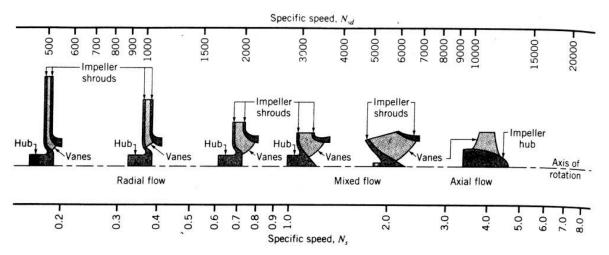
4. Specific Speed, N_s

A useful dimensionless term results from the following combination of previously defined terms:

$$N_{\rm s} = \text{specific speed} = \frac{\Phi^{\frac{1}{2}}}{\Psi^{\frac{1}{4}}} = \frac{\omega Q^{\frac{1}{2}}}{(gH)^{\frac{1}{4}}}$$
(32)

Combining the terms in this manner eliminates the impeller diameter, D.

Notes:


- It is customary to characterize a machine by its specific speed at the design point, i.e., N_s is usually 1. only given for the BEP operating conditions.
 - low Q, high $H \Rightarrow \text{low } N_s \Rightarrow \text{centrifugal pumps}$
 - high Q, low $H \Rightarrow \text{high } N_s \Rightarrow \text{axial pumps}$
- In practice (especially in the US), a combination of units are used to describe ω , Q, and H such that N_s is dimensional (signified by $N_{\rm sd}$):

$$N_{sd} \equiv \frac{\omega(\text{rpm})\sqrt{Q(\text{gpm})}}{\left[H(\text{ft})\right]^{\frac{3}{4}}}$$
(33)

 $N_{\rm s}$ and $N_{\rm sd}$ have the same physical meaning but are different in magnitude by a constant factor:

$$N_{sd} = 2733 \text{ [rpm} \cdot \text{(gpm)}^{1/2}/\text{(ft)}^{3/4} \text{]} N_{s}$$

Given ω , Q, and H, we can calculate N_s (or N_{sd}) and, using the following chart, determine which type of pump would be most efficient for the given conditions.

(From Munson, B.R., Young, D.F., and Okiishi, T.H., Fundamentals of Fluid Mechanics, 3rd ed., Wiley.)

Following are some rules of thumb:

- Positive displacement pumps are used for small flow rates, Q, and large head rises, H.
- 2. Centrifugal pumps are for moderate H and large Q.
- 3. For very large head rises, pumps are often combined in series (aka multi-stage).
- 4. Axial flow pumps are for large Q and low H.

C. Wassgren Chapter 12: Fluid Machinery Last Updated: 29 Nov 2016