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Abstract—Network-wide traffic analytics are often needed for
various network monitoring tasks. These measurements are often
performed by collecting samples at network switches, which are
then sent to the controller for aggregation. However, performing
such analytics without “overcounting” flows or packets that
traverse multiple measurement switches is challenging. There-
fore, existing solutions often simplify the problem by making
assumptions on the routing or measurement switch placement.

We introduce AROMA, a measurement infrastructure that
generates a uniform sample of packets and flows regardless
of the topology, workload and routing. Therefore, AROMA
can be deployed in many settings, and can also work in the
data plane of programmable PISA switches. AROMA includes
controller algorithms that approximate a variety of essential
measurement tasks while providing formal accuracy guarantees.
Using extensive simulations on real-world network traces, we
show that our algorithms are competitively accurate compared
to the best existing solutions despite the fact that they make
no assumptions on the underlying network or the placement of
measurement switches.

I. INTRODUCTION

Many network applications, such as load balancing, QoS
enforcement, intrusion detection, and traffic engineering [23],
[6], [9], [14], [15], [21], [22], [27], [31], [32], rely on network-
wide analytics of the network traffic to reach informed deci-
sions. Network-wide analytics is often done by collecting sam-
ples of traffic from individual switches [33]. These samples
are then sent to the controller, where the data from all mea-
surement switches is combined to assemble a network-wide
view of the traffic. Such samples can approximate a variety
of essential measurement tasks such as identifying the heavy
hitter flows [8], calculating hierarchical heavy hitters [5], [41],
estimating the flow size distribution, and identifying super-
spreaders and port scans [26], [40].

Samples may be collected at either flow or packet granu-
larity. In packet sampling, each measurement device samples
a packet with probability p. Flow sampling [17], [34], [35]
is a more complex primitive, where each measurement device
samples packets based on their flows; however all flows in
the network should be sampled with the same probability,
regardless of their size. Inherently, packets that traverse mul-
tiple devices, or heavier flows, are more likely to be sam-
pled, therefore skewing the network-wide measurements. This
raises the need for uniform sampling techniques. In uniform
sampling, any packet has an equal chance of being included
in the globally collected sample regardless of the number of
measurement switches it goes through (as long as it traverses
at least one measurement switch). Similarly, any flow has an

equal chance of being sampled regardless of the number of
packets in the flow.

To achieve uniform sampling, existing works often assume
that packets only traverse a single device [24], [42]. However,
this restricts the measurement device positioning and may only
work for specific routing protocols and network topology (e.g.,
fat trees). Other solutions rely on packet marking to ensure that
each packet is considered only once [3]. This technique can be
easily exploited by adversaries (e.g., an attacker can mark all
its packets to avoid detection). Alternatively, some solutions
make non-trivial assumptions abut the underlying network
characteristics, such as network topology, routing protocols,
and traffic dynamics. For example, cSamp [34] requires per-
switch configuration, and a traffic matrix detailing the number
of flows between each source and destination. While these
requirements may be sustainable for some networks, they may
not be reasonable in large, rapidly changing networks.

In this paper, we present AROMA (Approximate Routing
Oblivious Measurement Analytics), a measurement analytics
infrastructure that collects uniform flow and packet samples in
any network topology. AROMA is workload and routing obliv-
ious, so packets can traverse multiple measurement devices
without biasing the sample. The underlying technique used in
AROMA is a k-partition hash based structure, which supports
sampling based on the packet or flow identifier. Therefore,
AROMA can be configured to perform packet sampling,
flow sampling, or both. The main features of AROMA are:
Routing and workload oblivious measurements. AROMA
makes no assumptions about the network topology or routing
and makes no packet modifications. Measurement switches
produce samples without any need for coordination between
them (e.g., there is no need to tag a packet[3]) and without per-
switch configuration (i.e., there is no need to divide responsi-
bility for sampling parts of the traffic across the measurement
switches [34]). Such per-switch configurations require prior
knowledge about routing and traffic distribution. Acquiring
this information incurs substantial overheads in setting up the
measurement infrastructure. Furthermore, network and traffic
dynamics require continually updating these configurations,
which further complicates the solution. Our method avoids
such overheads and requires no information on routing, work-
load, or network topology. It is also the first to perform flow
sampling without such information.
Supporting a wide range of measurements. AROMA sup-
ports numerous controller algorithms that utilize the packet
and flow samples to accomplish a variety of network mea-
surement tasks, such as estimating the number of (different)
packets and flows in the measurement, estimating per-flowISBN 978-3-903176-28-7 c©2020 IFIP



frequency, identifying the heavy hitter flows, calculating hi-
erarchical heavy hitters, estimating the flow size distribution,
and identifying super-spreaders.

PISA compatible. AROMA can be implemented us-
ing P4 and deployed on PISA (Protocol Independent
Switch Architecture) programmable switches. Furthermore,
the overall switch resources required by AROMA are
minimal, which allows the switch to perform additional
functionality, giving AROMA an distinct advantage over
existing monitoring techniques [7], [28], [29], [36].

Accurate network-wide measurements. Evaluation on
real-world network traces shows AROMA provides accurate
measurements for a variety of network tasks. Additionally,
it is close in performance to existing solutions that provide
similar guarantees, but cannot be implemented using the
limited resources and functionality of PISA switches. For
example, with just 0.5MB of space on a trace of 32 million
packets: AROMA estimates flow sizes with a root mean square
error of just 150 packets, achieves an F1 score of 0.9 in
identifying superspreaders and of 0.8 in finding heavy hitters,
and estimates the flow size distribution with a weighted mean
relative difference of just 0.045.

II. THE AROMA FRAMEWORK

In a nutshell, AROMA collects flow and packet samples
within the data plane of programmable switches. AROMA
guarantees that all packets (or flows) have an equal chance to
be sampled. As a result, our system is routing oblivious and
its output is mathematically identical regardless of network
topology and routing.

The controller merges the samples to form a uniform
network-wide sample. Finally, the controller uses the samples
to estimates various statistical properties. AROMA is parti-
tioned into a data plane module that stores and maintains the
samples, and a measurement analysis module which runs on
the controller. In addition, AROMA leverages a combination
of packet sampling and flow sampling (as in [34]), which
together allow our system to be general and support a large
variety of tasks [35].

Specifically, AROMA uses a two phase hash-based sam-
pling technique to first select a sample slot, and each slot
retains the element with minimal hash value. Here, an element
is either a packet (in packet sampling) or a flow (in flow
sampling). The controller then merges the sampling slots from
all switches, and attains for each slot the element whose hash
value is (globally) minimal. That is, an element is sampled
only if its hash value is globally minimal for its corresponding
slot. Finally, AROMA runs on P4 programmable switches, and
naturally fits within the switch constraints. Furthermore, our
solution requires a minimal number (2-3) of pipeline stages
and can be configured to run with any amount of memory. This
allows AROMA to operate alongside higher-level applications
such as load balancing or attack detection.

We first formally define our model, assumptions, and the
notations (Section II-A). Next, we show a method to store
and collect a uniform sample (of flows, or packets) within the

data plane using PISA programmable switches (Section II-B).
Subsequently, we present the controller algorithm to merge the
samples collected distributively into a network-wide uniform
sample, and survey ways to utilize the samples to perform
various measurement tasks (Section II-C).

Symbol Definition
S The packet stream

〈fidi , pidi 〉 A packet from flow fidi and packet identifier pidi

U The universe of flow identifiers
fx The frequency of flow x ∈ U
V̂ an estimate for |S|
ε The goal error parameter
δ The goal error probability
M The number of samples required for the accuracy guarantee

α
A space factor that allows faster convergence (α ≥ 1). We
use α ·M slots instead of M .

M̃
The number of samples the algorithm produced (M̃ ∈ [0, α ·
M ])

p̂ The estimated sampling probability (p̂ = M̃/V̂ )
T The actual sample produced (|T | = M̃)
Tx The number of times x appears in the sample T

f̂x An estimate for the frequency of flow x (i.e., f̂x = Tx/p̂)
θ Heavy hitter threshold

M̂(t) The number of samples the algorithm produced by time t
TABLE I: List of symbols and notations.

A. Preliminaries
We model the traffic as an ordered stream of packets
S ∈ (U × N)

∗, where each packet 〈fidi , pidi〉 has a unique
flow identifier fidi ∈ U , and a packet identifier pidi ∈ N
that matches each packet to a single flow. Flow identifiers can
be source IPs, source and destination IP pairs, or 5-tuples.
For packet identifiers, in the case of TCP, we can use the
TCP sequence number as part of a unique packet identifier. In
general, the works of [16], [43] explain how the packet header
fields can be used to derive unique packet identifiers. In this
work, we assume the existence of unique packet identifiers.

We use K measurement switches R1, . . . RK , and as-
sume that each packet traverses at least one measurement
switch. Yet, some packets may traverse multiple measurement
switches, and the routing rules may change during the mea-
surement. Formally, our only assumption is that suppose each
switch sees a subset of the stream (Sk ⊆ S), then all the
switches together cover all the packets ∪Kk=1Sk = S.

Our model is more general than that of other network-wide
measurement solutions that assume that packets only visit a
single measurement switch [24], [25], [39], or each flow is
routed through a single fixed path [28]. The same model is
also used in related work [3], [4] in a software context.

The term flow refers to the set of packets that share the
same flow identifier. Given a flow identifier x, its frequency
fx is the number of packets with x as their flow identifier, i.e.,
fx = |{i|fidi = x}|.
B. Data Plane Sampling Module

We now introduce our data plane sampling infrastructure.
Section II-B1 provides a high-level overview of the algorithm,
while Section II-B2 provides the P4 implementation details,
adhering to the PISA architecture.
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h2 0.5 1 1 0.7 1 0.4 0.9 1
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After
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D

h1(D)
chooses slotNew item

h1(D)=4, h2(D)=0.2

if h2(D)<0.7, insert {h2(D), D}

Fig. 1: We compute two hashes for each observed item (packet
or flow). h1 determines in which slot to compete; if the slot
is empty we add the new item. Otherwise, we add it only if
its h2 value is smaller than that of the stored item.

1) Algorithm overview: Each measurement switch allocates
a fixed size block of memory for (α ·M) slots. Measurement
switches calculate a hash value in (0, 1] based on the packet
(or flow) identifier. Each slot stores the item (packet/flow) with
the minimal hash value from all the items that were assigned
to the slot. Interestingly, hash collisions mean that we require
time before the slots are filled. We show that the number of
filled slots behaves like a variant of the Coupon Collector
problem, but instead of trying to fill all the slots like the
common analysis, we attempt to fill a certain percentage of
all slots (say 90%). This relaxation asymptotically reduces the
time required to collect the sample at the expense of a slightly
inflated memory consumption.

Formally, each measurement switch observes a stream of
packets 〈fidi , pidi〉, with a flow identifier fidi and packet
identifier pidi . We denote xi as the identifier used, i.e.,
xi = fidi for flow sampling and xi = pidi for packet sampling.

Each switch maintains a data structure MEM , which
contains (α ·M) memory slots, and each slot stores exactly
one identifier. The value α ≥ 1 is selected to ensure a
sample of size at least M . We provide an analysis of the
convergence time in Section III. Let us denote memory slot
j as MEM [j]. Two values are maintained within the slot: a
hash value MEM [j].hash and an identifier MEM [j].id.

We use two independent random hash functions: h1 : U →
[0, α · M) for mapping an identifier to a memory slot, and
h2 : U → (0, 1] to decide which item to sample. Imperatively,
the hash functions are identical for the measurement switches
that participate in the measurement as it allows merging the
data structures for obtaining a network-wide uniform sample
and thereby a global view. At a high level, each slot receives
a fraction of incoming packets, and stores a single identifier
x that has the smallest h2(x) of all those observed by that
memory slot. We assume that all measurement switches use
the same hash functions and that these are chosen at random.
This can be done by having the controller randomly choose a
seed for pseudo random generator uniformly for all switches
at the beginning of the computation epoch.

We initialize all MEM [j].hash to 1. As illustrated in Fig-
ure 1, upon observing each packet and determining identifier
xi = "D", the switch does the following:

Algorithm 1: Maintaining uniform flow samples
1 control FlowSampling( inout headers hdr,

inout metadata meta) {
2 register< bit<32> > (1�m) MEM hash;
3 register< bit<64> > (1�m) MEM id;
4 apply {

//Prepare flow identifier x
5 meta.flowid[31: 0]=hdr.ipv4.srcAddr;
6 meta.flowid[63:32]=hdr.ipv4.dstAddr;

//Compute hash h1(x) ∈ [0, 2m),
h2(x) ∈ [0, 232)

7 hash(meta.h1, HashAlgorithm.crc32, 0, {meta.flowid},
1�m);

8 hash(meta.h2, HashAlgorithm.crc32 custom, 0,
{meta.flowid}, 1�32);

9 bit<32> existing sample h2;
10 MEM hash.read(existing sample h2, meta.h1);

//If the current packet has smaller
hash, replace existing sample

11 if (meta.h2<existing sample h2){
12 MEM hash.write(meta.h1, meta.h2);
13 MEM id.write(meta.h1, meta.flowid);
14 }
15 }
16 }

1) Computes the two hash values h1(xi) and h2(xi) for the
current packet. In the example above, h1(xi) is the fourth
column, and h2(xi) = 0.2.

2) Looks up the hash value stored in MEM [h1(xi)].hash,
and ignores the packet if MEM [h1(xi)].hash ≤ h2(xi).

3) Otherwise, if h2(xi) < MEM [h1(xi)].hash, then we
replace the existing sample in the slot:

MEM [h1(xi)].hash ← h2(xi)
MEM [h1(xi)].id ← xi

We want to run two instances of our sampling algorithm
simultaneously, one for packet-sampling and the other for
flow-sampling. Recall that we select xi = pidi to sample
packets, and xi = fidi to sample flows.

For correctness and accuracy guarantees, we require that at
least M out of the α ·M slots will not be empty to obtain an
M -sized uniform sample. We can choose α ≥ 1 to expedite
this process; in practice, a choice of α = 1.5 ∼ 2 suffices.

2) Implementation on PISA programmable switches: To
achieve Tbps-level aggregated throughput and low forwarding
latency, a PISA [11] programmable switch uses a packet pro-
cessing pipeline architecture that allows only simple operations
per pipeline stage, and only has a certain number of hardware
stages. The work of [7] summarized the limitations imposed
by PISA switches. Most relevant to our case are the limited
number of programmable pipeline stages, the limitations on
memory access, and the limitations on arithmetic operations.
AROMA’s P4 implementation requires O(1) memory accesses
per packet, and can be implemented using only 2 pipeline
stages. Thus, it leaves plenty of room for the measurement
switch to run other network applications.
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MEMab
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Merge

Fig. 2: An example of the merge process of two samples
collected in different measurement switches. When the same
slot contains different items, we select the one whose h2 value
is smaller. In this example, we select D and discard L.

We now discuss some of the implementation details for
performing uniform sampling in the data plane. At each
programmable switch, we allocate two register memory arrays
each with α · M entries. Note that we select α such that
α ·M = 2m for some m ∈ N. Such a selection simplifies
the implementation as we only have access to random bits,
and thus randomizing a number in an arbitrary range is more
difficult to implement, and incurs additional overheads.

We denote the register arrays as MEMhash[i] and
MEM id[i], and store them in adjacent pipeline stages. The
power-of-two sizing of the arrays allows easy addressing using
an m-bit hash function h1.

Since each array entry on hardware switches usually stores
32 bits, we store h2(x) ∈ (0, 1] into MEMhash using
32-bit fixed point encoding. Hash functions h1 and h2 are
implemented using CRC32 with different polynomials, and
h1 is truncated to m bits. We also initialize all entries in
MEMhash to 1.

As demonstrated by the P4 code shown in Algorithm 1, for
each incoming packet 〈fidi , pidi〉, the programmable switch
determines xi (xi ∈ {fidi , pidi}) and does the following:
1) Access parsed header fields, such as IPv4 source and

destination addresses, to retrieve xi (line 5,6), then compute
h1(xi) ∈ [0, 2m) and h2(xi) ∈ (0, 1] (line 7,8).

2) Compare the value found in MEMhash[h1(xi)] to h2(xi).
• If MEMhash[h1(xi)] <= h2(xi): do nothing.
• If MEMhash[h1(xi)] > h2(xi), replace the existing

entry with the following as shown in line 12 and 13:
MEMhash[h1(xi)] ← h2(xi),
MEM id[h1(xi)] ← xi,

The algorithm uses minimal resources; it computes two hash
functions, and resides within two hardware pipeline stages.
Thus, we can simultaneously implement both flow-sampling
and packet-sampling in existing programmable switch targets.

C. Using the Samples in Control Plane

The controller merges samples collected from all switches
to form a global uniform sample set as described in Sec-
tion II-C1. In the subsequent sections, we briefly describe
how the controller uses the sample set to perform various
measurement tasks.

1) Merging samples: First, we describe how to merge
two samples into a single sample, as illustrated in Figure 2.
Repeatedly applying this algorithm allows the controller to
merge all the samples.

Given the samples collected by two switches, MEMa[·] and
MEMb[·], AROMA merges them to MEMa∪b[·] as follows:
it iterates over the α ·M slots, and for each slot j it compares
MEMa[j].hash and MEMb[j].hash to select the smaller of
the two values as the new value for MEMa∪b[j].hash. It then
sets MEMa∪b[j].id accordingly.

It is straightforward to prove that the resulting values in
MEMa∪b are the same as if all packets were observed
by either switch a or b or both, as the smaller h2 hash
value in each slot will prevail. We repeat this process to
merge the samples collected at all the switches, to obtain
the global sample MEMglobal [j].{hash, id}. We further trim
MEMglobal [·] to ignore empty slots.

2) Number of packets/flows: Perhaps the most fundamental
measurement task is to estimate the actual number of packets
and flows within the measurement. In the routing oblivious
setting, this is not equivalent to summing the number of flows
or packets over the different measurement switches as we
do not know how many measurement switches each of them
traversed. In the HyperLogLog algorithm [19], the stream
is partitioned into separate substreams, and an independent
estimator is maintained for each substream. Each estimator
maintains the longest run of consecutive leading zeros of
the randomly hashed output of items in its substream. The
estimator than uses this information to determine the number
of distinct items in each substream. Similarly to HyperLogLog,
by looking at the hash value in each slot, we can infer how
many distinct identifiers contested for that slot.

More precisely, given the hash value stored in the i’th slot
is MEMglobal [i].hash ∈ (0, 1], the expected total number of
distinct identifiers hashed to this slot is 1

MEMglobal [i].hash
. Thus,

by scaling up the harmonic mean of each slot’s estimate, the
total number of distinct identifiers seen by all the slots can be
estimated by: V̂ = (α·M)2∑α·M−1

i=0 (MEMglobal [i].hash)
.

Given this estimated number of different packets/flows,
we also get an estimation of the sampling probability. For
that, assume that M̃ ∈ [0, α · M ] slots were filled (i.e.,
we have a uniform sample of size M̃ ); then the estimated
sampling probability is p̂ = M̃/V̂ . We require the es-
timated sampling probability for other measurement tasks
(such as frequency estimation, superspreaders, and frequency
distribution estimation).

3) Distributed frequency estimation: To estimate flow size
fx for a flow x, we inspect the uniform packet sample set and
look at the packet identifiers. We denote by Tx = |{0 ≤ i ≤
α ·M | MEMglobal[i].id ∈ x}| the number of packets in the
global uniform sample set that belong to flow x. Subsequently,
we divide Tx by the estimated sampling probability p̂ to get
estimated flow size f̂x = Tx/p̂.

4) Distributed heavy hitters: We can use the uniformly
sampled packets to estimate heavy hitters, defined as those
flows with size fx which exceeds a θ fraction of total packet



traffic (|S|), i.e., fx > θ · |S|. Our algorithm outputs every
flow whose frequency in the sample is at least a θ-fraction
of the sample size. For example, if θ = 1% and we gathered
M̃ = 10000 samples, we will output every flow that appears
in the sample at least 100 times. If an application is more
recall-oriented or precision-oriented it is possible to change
the threshold to get (with high probability) 100% accuracy in
one of them (at the cost of degrading the other).

5) Hierarchical heavy hitters: We look at the uniformly
sampled packets to determine hierarchical heavy hitters. We
report a prefix as a hierarchical heavy hitter if it appears in
more than θ · M̃ packets.

6) Superspreaders: We define a Superspreader as a source
IP address that communicates with more than Ψ destination
IP addresses. Such an IP address appear in many flows and is
therefore likely to appear in the uniform flow sample. Given
a uniform sample of M̃ flows, we can examine the flow
identifiers and see if any source IP address appeared more
than Ψ · p̂ times; such a source IP is sending out to more than
Ψ destination IPs in expectation.

III. ANALYSIS

In this section, we provide rigorous bounds on the accuracy
of the algorithm. As a general note, we refer here to a packet
stream which can be distributed in any way between the
measurement switches as long as each packet is measured at
least once. All the results in this section are also applicable
to flow sampling by replacing the notion to “flow stream”.
Specifically, we analyze the guarantee for estimating flow-
sizes which, by simple reductions, also extend to Heavy Hitters
(HH) and Hierarchical HH (HHH). For superspreaders the
analysis is also applicable, although the condition regarding
the minimum number of packets (M ) is replaced by similar
lower bound on the number of flows. The entire section
assumes that the hash functions are independent and are
Ω(M)-wise independent. In practice, simpler hash functions
often suffice [12].

Our goal is to estimate flow sizes, with high probability, up
to an additive error of |S|·ε. This type of guarantee is standard
in streaming algorithms and appears in [4], [30], [13], [38] and
many others. However, due to the nature of our algorithm, we
cannot provide this guarantee immediately but rather require
convergence time. Recall that we first apply h1 and map the
packet into a slot that holds a single sample. Thus, it may take
a while to achieve a large enough sample as multiple packets
may be hashed to already full slots. Formally, hash collisions
in h1 mean that some packets may not be sampled even if not
all slots are full.

We mark by M̃(t) ∈ [0, α ·M ] the number of non-empty
slots in our algorithm after seeing t packets. We utilize the
result of [4] that shows the accuracy guarantee one gets from
analyzing a uniform sample of size M . By symmetry, we have
that if M(t) slots are filled, any subset of M(t) packets has the
same probability of appearing in the sample and therefore the
sampling is uniform. We say that our algorithm has converged
once M̃(t) ≥M and thus we provide the accuracy guarantee.

Lemma 1. ([4]) Let T ⊆ S be a random packet subset of
size M ≥

⌈
3ε−2 log2(2/δ)

⌉
. For a flow x ∈ U , let Tx be its

frequency in T . Then Pr

[∣∣∣∣fx − Tx · |S|/M ∣∣∣∣ ≥ |S|ε] ≤ δ.

If α = 1, then the process of collecting the samples
from the nonempty slots is known as the Coupon Collector
problem [10]. In the Coupon Collector problem, a collec-
tor wishes to gather all M coupons while getting a single
coupon, uniformly at random, at each step. Since the time
to collect the i’th distinct coupon is distributed geometrically
with mean M/(M − i), we have that the expected time to
collect all coupons is

∑M
i=1M/(M − i) = M lnM +O(M).

To derive a high-probability bound, observe that the proba-
bility that a given coupon is not collected after r steps is
(1− 1/M)

r ≤ e−r/M . By using the union bound and setting
r = M ln(M/δ)) we get that Pr [M(r) < M ] ≤M ·e−r/M ≤
δ. This analysis is directly applicable to our method for α = 1
as we uniformly hash every packet into one of the M slots and
the goal is to fill all slots. We can then choose M to guarantee
the desired result with probability 1− δ/2 and use the union
bound to derive the standard (ε, δ)-guarantee. We summarize
this in the following theorem.

Theorem 1. For any ε, δ > 0, let M =
⌈
3ε−2 log2(4/δ)

⌉
;

our algorithm (with α = 1 and thus M slots) guarantees
approximating flow sizes up to an (|S|ε)-additive error, with
probability 1−δ, given that the number of packets it processes
is at least M · ln(2M/δ).

The above solution works well if the measurement is
long enough with respect to the error parameters ε and δ.
However, this may prove to be too lengthy for accurate
measurements. For example if ε = δ = 1% we guarantee the
convergence of the algorithm after about 4.4 million packets.

To shorten the convergence time, we explore the space to
convergence time tradeoff that α values larger than 1 offer.
Schematically, by increasing α we pay a constant factor in
the amount of space required, but reduce the convergence
time asymptotically, as we now show. We note that while the
coupon collector analysis above is standard, to the best of our
knowledge, the process described in this section is novel to
our work. Particularly, we get that for any constant α > 1
the number of packets until convergence drops to O(M), as
summarized in the following theorem.

Theorem 2. Let M ∈ N+, α > 1 and denote β = 1 +
1/ lnα+ ln(2/δ)/(M · lnα). When allocated with α ·M slots
the algorithm fills at least M of them after seeing β·M packets
with probability at least 1− δ/2.

Proof. For a subset of indices K ⊆ [α ·M ] of size |K| =
M − 1, define by IK an indicator for the event that all
packets were mapped only into the indices of K. This event
is bad as it means that the algorithm cannot produce an
M -sized uniform packet sample and fails to provide the
approximation guarantee. Observe that the probability of this
event is Pr [IK ] =

(
M−1
α·M

)β·M
. Since the number of such



subsets K is
(
α·M
M−1

)
, we can use the union bound to get

that the probability that such a subset exists is at most
Pr [∃K ⊆ [α ·M ] : |K| = M − 1 ∧ IK ]

≤
(
α·M
M−1

)
·
(
M−1
α·M

)β·M ≤ (e ·α)M ·
(
1
α

)β·M
= δ/2, where the

last inequality follows from the known binomial coefficient
bound

(
n
k

)
≤
(
e·n
k

)k
.

In the following theorem, we once again use Lemma 1 for
providing the error guarantee. To exemplify the reduction in
convergence time, consider the above parameters (ε = δ = 1%
and α = 2 which means double space used). Our result implies
guaranteed convergence after 630K packets, a reduction of
over 85%.

Theorem 3. For any ε, δ > 0, let M =
⌈
3ε−2 log2(4/δ)

⌉
;

AROMA (with α > 1 and α ·M slots) approximates flow sizes
within an (|S|ε)-additive error, with probability 1−δ, after at
least M · (1 + 1/ lnα+ ln(2/δ)/(M · lnα)) packets.

IV. EVALUATION

Dataset: We used the CAIDA Anonymized Internet Trace
2018 [1]. The trace contains internet packets collected from
the “equinix-nyc” high-speed monitor. For each packet, we use
its 5-tuple (anonymized source-destination IP pair, port pair,
and protocol) as its flow ID. We summarize the number of
distinct flows, for a given stream length, in Table II.

Length 216 217 218 219 220 221 222 223 224 225

#flows 15K 26K 41K 66K 107K 183K 314K 550K 967K 1.69M

TABLE II: The number of distinct 5-tuples in the measurement
as a function of the number of packets in the trace.

Metrics: We consider the following performance metrics:
1) Root Mean Square Error (RMSE): Measures the differ-

ences between predicted values of an estimator to actual
values. Formally, for each flow x the estimated frequency
is f̂x and real frequency is fx. RMSE is calculated as:√

1
|U|
∑
x∈U (f̂x − fx)2.

2) F1 Score: A quantity that combines precision (the correct
fraction of reported flows), and recall (the fraction of
true flows that were reported) into a single numerical
value in the following manner: F1 = 2 · (precision ·
recall)/(precision+ recall).

3) Weighted Mean Relative Difference (WMRD): consider
the set of flow sizes {fx|x ∈ U} and let z be the size
of the largest flow. Denote by Fi = |{x ∈ U|fx = i}|
denote the number of flows of size i. Let F̂i be the
estimation produced by an algorithm for Fi. Define the
sum of absolute errors to be E =

∑z
i=1

∣∣∣Fi − F̂i∣∣∣ and the

sum of averages as A =
∑z
i=1(Fi + F̂i)/2. The metric

is then defined as WMRD = E/A. WMRD is always
between 0 and 2 with a perfect match being 0 and complete
disagreement being 2.

Evaluation Parameters: In Figures 3-5 we used the first
225 ≈ 33.55 million packets. The x-axis in these plots is the
allocated per-switch space. We define a heavy hitter as a flow
whose size is at least 0.1% of the overall number of packets in
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Fig. 3: Root Mean Square Error for frequency estimation
(lower is better), and F1 score for heavy hitters (higher
is better), when comparing our method to (plain) random
sampling, on an Internet-like hop count distribution.

the measurement. For the first 225 packets of New York 2018
dataset this amounts to 35 heavy hitters. Similarly, we define
a hierarchical heavy hitter as a source network that appear in
more than 0.1% of the overall traffic; this follows the HHH
definition of [41]. We define a superspreader as a source IP
that communicated with at least Ψ = 1000 distinct destination
IPs. For these parameters, we measured 54 such sources. In
Figures 6-7, where the number of packets varies, we keep the
0.1% threshold for HH and HHH and set the SS threshold
such that there are ≈ 50 superspreaders for each point.

Comparison with uniform sampling and software so-
lutions: We start comparing AROMA’s accuracy to naive
uniform sampling. Recall that in such sampling, packets get an
opportunity to be sampled for each measurement switch they
visit, which biases the controller’s sample. Additionally, we
compare AROMA to the BEFMR18 software routing oblivious
algorithm of [4]. We used the Internet’s hop count distribution
by [18], [37], and assumed a measurement switch at each hop
which improves reliability. Specifically, this model assumes
that the probability for k-hops (for a given flow) is:
Pr[k hops] = 1+o(1)

N

∑k
m=0 cm+1

(lnN)k−m

(k−m)!
, where ci is the i’th

Taylor coefficient of the reciprocal of the Gamma function
1/Γ(z) [2, Table 6.1.36]. The work of [37] models the actual
hop-count distribution of the Internet as the distribution for
N = 98400, which gives a median hop count of 12.

We deploy measurement switches on each hop and nor-
malize the frequency at the controller by either the mean or
the median hop count, of the hop count distribution. Figure 3
shows the results of this evaluation, where Median (Mean) is
the uniform sampling normalized by the median (mean) value,
AROMA is our algorithm and Software refers to [4]. Figure 3a
shows the results for estimating per flow frequency. The mean
normalization provides better accuracy for (plain) random
sampling. Our method and Software are almost identical and
are considerably more accurate for a wide range of sampling
probabilities. Figure 3b shows the F1 score for heavy hitters;
our method and the Software method offer higher F1 values
than uniform sampling. Note that for this application, it is
unclear which normalization (mean or median) is superior.
Intuitively, uniform sampling suffers from flows whose hop-
count significantly differs from the mean or median and thus
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Fig. 4: F1 scores (higher is better) on New York 2018, for various measurement tasks, and per-switch space.
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Fig. 5: Root Mean Square Error, and Weighted Mean Relative
Difference (lower is better), for various tasks on the New York
2018 dataset.

are grossly underestimated or overestimated.
Comparison with existing hardware solutions: Figure 4

shows an evaluation of AROMA’s performance when com-
pared to existing works, for various measurement tasks. We
also compared with FlowRadar [28] in various configurations.
Throughout the evaluation, we consider FlowRadar’s estima-
tion of the size of a flow which it failed to decode as zero. For
the FatTree topology we assume that the flows are distributed
uniformly, the easiest setting for FlowRadar.
• 1SFR - FlowRadar where all packets go through a single

switch.
• FTFR - FlowRadar deployed on all switches of a k=8 fat

tree with FlowDecode (the faster decoding procedure).
• FTFRND - FlowRadar deployed on all switches of a k=8

fat tree with NetDecode (the more accurate but slower
decoding procedure).

• EOFR - FlowRadar deployed on all edge switches of a k=8
fat tree with packets only measured once (on the first edge
switch they visit).

Figure 4a shows the F1 metric for heavy hitter measurement
(higher F1 values are better). FlowRadar (in all scenarios)
fails to provide any meaningful information until circa 1
MB of space, and from that point on, it rapidly improves
with more space until it provides an exact measurement
(F1=1) which is better than our approach. We conclude that
FlowRadar has a stricter minimum memory size requirement
while AROMA performs better under a tight memory budget,
which is expected in today’s switches, with a few MBs of data-
plane memory shared among different measurement tasks.

Figure 4b show results for the hierarchical heavy hitters’
task, and Figure 4c for superspreader measurements, as can
be observed the qualitative behavior is the same as in the
heavy hitter case. AROMA can operate and provide accurate
measurements while FlowRadar fails unless it is allocated
with enough space. Thus, for these tasks, our algorithms are
superior when given a small amount of space, and inferior
when there is enough space to run FlowRadar efficiently.
Recalling Table II, we observe that the actual number of flows
increases with the measurement length. Thus, we expect our
method to be more reliable in long measurements, especially
as traffic anomalies such as port scan attacks can increase the
number of flows in the measurement.

Figure 5 shows results for our packet sampling algorithm
and the frequency estimation problem. As well as, for our flow
sampling algorithm, and the flow size distribution estimation
problem. In Figure 5a, we can see that our approach contin-
uously improves given more space. In contrast, the various
FlowRadar configurations are very inaccurate until there is
enough memory, and then they have no error at all. Still,
AROMA outperforms FlowRadar in many configurations.

In Figure 5b, we see results for the flow size distribution
estimation task. In the FlowRadar configurations, we again
see the “cliff” where the algorithms do not work until there
is enough memory allocated. Notice that the required memory
for them to work is several megabytes, whereas our algorithm
is accurate even with a few kilobytes.

Next, we allocate 250KB for each switch and monitor the
accuracy throughout the trace. Figure 6 shows the F1 score for
different applications and varying the stream length. Initially,
FlowRadar configurations achieve accurate measurement (F1
score of 1). Then, as the measurement prolongs, we encounter
more flows, and FlowRadar configurations begin to fail. Once
we reach 32 million packets, all the FlowRadar configurations
become ineffective. In contrast, our sampling-based approach
is relatively accurate throughout the measurement. We con-
clude that AROMA is superior when there is insufficient
memory space for an accurate measurement. While accurate
measurements are desired, it is unclear how much memory
FlowRadar would need to succeed, whereas in AROMA we
always yield a relatively accurate outcome.

Figure 7 shows results for the frequency estimation, and
flow size distribution estimation tasks (lower is better). In
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Fig. 6: F1 score (higher is better) on New York 2018, varying measurement tasks and per-switch space.
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Fig. 7: Root Mean Square Error and Weighted Mean Relative
Difference (lower is better) on the New York 2018 dataset,
varying the measurement’s length.

Figure 7a, we see that the accuracy of our method gracefully
degrades throughout the measurement. FlowRadar degrades
accuracy less gracefully as the measurement prolongs. When
the measurement is long enough, our approach is more ac-
curate than all FlowRadar configurations. Figure 7b shows
the flow size distribution estimation accuracy throughout the
measurement. The results are qualitatively similar, but our
method does much better than FlowRadar configurations.

Performance breakdown: For the HH, HHH, and SS tasks,
we used F1 as a single-metric for evaluating the performance
of algorithms. However, the actual precision and recall per-
formance of the algorithm is not the same. Our algorithms
provide near-perfect precision and recall, while FlowRadar
gives perfect precision but a poorer recall. The reason is that
FlowRadar provides the exact sizes of the flows it decodes and
thus know if one is a heavy hitter. We show the precision and
recall performance in Figure 8.

V. RELATED WORK

We now survey network-wide techniques, as well as work
that is related to the methods used in this work.

Packet Marking: The work of [3] suggests marking mea-
sured packets by exploiting unused bits in the IP header. That
way, they measure each packet once regardless of the number
of measurement switches it traverses. However, this simple
and effective method implicitly restricts measurement switch
deployment. Intuitively, the unused bits need to be cleared
before they enter our network. Otherwise, the method may
fail due to a proprietary use of these bits in other networks.

Single per-flow Path Solutions: FlowRadar [28], Ever-
Flow, and Trajectory sampling [43], [16] assume that each flow
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Fig. 8: The precision and recall of the algorithms for the HH
and SS tasks. FlowRadar always has a perfect precision as any
flow it decodes is fully accurate.

is routed on a single path. The single path solutions cannot
handle routing changes, multicast, and Multipath routing [20]
which are important in modern networks.

Flow Sampling Techniques: Several solutions have been
proposed for flow sampling [34], [17]. Specifically, in [34],
the authors present cSamp, a flow sampling method that
performs hash-based packet selection to coordinate between
the measurement switches. cSamp performs network-wide
monitoring by distributing responsibilities across the measure-
ment switches in the network. The framework is responsive
to routing, topology and network dynamics and shifts the
responsibilities according to the network changes. In con-
trast, AROMA achieves network-wide uniform flow sampling
without assigning specific responsibilities and therefore is not
affected by the network dynamics.

Other routing oblivious solutions: The BEFMR18
software-based algorithm [4] performs network-wide mea-
surements through uniform packet sampling, using the
same routing-oblivious assumption as this work. However,
BEFMR18 is not compatible with the architecture of PISA



programmable switches, and it does not support flow sampling.

VI. CONCLUSION

We introduced AROMA, a network-wide measurement in-
frastructure that enables network-wide flow and packet sam-
pling in PISA switches. AROMA does not make any assump-
tions regarding routing and is flexible with respect to the
placement of the measurement switches in the network.

We proved formal accuracy guarantees and demonstrated the
ability to perform a variety of network measurement tasks. We
evaluated AROMA through simulations with different topolo-
gies, per-switch memory, and measurement length. AROMA
outperforms uniform sampling and that it allows accurate
measurements in memory-constrained configurations where
the previous works are inapplicable.

AROMA’s novelty extends beyond programmable switches.
Specifically, it is the first technique to perform flow sampling
without assumptions on the workload or coordination between
the switches. Interestingly, it also has advantages in software
implementation; specifically, it improves the update time of
the existing (software) network-wide packet sampling tech-
nique [4] from logarithmic to a constant.
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