across stages using match-action
tables), as illustrated in Figure 1a. Therefore, we cannot
perform arbitrary computation and have to redesign the algo-
rithm to fit the architecture. We expand on this limitation in
Section IV-B.

Limited Concurrent Memory Access: A small amount of sta-
tic random access memory (SRAM) is attached to each hard-
ware stage for stateful processing. As illustrated in Figure 1b,
when a packet arrives, it can access one, or a few, addresses
in the memory region but not read or write the entire memory
block, again due to per-stage timing requirement. From an
algorithm design perspective, this means we can only read
from or write to memory at specific addresses, and therefore
cannot compute even the most straightforward functions glob-
ally, e.g., find a minimum across many array elements.

Single Stage Memory Access: Each stage is processing a
different packet at any given time. Therefore, allowing two
packets to access the same memory region may cause a
read-write hazard, shown in Figure 1c. The RMT architecture
avoids this by allowing access to stateful memory blocks only
from one particular pipeline stage. Thus, our algorithm can
only access each memory region once as the packet is going
through the pipeline. We need to recirculate a packet, causing
it to go through the entire pipeline again, in order to access
the same memory block twice. Recirculation is expensive as it
reduces the rate that incoming packets can access the pipeline.

Fig. 1. Illustration of some restrictions imposed by RMT pipeline model for
designing measurement algorithm.

Even in more recently proposed architecture like dRMT [14]
where memory resources are dynamically allocated to different
hardware stages, we still cannot allow accessing the same
memory region from two different pipeline stages. Therefore,
the restriction we describe seems fundamental.

Fixed Number of Stages: For guaranteeing a low per-packet
latency, the switch cannot have too many pipeline stages.
In our case, since the pipeline is not very long, the total
number of operations performed on a packet cannot exceed
a hardware-imposed constant. Again, we can circumvent the
limit by recirculating some packets, with a throughput impact.

Limited Support for Arithmetic Operations: Each pipeline
stage can only execute primitive arithmetic. For example,
division is much slower than addition; thus the switching
hardware usually does not support division or multiplication.

Discussion: While these restrictions target specifically the
newly proposed RMT architecture, we believe that future
high-throughput switching architectures are likely to have sim-
ilar constraints due to the throughput and latency requirements
they need to satisfy.

We also note that capabilities prepared for packet forward-
ing can be exploited by measurement algorithms as well.
The Match-Action Table model specifies that each pipeline
stage will use a part of packet header data (e.g., a network
address) to perform a lookup in a match table, and subse-
quently executes the corresponding action in the table (e.g.,
a forwarding destination). In our algorithm design perspective,
this means we can perform parallel lookups on intermediate
variable cheaply. Beyond exact matching, the architecture also
supports ternary and longest-prefix matching.

Note that the TCAM memory used in table lookup is dif-
ferent from the memory used for stateful processing (SRAM)
mentioned earlier. TCAM allows for parallel reads, but writing
may not finish in constant time. Hence it can only be modified
by the switch control plane but not within the data plane (by

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

the packet being processed, in one pipeline clock cycle). Thus,
the parallel-readable lookup tables are “read-only” for the
packet, and writable memory must be accessed by addresses.

III. THE HEAVY HITTERS PROBLEM AND

EXISTING SOLUTIONS

This section formally defines the problems addressed in this
work as well as surveys the relevant related work.

A. Problem Statement

Our work targets two common measurement forms, the fre-
quency estimation problem and the top-k problem. For both,
we refer to a quasi-infinite packet stream, where each packet
is associated with a flow as explained below.

A flow refers to a particular subset of the packet stream that
we choose to combine and analyze as a whole. For example,
a flow may apply to a TCP connection or a UDP flow, in which
case the five-tuple (source and destination IP, protocol, source
and destination port) becomes the flow identifier. Alternatively,
a flow may refer to just the source IP address, or just the
destination IP and port pair. In any case, we assume that a
flow identifier is available from some fields of the packet
header, and that flows partition the stream such that each
packet belongs to a single flow.

We denote the frequency of a network flow with ID s,
or the total number of packets belonging to flow s, as fs.
For the frequency estimation problem, we use the OnArrival
model [5], which requires an algorithm to estimate the flow
frequency for each new packet it sees, and evaluates the
estimation error upon each packet arrival. Formally, we reveal
packets in a stream (p1, p2, . . .) one packet at a time, and
on each packet arrival, with packet pt belonging to some
flow s. An algorithm Alg is required to provide an estimate
f̂s for fs � | {pi ∈ s|1 ≤ i ≤ t} | — the number of packets
belonging to flow s in p1, . . . , pt.

The top-k identification problem is defined as follows:
Given a stream (p1, p2, . . .) and a query parameter k, the algo-
rithm outputs a set of flows containing as many of the k largest
flows as possible.

B. Existing Approaches

The Space-Saving Algorithm: Space-Saving (SS) [38] is a
heavy hitter algorithm designed for database applications and
software implementations. Space-Saving maintains a fixed-size
flow table, where each entry has a flow identifier and a counter.
When a packet from an unmonitored flow arrives, the iden-
tifier of the minimal table entry is replaced with the new
flow’s identifier, and its counter is incremented. Space-Saving
uses a sophisticated data structure named stream-summary
which allows it to maintain the entries ordered according
to counter values in constant time as long as all updates
are of unit weight.

Space-Saving was designed for database workloads, which
often exhibit a heavily concentrated access pattern, i.e. most
of the traffic comes from a few heavy hitters. In contrast,
networking traces are often heavy-tailed [5], [27]. That is,
a non-negligible percentage of the packets belong to tail flows
or those other than heavy hitters. Unfortunately, Space-Saving

works poorly on such workloads. For conciseness, we present
only the Space Saving algorithm between all classical heavy
hitter algorithms, as it is often considered to be the most
accurate [15], [16], [36].

Optimization for Heavy-Tailed Workloads: To deal with
heavy-tailed workload, Filtered Space-Saving [27] attempts to
filter out tail flows before inserting into flow table. It utilizes
a bitmap alongside a Space-Saving instance. When a packet
arrives, a hash function is used to map its flow ID into a
bitmap entry. If the entry is zero, it merely sets the entry to
one. Otherwise, we update the Space-Saving instance.

Maintaining additional data structures to filter tail flows
may be wasteful. Therefore, Randomized Admission Policy
(RAP) [5] suggests using randomization instead. When an
unmonitored flow arrives, it is admitted only with a small prob-
ability. Thus, most tail flows are filtered while heavy hitters
that appear many times are eventually admitted. Specifically,
if the minimal entry has a counter value of c, RAP requires
the competing flow to win a coin toss with a probability
of 1

c+1 to be added. The idea of RAP can be applied to
the Space-Saving algorithm for software implementations. For
hardware efficiency, the authors evaluate a limited associativity
variant.

Unfortunately, the programming model of high-performance
programmable switches is too restrictive to implement these
algorithms directly. Specifically, Space-Saving evicts the min-
imal flow entry across all monitored flows, whereas the
architecture of programmable switches does not permit finding
(and replacing) the minimum element among all counters.
Even for the limited associativity variant of RAP, it is still
difficult to implement the randomize replacement after finding
the approximate minimum value, due to same-stage memory
access restriction.

High-Performance Switch Algorithms: HashPipe [51] adapts
Space-Saving to meet the design constraints of the P4 language
and PISA programmable switch architecture [10]. The authors
suggest partitioning the counters into d separate stages to fit
the programmable switch pipeline. They use d hash functions
that dictate which counter can accommodate each flow on each
stage. They first propose a strawman solution, HashParallel,
which makes each packet traverse all d stages while tracking
the minimal value among the counters associated with its
flow. If the flow is monitored, HashParallel increments its
counter. If not, it recirculates the packet to replace the minimal
entry among the d. The authors explain that HashParallel
potentially recirculates all the packets, which halves the
throughput.

Hence, they suggest HashPipe as a practical variant with
no recirculation. In HashPipe, each packet’s flow entry is
always inserted in the first stage. They then find a rolling
minimum — the evicted flow proceeds to the next stage where
its counter is compared with the flow monitored there. The
flow with the larger counter remains, while the smaller flow’s
entry is propagated further. Eventually, the smaller counter
on the dth stage is evicted. This allows HashPipe to avoid
recirculation but introduces the problem of duplicates — some
flows may occupy multiple counters, and small flows may still
evict other flows.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 5

FlowRadar [33] is another P4 measurement algorithm that
follows a different design pattern. The main design difficulty to
overcome is the lack of access to a fully associative hash table
in programmable switches. While HashPipe and this work
implement a fixed associativity table using multiple pipeline
stages, FlowRadar potentially stores multiple flows within the
same table entry. That is, upon hash collision the new flow
identifier is XORed into the existing identifier. FlowRadar
works best when the measurement is distributed, where multi-
ple programmable switches can share their state to decode
flow entries. Initially, FlowRadar recovers all flow entries
that had no collision. Recovered flows are then recursively
removed from the data structure, enabling for more flows to
be recovered.

This approach is differentiated from our own as it attempts
to perform an accurate measurement and therefore requires
space which is proportional to the number of flows. In contrast,
our approach provides an approximation of the flow sizes, and
the required memory is independent of the number of flows.
Also, FlowRadar requires multiple measurement devices each
encoding a different subset of flows whereas our solution can
also be implemented on a single device.

Sampling: Instead of running algorithms in the data plane,
one may also sample a fraction of packets and run sophisti-
cated algorithms elsewhere [7]. This approach simplifies the
hardware implementation but the problem migrates elsewhere.
Namely, to process the samples in real time, we need addi-
tional computation and bandwidth overheads. Also, achieving
high monitoring accuracy on smaller flows requires high
sampling rate.

Hierarchical Heavy Hitters: MST is an HHH algorithm that
utilizes an independent (plain) heavy hitter instances for each
prefix length [39]. Once in a while, MST calculates the set of
HHH prefixes from the heavy hitters of each prefix length. The
RHHH algorithm [6] optimizes the performance of MST in
software by updating a single random prefix. These algorithms
are non-trivial to implement in programmable switches due to
the limited programming model.

IV. DESIGN AND IMPLEMENTATION OF PRECISION

We now present several hardware-friendly adaptations that
address the restrictions imposed by RMT switch architecture.

A. From Fully Associative to d-Way Associative
Memory Access

Building on top of Space-Saving [38] and RAP [5], we first
tackle the fact that a programmable switch cannot perform the
fully-associative memory access to evict the minimum item.
At any given pipeline stage, the algorithm can specify an index
to access some location in the register array. The switch may
allow accessing a small number of positions simultaneously
but definitely cannot compute a global minimum across an
entire register array.

We adopt the limited-associativity idea from HashParallel
and HashPipe [51] to approximately evict a small element,
by choosing the minimum across d randomly selected elements
from d separate register arrays. With this relaxation, we can

Algorithm 1 HashPipe [51] Heavy Hitter Algorithm

1 l1 ← h1(iKey) � Always insert in the first stage;
2 if key1[l1] = iKey then
3 val1[l1]← val1[l1] + 1;
4 end processing;
5 else if l1 is an empty slot then
6 (key1[l1], val1[l1])← (iKey, 1);
7 end processing;
8 else
9 (cKey, cV al)← (key1[l1], val1[l1]);

10 (key1[l1], val1[l1])← (iKey, 1);
11 for i← 2 to d do
12 � Track a rolling minimum;
13 li ← hi(cKey);
14 if keyi[li] = cKey then
15 � Read keyi ;
16 vali[li]← vali[li] + cV al � R/W vali ;
17 end processing;
18 else if [li] is an empty slot then
19 (keyi[li], vali[li])← (cKey, CV al) � Write keyi,

val ;
20 end processing;
21 else if vali[li] < cV al then
22 � Condition on vali; Violating Restriction I;
23 swap (cKey, cV al)⇔ (keyi[li], vali[li]) � R/W

keyi ;

naturally spread the memory access across different hardware
stages, and at each hardware stage, we only access one mem-
ory location. Specifically, we use d independent hash functions
h1, . . . , hd to compute a different index for each stage, and
at each stage, we access the hi(key)th element of the ith

register array. Note that PRECISION performs d flow entry
reads, but it does not consume exactly d hardware pipeline
stages, as processing each read involves two branchings, and
costs three hardware stages. We also discuss how to reduce
the total number of hardware stages required in Section IV-F.

B. Simplified Memory Access

a) Implementation requirements of HashPipe: Although
the design of HashPipe has already satisfied many restrictions
imposed by RMT structure, its memory access pattern prevents
us from implementing it in today’s programmable switch
hardware (that has a limited support for Paired atoms). The
high-level idea of the HashPipe algorithm (see pseudocode
in Algorithm 1) is to always evict the minimum out of d
elements, by “carrying” a candidate eviction element through
the pipeline. At each stage, we compare the counter read
from register memory with that of the carried element. Then,
the smaller of which is propagated further onward.

We now scrutinize the register memory access to different
arrays of HashPipe, as highlighted in Algorithm 1. If we
look at Line 14 and Line 23, they both access the register
array key holding flow identifiers. The single stage memory
access restriction requires that line 14 through line 23 would
be placed within the same hardware pipeline stage.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

However, the execution flow is branched in line 21 based
on the values in another register array (val). Such branching
violates the limited in-stage branching restriction. Referring
to the model presented in [50], to implement HashPipe, the
simple RAW 1 action atoms at each stage are inadequate, and
at least Paired2 action atoms are required. While the RMT
architecture [11] does not specifically define what features the
action units need to support, Paired action atoms are more
expensive to implement than RAW atoms and require 14x
larger chip area than RAW atoms [50]. Therefore, today’s
RMT programmable switches do not support Paired atoms. We
strive to design our measurement algorithm to only require the
simpler RAW atoms.

With only the simple RAW atoms, it is not possible to
conditionally update a flow entry while simultaneously incre-
menting the corresponding counters. As long as we place
flow identifier and counter in two separate register arrays,
this seemingly innocuous set of operations has some inevitable
in-stage branching: if we access flow identifiers first, we need
to: (i) Read flow ID from flow entry array; (ii) If ID matched,
increment counter; otherwise, compare the counter to the
carried counter value; (iii) If the condition is satisfied, replace
flow ID. This leads to a write to flow entry register memory
conditioned on reading from another counter register memory.
Therefore, two nested branching within the stage is inevitable.

Some may argue that we can cleverly rearrange the opera-
tions to mitigate the branching; however, even if we access the
counter first, we still encounter the same restriction: (i) Read a
counter from the counter register memory; (ii) Read flow ID; if
ID not matched, check if the counter is smaller than the carrier
counter to decide whether to replace the flow ID; (iii) Write the
incremented counter value, if the ID matched. Again, the con-
ditional write after reading another register forces two nested
branching within a hardware pipeline stage (requiring Paired
atom). Therefore, we cannot implement HashPipe on the first
generation programmable switches available on the market.

b) PRECISION’s solution: The implementation of PRE-
CISION is even more challenging. We decide to replace an
entry after knowing the minimum sampled counter value, but
we only know this value after reaching the end of the pipeline,
at which point it is too late to write to the register memory of
earlier stages.

We resolve this difficulty using the recirculation feature
on switches [4], [10], that allows packets to traverse the
pipeline again, removing all conditional branching for register
access. When a packet leaves the last stage of the pipeline,
instead of leaving the switch, we may choose to bring it
to the beginning of the pipeline and go through all stages
again. We can use metadata to distinguish between recirculated
packets (which should be dropped) and regular packets that
should be forwarded to their next hop.

Using recirculation allows more versatile packet process-
ing at the cost of packet forwarding performance, as the

1The RAW action unit is capable of Reading an element from register
memory, Add a value to it, and Write it back. See [50].

2The Paired action unit is capable of reading two different elements from
register memory, conditionally branch twice (two nested if s), perform addition
or subtraction to the elements, and write two new values back. See [50].

recirculated packet will compete for resources with new
incoming packets. However, we believe it’s a necessary
trade-off to satisfy the no-branching-within-stage constraint for
high-performance programmable switches.

At the end of the pipeline, we ignore those packets already
matched to flow entries and probabilistically recirculate
the other packets using probability 1

carry_min+1 , where
carry_min is the value of the minimum sampled entry.
The recirculated packet will evict and replace the minimum
sampled entry. It will traverse the pipeline again to write
its flow identifier into the corresponding register array when
it arrives at the right pipeline stage, and also update the
corresponding counter to a new value carry_min + 1.
In expectation, for every unmatched packet we increased the
count for its flow by 1.

As a packet recirculates, it introduces a delay between
the point in which we chose to admit it, and when it writes
its flow ID on its second pipeline traversal. During this
period other packets may increment the counter, an effect
that will be overridden. Thus, the recirculation delay may
have some impact on PRECISION’s accuracy. The duration
of such delay is architecture-specific and depends on both
the queuing before entering the pipeline and the length
of the pipeline. In Section VII-B, we evaluate its impact
on PRECISION’s accuracy and show that PRECISION is
insensitive to such delay.

C. Efficient Recirculation
We avoid packet reordering and minimize application-level

performance impact by using the clone-and-recirculate prim-
itive, which routes the original packet out of the switch as
usual, and drops the cloned packet after it finishes the second
pipeline traversal. This implies that in-flow packet order is
preserved and that a packet can only be recirculated once.

Since recirculated packets compete for resources with
incoming packets, we would like to minimize the number of
recirculated packets. Fortunately, recirculation happens only
for unmatched packets, with a probability of 1

carry_min+1 ,
where carry_min is the minimal counter value the packet
saw in all pipeline stages. Thus, recirculation becomes less
frequent as the measurement progresses and the counters
grow. In Section V we show that the expected number of
recirculated packets is asymptotically bounded by the square
root of the number of packets.

We can further bound the expected recirculation ratio at the
beginning of the execution by initializing all counter registers
to a non-zero minimum value. For example, if we initialize
all counters to 100, we also set an upper bound 1% for the
expected recirculation probability. Subsequently, because of
concentration bound, the probability for having more than
(1+ε)% recirculation becomes negligible. In Section VII-C we
show that adding an appropriate initial value has a negligible
accuracy impact. We also note that in hardware switches,
recirculating 1% of packets leads to at most 1% impact on
throughput.

D. Approximating the Recirculation Probabilities

Recall that the original RAP algorithm admits packets from
new flows with probability 1

carry_min+1 . Intuitively, a flow

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 7

needs to arrive carry_min + 1 times on average to capture a
counter with a value of carry_min + 1.

It is straightforward to achieve this probability if a random
arbitrary-range integer generator is available: we can generate
an integer within [0, carry_min] and check if it’s 0. However,
sometimes we can only obtain random bits from program-
mable switch’s hardware random source, and this effectively
limits us to generate random integers within [0, 2x− 1] range.
Without the capability to do division or multiplication, we can-
not accurately sample with desired probability 1

carry_min+1 .
As we show in Section VII-D, we can work around this limit
without affecting accuracy.

The most simple workaround is to only use probabilities
of the form 2−x. Achieving this probability is done by
comparing x random bits to zeroes. That is, we recirculate
unmatched packets with probability 1

carry_min+1 rounded to
the next smallest 2−x. This is a 2-approximation of the desired
recirculation probability. The recirculated packet will update
the counter to 2x. Rounding is achieved by using a ternary
matching over bits of carry_min variable to find the highest
1 bit. The evaluation in Section VII-D shows that this method
has a noticeable but acceptable impact on accuracy.

We now introduce a tighter method for approximating the
desired recirculation probability. Inspired by floating point
arithmetic, we may decompose carry_min + 1 = 2y × T,
T ∈ [8, 16) and use a probability of the form 1

2y × 1
�T�

to approximate 1
carry_min+1 . We can directly implement the

1
2y , while the 1

�T� is approximated by randomly generat-
ing an integer between [0, 2N] and comparing it against a
pre-computed constant � 2N

�T��, via a lookup table. Further,
to avoid non-integer number representation, we always incre-
ment the counter value by 1 upon recirculation. This achieves
a 9/8-approximation of the desired recirculation probability.
Our evaluation shows that the accuracy gains are significant.
Yet, this method requires additional pipeline stages.

E. Putting All Adaptations Together

With all the aforementioned hardware-friendly adaptations
in mind, we assemble the PRECISION algorithm, which
satisfies all hardware-imposed constraints of the RMT
architecture. Algorithm 2 is a pseudocode version of
PRECISION. Line 1 reflects PRECISION’s d-way associative
memory access, iterating through each way. In Line 7 we
increment the counter for matched packets, while unmatched
packets handled between Line 15 and Line 19. We flip a
coin in Line 17, and the 2-approximation of recirculation
probability manifests in Line 16. Recirculated packets update
register memory corresponding to their minimal entries. This
is described between Line 20 to Line 24. We highlighted
accesses to register memory in color, note that registers
are only accessed once per stage. Each branching fits in a
transition between hardware pipeline stages, removing the
need to perform in-stage branching.

F. Parallelizing Actions to Reduce Hardware Stages Used
Algorithm 2 presented PRECISION in its most straight-

forward arrangement, iterating through the d-way in tandem,

Algorithm 2 PRECISION Heavy Hitter Algorithm

1 for i← 1 to d do
2 li ← hi(iKey) ;
3 if keyi[li] = iKey then
4 � Hardware stage iA: access keyi register;
5 matchedi ← true;
6 if matchedi then
7 vali[li]← vali[li] + 1 � Hardware stage iB: access

vali register ;
8 else
9 ovali = vali[li]

10 if (¬matchedi) ∧ (ovali < carry_min) then
11 � Hardware stage iC : maintain carry minimum;
12 carry_min← ovali;
13 min_stage← i

14 if
∧d

i=1(¬matchedi) then
15 � iKey not in cache; do Probabilistic Recirculation.

new_val = 2�log2(carry_min)�;
16 Generate random integer R ∈ [0, new_val − 1],

by assembling
log2(carry_min)� random bits;
17 if R = 0 then
18 clone and recirculate packet;
19 if packet is recirculated then
20 i← min_stage;
21 li ← hi(iKey);
22 keyi[li]← iKey � Hardware stage iA: access keyi

register ;
23 vali[li]← new_val � Hardware stage iB: access vali

register;
24 Drop the cloned copy;

while each uses three pipeline stages. This costs as much as
d×3 hardware pipeline stages for register memory reads. Since
the total number of stages is very limited, we explain how
to optimize the required number of stages further, and fit a
larger d on the same hardware. This optimization may also be
applicable to other algorithms with a similar repeated register
array access pattern.

Intuitively, each ‘if’ in the pseudocode is a branching, sep-
arating the algorithm into different hardware stages. However,
it may be possible to group independent stages and reduce the
total number of hardware stages needed.

In our implementation, PRECISION requires two branching
for each of the d ways. That is, it requires three pipeline stages
for each way. The stages in each way are:
Stage A: Read flow ID from flow entry array. (branching:
does entry’s ID match my ID?)
Stage B: Read/Update from the counter array. (branching: is
counter smaller than the current minimum?)
Stage C: Compute and “carry” the new minimum value.

If we indeed require three hardware stages for each pair of
flow entry array and counter array, a switch with X physical
stages can at most implement PRECISION with d = X/3.
This assumes that all pipeline stages serve for heavy-hitter
detection. In practice, we would like to leave enough pipeline
stages for other network applications.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 2. We reduce the number of pipeline stages used by stacking together
independent actions between different ways. For d-way PRECISION, this
reduces the number of pipeline stages required from d × 3 to d + 2.

However, our algorithm does not have a hard dependency
between different groups of stages. If we denote the d ways
as 1, 2, 3 and the three pipeline stages for each action as
A, B, and C, we can observe that (for example) 2A and 1C

are independent. Thus, it’s not necessary to serialize every-
thing into the pattern shown in Figure 2(a). Instead, we can
“stack” operations from different groups together, as shown
in Figure 2(b). Specifically, reading the flow identifier for the
next flow entry array can be parallelized with incrementing
a counter for the previous way’s counter array and so forth.
Therefore, we can parallelize different execution stages of
multiple ways as there is no direct causal relation or data
dependency between stage action (i+1)B and iC , or between
(i + 1)A and iB . Thus, by using the stacking pattern shown
in Figure 2(b), we reduce the number of required stages to
implement d-way PRECISION from d×3 to d+2, amortizing
to one stage per way. 3

For a programmable switch with a limit of X hardware
stages, the actual maximum d we can implement will be
smaller, because we need extra stages before and after the
core algorithm for setup and teardown, such as extracting
flow ID and performing random coin-tossing. Furthermore,
a network switch will need to fulfill its regular duties like
routing, access control, etc., and would not devote all its
resources to the PRECISION algorithm. Nevertheless, we can
expect any commodity programmable switch to run the d = 2
version of PRECISION smoothly, alongside its regular duties.
When extra resources are available, we may increase d to
improve accuracy as shown in Section VII-A.

G. A Deterministic PRECISION Variant

In this section, we consider a variant that replaces the
probabilistic recirculation mechanism of PRECISION by a
deterministic one. Intuitively, instead of admitting each packet
with probability p we can admit the 1/p’th packet. To imple-
ment this, we change the hashing scheme of PRECISION so
that each flow is only hashed once (i.e., all li are the same, see
Line 2 in Algorithm 2). We add a single counter per row that
is initialized to zero and incremented for every packet that is
mapped to this row. Then, if the counter equals the minimal
value observed by the packet, we recirculate the packet and
reset the counter.

3There is indeed a causal dependency between stage (i+1)C and iC when
computing the carried minimum value carry_min, thus using only a constant
number of 3 hardware stages is not possible. Also, other hardware constraints
that limit the number of parallel actions in one hardware stage exists, but
these are less stringent than the limit on the total number of hardware stages.

V. BOUNDING THE AMOUNT OF RECIRCULATION

Here we show a bound on the total number of packet-
recirculations. Our main result, Theorem 3, shows that
the number of recirculated packets is sublinear. Combined
with our approach for setting initial values to counters to
avoid high recirculation ratio at the beginning, we main-
tain recirculation at acceptable levels throughout the mea-
surement. While the main theorem deals with the ran-
domized PRECISION, it also applies to the deterministic
version (discussed in Section IV-G), as the expected num-
ber of recirculated packets is roughly the same in both
versions.

We first present an auxiliary lemma about summing ran-
dom variables.

Lemma 1: Fix some p ∈ (0, 1], T ∈ N
+ and let

X1, X2, . . . ∼ Geo(p) be independent geometric random vari-

ables with mean 1/p. Denote by Z � min{n ∈ N |
n∑

i=1

Xi ≥
T } the minimal number n such that the sum of X1, . . . , Xn

exceeds the threshold T . Then E[Z] = p(T − 1) + 1.
Proof: For n ∈ {1, . . . , T}, let Sn �

∑n
i=1 Xi denote

the sum of the first i random variables. Next, let Y �
| {1, . . . , T} \ {Sn | n ∈ {1, . . . , T − 1}} | denote the number
of integers between 1 and T that are not a sum of prefix
of the Xi’s. Observe that since the variables Xi are i.i.d.,
geometric variables, we have that Y ∼ Bin(T − 1, p); that
is, Y is a binomial random variable with mean p(T − 1).
But observe that the value of Z is simply one plus the
number of n values for which Sn < T . This establishes that
E[Z] = 1 + E[Y] = p(T − 1) + 1.

Next, we show a bound on the expected number of pack-
ets that would be sampled by a single-counter PRECISION
instance. For this, we denote by Xi the number of packets
between the time that the counter has reached a value of i and
the time it first reaches of i + 1.

Lemma 2: Fix some T ∈ N
+ and let

{Xi ∼ Geo(1/i) | i ∈ N} denote independent geometric
variables such that the expectation of Xi is i. Similarly to the

above lemma, let A � min{n ∈ N |
n∑

i=1

Xi ≥ T } denote the

number of variables needed to cross the threshold T . Then
E[A] ≤ 2

√
T .

Proof: Intuitively, since E[Xi] = i and
∑n

i=1 i = O(n2),
we can expect that Ω(

√
T) variables are needed to cross the

T threshold. To prove this, first notice that we are looking for
an asymptotic bound rather than computing the expectation
exactly. This allows us to “ignore” the first

√
T − 1 random

variables. Formally:

E[A] ≤
√

T − 1+E

⎡⎣min

⎧⎨⎩n ∈ N |
√

T+n∑
i=

√
T

Xi ≥ T

⎫⎬⎭
⎤⎦ . (1)

Next, let X ′√
T
, . . . , X ′

T ∼ Geo(T−1/2) denote a set of
i.i.d. geometric variables (independent of X1, . . . , X√

T) with
expectation of

√
T . Notice that for i ≥ √T , we have that the

parameter for Xi is smaller than that of X ′
i . Together with (1),

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 9

Fig. 3. An illustration of our two implementation approaches for Hierarchical Heavy Hitters.

this allows us to further write:

E[A] ≤
√

T − 1+E

⎡⎣min

⎧⎨⎩n ∈ N |
√

T+n∑
i=

√
T

X ′
i ≥ T

⎫⎬⎭
⎤⎦ . (2)

Finally, we use Lemma 1 to write

E

[
min

{
n ∈ N |

√
T+n∑

i=
√

T

X ′
i ≥ T

}]
=
√

T + 1. Together

with (2) we conclude that E[A] ≤ 2
√

T .
We now present the main theorem. Note that here we

assume ideal random recirculation probability 1/i, and the
approximation techniques only reduce recirculation further.

Theorem 3: Denote the number of packets in the stream by
N and the number of counters by C. The expected number of
recirculated packets is O(

√
NC).

Proof: For i ∈ {1, . . . , C}, let Ri denote the number
of times PRECISION recirculates a packet to update the i’th
counter and by R the overall recirculation. Next, let Ni denote
the number of times this counter was probabilistically modified
(that is, a packet traversed the entire pipeline, and this counter
was the minimal along its path). We have that

∑C
i=1 Ni ≤ N

(this is inequality as some packets update their flow counter
and are surely not recirculated). According to Lemma 2 we
have that E[Ri] ≤ 2

√
Ni. This gives

E[R] =
C∑

i=1

E[Ri] ≤
C∑

i=1

2
√

Ni ≤ 2

√√√√ C∑
i=1

Ni = 2
√

NC,

where the last inequality follows from the concaveness of
the square root.

VI. HIERARCHICAL HEAVY HITTERS

In this section, we suggest two implementations of Hierar-
chical Heavy Hitters (HHH) on programmable switches. HHH
is a generalization of the heavy hitter / top-k problems in
which the goal is to identify subnets that send an excessive
amount of traffic. HHH is motivated by the need to identify
the attackers in a distributed denial of service (DDoS) attacks.
Intuitively, the attack has access to many devices, each of
which only sends a moderate amount of traffic, eliminating
detection by standard top-k solutions. If the malicious devices
share a common subnet (or a small number of subnets),
HHH algorithms are able to identify them by considering
the aggregated traffic that originates from each network. The
full definition of the HHH problem is complex and appears
in [17], [18].

Here, we present two possible solutions for finding HHH
with PRECISION with different accuracy-resources tradeoffs.

The Independent Stacking suggestion is based on the MST
algorithm [39] and requires running multiple instances of
PRECISION in parallel. Each such instance is updated in
parallel with one of the prefixes of the current packet as
illustrated in Figure 3(a). For example, in the common use case
of source hierarchies in byte granularity, we are required to
monitor (i) the total number of packets (i.e., /0 sub-network),
(ii) the number of packets from each sub-network of size
8 bits, (iii) from each sub-networks of size 16 bits, (iv) from
each sub-network of size 24 bits, and (v) sub-networks of size
32 bits. Clearly (i), and (ii) can be accurately counted using
one and 256 counters, which requires three parallel instances
of PRECISION for (iii)-(v). Such a suggestion is efficient
in a pipeline architecture, as the independent PRECISION
instances can be stacked together without requiring additional
stages. However, Independent Stacking does not scale very
well for larger hierarchies. Further, some architectures may
limit the amount of stacking. Thus, our second suggestion
is focused on implementing HHH using fewer hardware
resources.

The basic idea of our second suggestion is to use RHHH as
a model. We use a single PRECISION instance to monitor all
prefix lengths, as illustrated in Figure 3(b). We add a pipeline
stage that counts the total number of packets and then pick
a prefix uniformly at random. The number for possible prefix
lengths is 4 (for byte-level) or 32 (for bit-level), which are
both power of 2 and easy to sample from. We update the single
PRECISION instance in the same way as PRECISION does.
The controller then receives the heavy hitters of the unified
instance, separate them by prefix types and calculate the HHH
list in the same manner as the previous work [6]. The work of
RHHH showed that randomization works upon having a large
number of packets. This is a reasonable assumption to make
under our setup with high-throughput programmable switches.
Further, the second suggestion requires only a single instance
of PRECISION (with more allocated memory), therefore is
applicable whenever PRECISION can work.

VII. IMPLEMENTATION AND EVALUATION

This section presents an evaluation of PRECISION’s accu-
racy and adaptation mechanisms. We implement PRECISION
in 800 lines of P4 code on an Barefoot Tofino Wedge-100
programmable switch, with d = 2 stages each tracking
64k flows, saving a total of 128k heavy hitter flows (defined
as source-destination IP pairs). The implementation used 15%
of header metadata memory and 20% of total register memory
available to save flow IDs and counters. It computed d = 2
hash functions, less than 10% of totally available.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Our PRECISION prototype was deployed in Princeton
University’s campus network to report heavy flows to network
operators, and has correctly reported the flows with empirically
largest volume. The prototype processes mirrored traffic from
campus Internet border, and implements recirculation using
ingress pipeline resubmit.

We also run PRECISION on a Python-based simulator,
as simulation allows us to choose parameters freely and
independently manipulate each hardware restriction. We start
by studying the effect of each hardware-friendly adaptation
on PRECISION’s accuracy. Next, we compare PRECISION
to related work, including HashPipe [51], as well as Space-
Saving [38] and RAP [5] that are not directly implementable
on programmable switches. We obtain the code of HashPipe
from its authors, and run it on a Java-based simulator.

For evaluating frequency estimation, we then measure the
Mean Square Error (MSE) of the algorithm, i.e.,

MSE(Alg) � 1
N

N∑
t=1

(f̂s − fs)2.

We judge the quality of the top-k based on the standard
Recall metric that measures how many top flows it identifies.
Specifically, denoting the kth largest flow’s frequency by Fk,
when the algorithm outputs a flow set C, quality using:

Recall(C) � |e ∈ C : fe ≥ Fk|/k.

Our evaluation utilizes the following datasets:
CAIDA: The CAIDA Anonymized Internet Trace 2016 [3]

(in short, CAIDA). Data is collected from the Equinix-Chicago
backbone link with a mix of UDP, TCP, and ICMP packets.

UWISC-DC: A data center measurement trace recorded at
the University of Wisconsin [8].

UCLA: The University of California, Los Angeles Com-
puter Science department packet trace (denoted UCLA) [30].

We truncate each trace to its first 2 million packets, and
use packets’ Source-Destination IP address pair as their flow
ID. In general, the CAIDA trace is heavy tailed, while the
UWISC-DC trace and the UCLA traces are skewed.
We also tested our algorithm using synthetic trace with Zipf
distribution and observed similar results.

All experiments were performed using a software emulated
version of PRECISION, and we repeated each experiment
10 times with different random hash functions. Unless spec-
ified otherwise, the default associativity for PRECISION is
2-way.

A. Limited Associativity

We start with the frequency estimation problem and measure
OnArrival error. In this measurement, we evaluate PRECI-
SION with a varying number of ways (d) and use the same
amount of total memory for all trials. Our results in Figure 4a
show that for this problem 1-way associativity (d = 1,
abbreviated as 1W) is a bit too low, but 2-way is already
reasonable and further increasing d has diminishing returns.
Figure 4b evaluates how d affects the Recall in top-k problem,
using 512 counters to find top-128 flows. In this metric,
we see that associativity is more important than in frequency

Fig. 4. Effect of limited associativity on the frequency estimation error and
top-k recall, on CAIDA trace. Using d = 2-way is a right balance between
achieving good accuracy and saving pipeline stages usage.

estimation. d = 2 requires up to 2× more counters than d = 16
to achieve the same recall. Changing to smaller or larger k
yields similar observation.

We conclude that limited associativity incurs minimal accu-
racy loss in frequency estimation and is more noticeable in
top-k. Our suggestion is to use d = 2 as it achieves the right
balance between accuracy and the number of pipeline stages.

B. Entry Update Delay

We now evaluate the impact of update delay between the
decision to recirculate and the actual flow entry update. Instead
of using empirical evidence on one particular programmable
switch, we simulate various possible delay values in terms
of pipeline length. Figure 5a shows results for the MSE
(Mean Square Error) in the frequency estimation problem and
Figure 5b shows the Recall in top-k problem when trying to
find the top-128 flows. As can be observed, the lines are almost
indistinguishable. That is, update delay has a minor impact on
accuracy for both metrics, even for a delay of 100 packets.
We assume that practical switching pipelines would have
shorter recirculation delays, as today’s programmable switches
have much less than 100 stages. A possible reason for this
insensitivity to update delays is that replacing flow entries is
already a rare and random event. Thus, the actual replacement
time barely affects the accuracy even if it slightly deviates
from the decision time.

C. Initial Value

We now evaluate the impact of having an initial value larger
than zero set to all counters. Intuitively, the initial value limits
the number of recirculated packets, but also requires some
time to converge. This is because having a non-zero initial
value means that we need to see more unmatched packets
before we claim an entry — even if that entry is empty.
Figure 6a show results for the frequency estimation metric.
As can be observed, the initial value does affect the accuracy,
and the effect is small until initial value 100, but initial value
1,000 causes a large impact. A similar picture can be observed
in Figure 6b that evaluates Recall in the top-128 problem using
512 counters. As depicted, initial value also has a little impact
up to 100, but an initial value of 1,000 results in a poor Recall.

Figure 6c completes the picture by showing the change of
the Recall over time when trying to find top-128. As shown,
the convergence time is inversely correlated with the initial

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 11

Fig. 5. Effect of the delayed update on the frequency estimation error and
top-k Recall, on CAIDA trace. Even a delay of 100 packets has minimal
impact on the accuracy.

value. In most cases, 1 million packets are enough for con-
verging with an initial value of 100. We observed similar
behavior for different packet traces. It appears that an initial
value of 1,000 requires more packets to converge.

We conclude that a small initial value has a limited impact
on the performance when the measurement is long enough.
To facilitate quick convergence, we suggest an initial value
of 100 (and use it in the following experiments), as it seems
reasonable to upper bound recirculation to at most 1% of the
packets, and the convergence time is shorter than 1 million
packets, which translates to less than 10 milliseconds on
fully-loaded 100 Gbps links.

D. Approximating the Desired Recirculation Probability

We now evaluate the impact of only using random bits
as random source. This limits us to approximate the ideal
recirculation probability 1

carry_min+1 with a probability of the
form 2−x or 2−y × 1

�T� . Figure 7 shows results for frequency
estimation problem (a) and (b), and for the top-k problem
(c) and (d). We evaluated four variants: “NoAdaptation” is the
algorithm without any hardware-friendly adaptation beyond
limited associativity; “2-Approximate” is the variant added
with an approximate recirculation probability of 2−x form;
“PRECISION (2-Approximate)” is the standard PRECISION
algorithm with all other hardware-friendly adaptations also
added; and “9/8-Approximate PRECISION” is the PRECI-
SION algorithm using the 2−y × 1

�T� form of approximate
recirculation probability.

For frequency estimation, the 2-approximation in recir-
culation probability increases the error noticeably (in both
workloads) possibly due to counters are always bumped to the
next power of 2 when replacing a flow entry, causing some
overestimation. Meanwhile, using the 9/8-approximation is
almost as accurate as having no restriction on the recirculation
probability.

For the top-k problem, we continue with our ongoing
evaluation of how many counters are needed to identify the
top-32 flows. Notice that recirculation probabilities are less
impactful in this metric and in both workloads we need ≈ 2×
as many counters as NoAdaptation to achieve the same Recall.

It is surprising at first to notice that approximating the
recirculation probability has a minimal performance impact
in the UWISC-DC trace for the top-k metric. The reason is
the highly-concentrated nature of this trace. In such workload
where heavy hitters dominate, the sizes of tail flows are too

small compared with the large counters maintained for heavy
hitters, thus the tail flows have little chance to evict heavy
hitters regardless of how we approximate probability.

E. Comparison With Other Algorithms

Next, we evaluate PRECISION with d = 2 and compare it
with Space-Saving [38], and HashPipe [51] with d = 2, 4, 6
associativity. Similarly, we also compare with a 2-way set
associative RAP [5]. Note that RAP was originally designed
with a less restrictive programming model, and PRECISION
adapts it to the RMT architecture.

Figure 8 shows results for the frequency estimation
and top-k problems on the CAIDA (a), UCLA (b), and
UWISC-DC (c) traces. Figures 8(a)-(c) shows that, for the
frequency estimation problem, 2-way RAP and Space-Saving
are the most accurate algorithm. They are followed by
(2W-)PRECISION, which is orders of magnitude more accu-
rate than 2W-HashPipe. PRECISION also has better perfor-
mance than 4W- and 6W-HashPipe. We note that PRECISION
also improves using higher associativity, as shown in Figure 4.
Thus, we conclude the frequency estimation evaluation by
saying that PRECISION is a dramatic improvement over
HashPipe and is not much worse than the state-of-the-art
algorithms despite its restricted programming model.

Figures 8(d)-(f) show the Recall performance for the top-k
problem. In our top-32 setup, we see similar trends in all
the traces, in which the best Recall is achieved by the 2-way
RAP algorithm followed by PRECISION and Space-Saving.
The algorithm with the lowest Recall is HashPipe, especially
for d = 2-way. We see that PRECISION is on par with
Space-Saving and not far behind 2-way RAP. PRECISION
yields similar performance in all traces and requires at
most 2× more space than RAP or Space-Saving. Compared
to 2W-HashPipe it requires up to 8× less space for the
same Recall. PRECISION also improves over 4W- and 6W-
HashPipe by up to an 4× factor.

F. Hierarchical Heavy Hitters

Next we show results for our Independent Stacking, and
Randomized Prefix Selection algorithms. Recall that Inde-
pendent Stacking implements the MST algorithm [39] where
each Space Saving instance is replaced by PRECISION.
Thus, as PRECISION’s accuracy is similar to that of Space
Saving we use it as a baseline. That is, the accuracy of
Randomized Prefix Selection can only be as good as the
baseline. In Figure 9 we show results for these options,
where each PRECISION instance is configured with the
default parameters (4-way, initial value of 100, delay of
10 packets, 9/8-approximation of the sampling probability).
The figure shows the obtained accuracy for different prefix
lengths when varying the number of counters. As can be
observed both algorithms obtain similar accuracy and indeed
the light-weight Randomized Prefix Selection is slightly worse.
However, the differences are small and the two algorithms are
comparable for each prefix size.

To illustrate the attrativeness of our solution, we add a
comparison to the state of the art software HHH algorithm,

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Effect of initial value on the overall frequency estimation error and top-k recall, on CAIDA trace. An initial value of 100 leads to fast convergence
and does not hurt accuracy, while upper-bounding recirculation to 1%.

Fig. 7. The effect of approximating the recirculation probabilities on the accuracy for frequency estimation and top-32.

Fig. 8. Comparative evaluation of the frequency estimation and top-32 problems.

Randomized HHH (RHHH) [6]. As shown, our solutions are
not far behind in terms of accuracy and it is usually enough to
use PRECISION with double the space for getting comparable,
or better, results. The exception is for the 8-bit networks,

where RHHH gets significantly better accuracy. However,
one can avoid using approximation algorithms altogether
for these and count each of them separately using only
28 = 256 counters.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BEN BASAT et al.: DESIGNING HEAVY-HITTER DETECTION ALGORITHMS FOR PROGRAMMABLE SWITCHES 13

Fig. 9. The error of the “Independent Stacking” and “Randomized Prefix Selection” implementations of HHH-PRECISION for a given number of counters.
We also compare with the state of the art software solution, RHHH [6].

VIII. CONCLUSIONS

This paper outlined the programming capabilities of the
recently-developed RMT high-performance programmable
switch architecture, and abstracted its programming restric-
tions into three easy-to-understand rules. Following these
rules, we designed a novel heavy hitter detection algorithm,
PRECISION, that can be compiled to the newly released
Tbps-scale Barefoot Tofino programmable switch. PRECI-
SION recirculates a small fraction of the packets for a second
pipeline traversal, inducing a small (e.g., 1%) throughput
overhead in order to follow the programming restrictions.
We studied the impact of each RMT architectural restriction on
our algorithms’ accuracy. We concluded that the most severe
impact comes from the lack of access to an unrestricted ran-
dom integer generator, and specifically build a better approx-
imation technique to mitigate the impact. We also present a
deterministic variant of PRECISION, and further generalized
PRECISION to solve the Hierarchical Heavy Hitters problem.

We performed extensive evaluation using real and synthetic
packet traces, and demonstrated PRECISION is up to 100×
more accurate when estimating per-flow frequency, or saves
up to 8× memory space when identifying the top-128 flows,
compared with HashPipe [51], a recently suggested alternative
for programmable switches.

PRECISION enables heavy-hitter measurements at Tbps-
scale aggregated throughput on today’s high-performance
programmable switches, at competitive accuracy compared
to the state-of-the-art algorithms. Furthermore, we hope that
our detailed case study of adapting a measurement algorithm
to the RMT architecture would provide useful insights for
implementing various other algorithms on such switches.

REFERENCES

[1] Tofino. [Online]. Available: https://www.barefootnetworks.com/products/
brief-tofino/

[2] Precision Implementation. [Online]. Available: https://github.com/
p4lang/p4-applications/tree/master/research_projects/PRECISION

[3] C. Walsworth, E. Aben, K. Claffy, and D. Andersen, “The CAIDA
UCSD anonymized Internet traces,” Center Appl. Internet Data Anal.,
La Jolla, CA, USA, Tech. Rep., Feb. 2015.

[4] Arista Networks. Arista 7050X Switch Architecture (‘A Day in the Life
of a Packet’). Accessed: Sep. 1, 2018. [Online]. Available: https://www.
corporatearmor.com/documents/Arista_7050X_Switch_Architecture_
Datasheet.pdf

[5] R. Ben Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner, “Ran-
domized admission policy for efficient top-k, frequency, and volume
estimation,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1432–1445,
Aug. 2019.

[6] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proc. Conf.
ACM Special Interest Group Data Commun. (SIGCOMM), 2017,
pp. 127–140.

[7] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz,
“Network-wide routing-oblivious heavy hitters,” in Proc. Symp. Archit.
Netw. Commun. Syst. (ANCS), 2018, pp. 66–73.

[8] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th Annu. Conf. Internet Meas.
(IMC), 2010, pp. 267–280.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. ACM CoNEXT, 2011,
pp. 1–12.

[10] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[11] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 43, no. 4, pp. 99–110, 2013.

[12] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in Proc. Int. Colloq. Automata, Lang., Program., 2002,
pp. 693–703.

[13] M. Chen and S. Chen, “Counter tree: A scalable counter architecture
for per-flow traffic measurement,” in Proc. IEEE ICNP, Nov. 2015,
pp. 111–122.

[14] S. Chole et al., “dRMT: Disaggregated programmable switching,” in
Proc. ACM SIGCOMM, 2017, pp. 1–14.

[15] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” VLDB, vol. 1, no. 2, pp. 1530–1541, 2008.

[16] G. Cormode and M. Hadjieleftheriou, “Methods for finding frequent
items in data streams,” J. VLDB, vol. 19, pp. 9–20, Feb. 2010.

[17] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in data streams,” in Proc. VLDB, 2003,
pp. 464–475.

[18] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond
in the rough: Finding hierarchical heavy hitters in multi-dimensional
data,” in ACM SIGMOD, 2004, pp. 155–166.

[19] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[20] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti,
“A survey on the security of stateful SDN data planes,” IEEE Commun.
Surveys Tuts., vol. 19, no. 3, pp. 1701–1725, 3rd Quart., 2017.

[21] G. Dittmann and A. Herkersdorf, “Network processor load balancing for
high-speed links,” in Proc. SPECTS, Sep. 2002, pp. 1–9.

[22] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
NetFlow,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 4,
p. 245, Oct. 2004.

[23] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” in Proc. Conf. Appl., Tech-
nol., Architectures, Protocols Comput. Commun. (SIGCOMM), 2003,
pp. 137–148.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE/ACM TRANSACTIONS ON NETWORKING

[24] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
p. 323, Oct. 2002.

[25] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Comput. Secur., vol. 28, nos. 1–2, pp. 18–28,
Feb. 2009.

[26] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,” in
Proc. ACM SIGCOMM, 2018, pp. 357–371.

[27] N. Homem and J. P. Carvalho, “Finding top-K elements in data streams,”
Inf. Sci., vol. 180, no. 24, pp. 4958–4974, Dec. 2010.

[28] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “AF-
QCN: Approximate fairness with quantized congestion notification for
multi-tenanted data centers,” in Proc. 18th IEEE Symp. High Perform.
Interconnects, Aug. 2010, pp. 58–65.

[29] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Trans. Data-
base Syst., vol. 28, no. 1, pp. 51–55, Mar. 2003.

[30] Laboratory For Advanced Systems Research, UCLA. [Online]. Available:
http://www.lasr.cs.ucla.edu/ddos/traces/

[31] P. Laffranchini, L. Rodrigues, M. Canini, and B. Krishnamurthy, “Mea-
surements as first-class artifacts,” in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2019, pp. 415–423.

[32] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1622–1634, Oct. 2012.

[33] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better NetFlow for
data centers,” in Proc. USENIX NSDI, 2016, pp. 311–324.

[34] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman,
R. Friedman, and V. Sekar, “Nitrosketch: Robust and general sketch-
based monitoring in software switches,” in Proc. ACM SIGCOMM, 2019,
pp. 334–350.

[35] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM, 2016, pp. 101–114.

[36] N. Manerikar and T. Palpanas, “Frequent items in streaming data:
An experimental evaluation of the state-of-the-art,” Data Knowl. Eng.,
vol. 68, no. 4, pp. 415–430, Apr. 2009.

[37] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” Proc. VLDB Endowment, vol. 5, no. 12, p. 1699, Aug. 2012.

[38] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proc. ICDT, 2005,
pp. 398–412.

[39] M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierarchical heavy hitters
with the space saving algorithm,” in Proc. Meeting Algorithm Eng. Exp.
(ALENEX), 2012, pp. 160–174.

[40] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “DREAM: Dynamic
resource allocation for software-defined measurement,” ACM SIG-
COMM, 2014, pp. 419–430.

[41] B. Mukherjee, L. Heberlein, and K. Levitt, “Network intrusion detec-
tion,” IEEE Netw., vol. 8, no. 3, pp. 26–41, May/Jun. 1994.

[42] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Special Interest Group
Data Commun. (SIGCOMM), 2017, pp. 85–98.

[43] K. Nyalkalkar, S. Sinhay, M. Bailey, and F. Jahanian, “A comparative
study of two network-based anomaly detection methods,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 176–180.

[44] O. Polychroniou and K. A. Ross, “High throughput heavy hitter aggre-
gation for modern SIMD processors,” in Proc. 9th Int. Workshop Data
Manage. New Hardw. (DaMoN), 2013, pp. 1–6.

[45] D. A. Popescu, G. Antichi, and A. W. Moore, “Enabling fast hierarchical
heavy hitter detection using programmable data planes,” in Proc. Symp.
SDN Res. (SOSR), 2017, pp. 191–192.

[46] S. Ramabhadran and G. Varghese, “Efficient implementation of a
statistics counter architecture,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 1, p. 261, Jun. 2003.

[47] R. Schweller et al., “Reversible sketches: Enabling monitoring and
analysis over high-speed data streams,” IEEE/ACM Trans. Netw., vol. 15,
no. 5, pp. 1059–1072, Oct. 2007.

[48] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and
H. Zhang, “Lads: Large-scale automated ddos detection system,” in
Proc. USENIX ATC, 2006, pp. 171–184.

[49] D. Shah, S. Iyer, B. Prahhakar, and N. McKeown, “Maintaining statistics
counters in router line cards,” IEEE Micro, vol. 22, no. 1, pp. 76–81,
Aug. 2002.

[50] A. Sivaraman et al., “Packet transactions: High-level programming for
line-rate switches,” Proc. ACM SIGCOMM, 2016, pp. 15–28.

[51] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in Proc.
Symp. SDN Res. - SOSR, 2017.

[52] B. Stephens, A. Akella, and M. M. Swift, “Your programmable NIC
should be a programmable switch,” in ACM HotNets Workshop, 2018,
pp. 36–42.

[53] D. Tong and V. Prasanna, “Online heavy hitter detector on FPGA,”
in Proc. IEEE Int. Conf. Reconfigurable Comput. FPGAs (ReConFig),
Dec. 2013, pp. 1–6.

[54] D. Tong and V. Prasanna, “High throughput sketch based online heavy
hitter detection on FPGA,” ACM SIGARCH Comput. Archit. News,
vol. 43, no. 4, pp. 70–75, Apr. 2016.

[55] B. Turkovic, J. Oostenbrink, and F. A. Kuipers, “Detecting heavy hitters
in the data-plane,” CoRR, vol. abs/1902.06993, Feb. 2019.

Ran Ben Basat received the B.Sc. (summa cum
laude), M.Sc. (cum laude), and Ph.D. degrees from
the Computer Science Department, Technion. He is
currently a Post-Doctoral Fellow with Harvard Uni-
versity, where he is involving in network monitoring
and algorithms. He is partially sponsored by the
Zuckerman and the Hiroshi Fujiwara Cyber Security
Research Center Post-Doctoral Fellowships.

Xiaoqi Chen received the bachelor’s degree from
the Institute for Interdisciplinary Information Sci-
ences, Tsinghua University, in 2013. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science, Princeton University, NJ, USA.

Gil Einziger received the B.Sc. and Ph.D. degrees
in computer science from Technion. He worked as
a Researcher with Nokia Bell Labs and a Post-
Doctoral Research Fellow with the Polytechnic Uni-
versity of Turin, Italy. He is currently an Assistant
Professor with the Department of Computer Science,
Ben Gurion University of the Negev, Beer Sheva,
Israel. His research interests include networked sys-
tems, algorithms, and security.

Ori Rottenstreich received the B.Sc. degree (summa
cum laude) in computer engineering and the Ph.D.
degree from Technion, Haifa, Israel, in 2008 and
2014, respectively. From 2015 to 2017, he was
a Post-Doctoral Research Fellow with Princeton
University. He is currently an Assistant Professor
with the Department of Computer Science and the
Department of Electrical Engineering, Technion.

Authorized licensed use limited to: Princeton University. Downloaded on April 18,2020 at 00:31:09 UTC from IEEE Xplore. Restrictions apply.

