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4. Experimental Uncertainty 
 
In any experimental (or even computational) study, attention must be paid to the uncertainties involved in 
making measurements.  Including the uncertainty allows one to judge the validity or accuracy of the 
measurements.  Uncertainty analysis can also be useful when designing an experiment so that the 
propagation of uncertainties can be minimized (this will be covered in an example).  
 
Consider a measurement of a flow rate through a pipe.  Let’s say that one measures a flow rate of 1.6 kg/s.  
Now consider a theoretical calculation that predicts a flow rate of 1.82 kg/s.  Are the theory and 
measurement inconsistent?  The answer depends upon the uncertainty in the measurement.  If the 
experimental uncertainty is ±0.3 kg/s, then the true measured value could very well be equal to the 
theoretical value.  However, if the experimental uncertainty is ±0.1 kg/s, then the two results are likely to 
be inconsistent. 
 
There are two parts to uncertainty analysis.  These include: 
1. estimating the uncertainty associated with a measurement and 
2. analyzing the propagation of uncertainty in subsequent analyses. 

 
Both of these parts will be reviewed in the following sections.  There are many texts (such as Holman, J.P., 
Experimental Methods for Engineers, McGraw-Hill) that can be referred to for additional information 
concerning experimental uncertainty.  
 
Estimation of Uncertainty 
 
There are three common types of error.  These include “blunders,” systematic (or fixed) errors, and random 
errors. 
 
1. “Blunders” are errors caused by mistakes occurring due to inattention or an incorrectly configured 

experimental apparatus.   
 

Examples: 
Blatant blunder:  An experimenter looks at the wrong gauge or misreads a scale and, as a result, 
records the wrong quantity. 
 
Less blatant blunder:  A measurement device has the wrong resolution (spatial or temporal) to 
measure the parameter of interest.  For example, an experimenter who uses a manometer to 
measure the pressure fluctuations occurring in an automobile piston cylinder will not be able to 
capture the rapid changes in pressure due to the manometer’s slow response time.   
 
Subtle blunder:  A measurement might affect the phenomenon that is being measured.  For 
example, an experimenter using an ordinary thermometer to make a very precise measurement of a 
hot cavity’s temperature might inadvertently affect the measurement by conducting heat out of the 
cavity through the thermometer’s stem. 

 
2. Systematic (or fixed) errors occur when repeated measurements are in error by the same amount.  

These errors can be removed via calibration or correction. 
 

Example: 
The error in length caused by a blunt ruler.  This error could be corrected by calibrating the ruler 
against a known length. 
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3. Random errors occur due to unknown factors.  These errors are not correctable, in general. 
 
Blunders and systematic errors can be avoided or corrected.  It is the random errors that we must account 
for in uncertainty analyses.  How we quantify random errors depends on whether we conduct a single 
experiment or multiple experiments.  Each case is examined in the following sections. 
 
1. Single Sample Experiments 
 

A single sample experiment is one in which a measurement is made only once.  This approach is 
common when the cost or duration of an experiment makes it prohibitive to perform multiple 
experiments. 
 
The measure of uncertainty in a single sample experiment is ±1/2 the smallest scale division (or least 
count) of the measurement device.  For example, given a thermometer where the smallest discernable 
scale division is 1 °C, the uncertainty in a temperature measurement will be ±0.5 °C.  If your eyesight 
is poor and you can only see 5 °C divisions, then the uncertainty will be ±2.5 °C.  One should use an 
uncertainty within which they are 95% certain that the result lies. 
 
 

Example: 
 
 

The least count for the ruler to 
the left is 1 mm.  Hence, the 
uncertainty in the length 
measurement will be ±0.5 mm. 

 
 
 
 
 
 
 
 

 
 

Example: 
You use a manual electronic stop watch to measure the speed of a person running the 100 m dash.  The 
stop watch gives the elapsed time to 1/1000th of a second.  What is the least count for the measurement? 
 
SOLUTION: 
 
Although the stop watch has a precision of 1/1000th of a second, you cannot respond quickly enough to 
make this the limiting uncertainty.  Most people have a reaction time of 1/10th of a second.  (Test 
yourself by having a friend drop a ruler between your fingers.  You can determine your reaction time 
by where you catch the ruler.)  Hence, to be 95% certain of your time measurement, you should use an 
uncertainty of ±1/2(0.1 sec) = ±0.05 sec. 
 

Be Sure To: 
1. Always indicate the uncertainty of any experimental measurement. 
2. Carefully design your experiments to minimize sources of error. 
3. Carefully evaluate your least count.  The least count is not always ±1/2 of the smallest scale division. 
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2. Multiple Sample Experiment 
 

A multiple sample experiment is one where many different trials are conducted in which the same 
measurement is made. 
 
Example: 
- making temperature measurements in many “identical” hot cavities (shown below) or making 

temperature measurements in the same cavity many different times 
 
 
 
 
 
 
 
 

 
We can use statistics to estimate the random error associated with a multiple sample experiment.  For 
truly random errors, the distribution of errors will follow a Gaussian (or normal) distribution which has 
the following qualitative histogram: 

 
 
 
 
 
 
 
 
 
 
 

 
To quantify the set of measurement data, we commonly use the mean of the data set and its standard 
deviation or variance.  For example, consider N measurements of some parameter x:  x1, x2, …, xN. 
 

sample mean, x  (a type of average)  

1

1 N

n
n

x x
N =

= ∑  (18) 

 
sample standard deviation, σ (a measure of how precise the measurements are:  as σ ↓, the 
precision ↑)  
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many identical cavities and thermometers 

measurement value 
(e.g., temperature) 

# of measurements 
with a particular 

measurement value 
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Notes: 
1. It is not reasonable to comprehensively discuss statistical analyses of data within the scope of 

these notes.  The reader is encouraged to look through an introductory text on statistics for 
additional information (see, for example, Vardeman, S.B., Statistics for Engineering Problem 
Solving, PWS Publishing, Boston).  

2. The square of the standard deviation (σ2) is known as the variance. 
3. The coefficient of variation, CoV or CV (also rsd = relative standard deviation), is defined as the 

ratio of the standard deviation to the mean, i.e.,  CoV xσ≡ .  A small CoV means that the scatter 
in your measurements is small compared to the mean. 

4. For random data (a Gaussian or normal distribution) and a very large number of measurements: 
68% 1
95% of measurements fall between 2
99% 3

x
x
x

σ
σ
σ

±⎫ ⎧
⎪ ⎪ ±⎬ ⎨
⎪ ⎪ ±⎭ ⎩

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. If the number of measurements is not very large (N < 30, for example), it is better to use the 
Student’s t-distribution for estimating the uncertainty (refer to an introductory text on statistics 
such as Vardeman, S.B., Statistics for Engineering Problem Solving, PWS Publishing, Boston): 

x tσ±  (20) 
where t is a factor related to the degree of confidence desired (again, a 95% uncertainty is typically 
desired in engineering applications), σ is the standard deviation given in Eq. (19), and N is the 
number of measurements made.  The following table gives the value of t for various values of N 
and a 95% confidence level.  Note that as N → ∞ the t factor approaches the large sample size 
value of 1.96. 

N 2 3 4 5 6 7 8 9 10 15 20 30 ∞ 
t95% 12.71 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.14 2.09 2.04 1.96 

 
5. Often one presents data in terms of its true (rather than sample) mean, µ, and a confidence interval.  

For random data, the true mean lies within the interval, 
t

x
N
σµ = ±  (21) 

where x  and σ are the sample mean (Eq. (18)) and sample standard deviation (Eq. (19)), 
respectively, t is the confidence interval factor (found from the Student t-distribution as in the 
table above), and N is the number of data points. 

6. When reporting the variability in multiple sample experiments, remember that there is still 
uncertainty in individual measurements.  Thus, when reporting results from multiple sample 
experiments, be sure to report the mean and (95%) confidence interval (using Eq. (21)) as well as 
the uncertainty in an individual measurement.   

 
Be Sure To: 
1. Report the uncertainty in an individual measurement as well as the mean and 95% confidence interval 

for multiple sample experiments.  

measurement value 
(e.g., temperature) 

# of measurements 
with a particular 

measurement value 

 

±2σ 
±3σ 

±1σ 

used in most engineering 
situations as a measure of 
the uncertainty 

 15 



C. Wassgren  Last Updated:  16 Nov 2016 
Chapter 01:  The Basics 

  
Propagation of Uncertainty 
Let R be a result that depends on several measurements:  x1, …, xN, or, in mathematical terms: 

   
R = R x1,…,xN( ) . (22) 

For example, the volume of a cylinder is: 
( )2           ,V r h V V r hπ= ⇒ = . (23) 

How do we determine the uncertainty in the result R due to the uncertainties in the measurements x1, …, xN?  
In the example above, what is the uncertainty in the volume V given the uncertainties in the radius, r, and 
height, h? 
 
To address this issue, consider how a small variation in parameter, xn, call it δxn, causes a variation in R, 
call this variation δRxn: 

   

δ Rxn
= R x1,…,xn +δ xn ,…xN( )− R x1,…,xn ,…xN( )

δ Rxn
=

R x1,…,xn +δ xn ,…xN( )− R x1,…,xn ,…xN( )
δ xn

δ xn

 

   

δ Rxn

uncertainty
in R  due to 

uncertainty in xn

!
≈ ∂R

∂xn

partial derivative
of R  w/r/t xn

!
δ xn

uncertainty
in measurement xn

!   (Note that an “=” is only strictly true as δxn → dxn.) (24) 

 
The total uncertainty in R, δR, due to uncertainties in all measurements x1,…,xN, assuming that the xn are 
independent so that the variations in one parameter do not affect the variations in the others, is estimated as, 
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The relative uncertainty in R, uR, is given by, 

R
Ru
R
δ=  (26) 

For example, the uncertainty in the cylinder volume, V=πr2h, due to uncertainties in the radius, r, and 
height, h, is, 
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and the relative uncertainty is, 
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where ur = δr/r and uh = δh/h are the relative uncertainties in r and h, respectively.  
 
Note: 
1. Use absolute quantities when calculating the uncertainty.  For example, use °R or K as opposed to °F 

or °C for temperature, and use absolute pressures rather than gage pressures. 
2. In an uncertainty analysis the uncertainty of some quantities may be so small compared to the 

uncertainties in the remaining quantities that they can be considered “exactly” known.  This is 
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generally the case for well-characterized constants and material parameters, e.g., the acceleration due 
to gravity. 

 
Be Sure To: 
1. Use absolute quantities when evaluating uncertainties, e.g., absolute temperature and pressure. 
2. Review your uncertainty analyses to determine which measurements result in the greatest error in a 

derived quantity.  Design your experiments to reduce these uncertainties. 
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