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The LME for Non-Inertial Coordinate Systems 
Recall that Newton’s 2nd law holds strictly for inertial (non-accelerating) coordinate systems.  Now let’s 
consider coordinate systems that are non-inertial (accelerating).  First let’s examine how we can describe 
the motion of a particle in an accelerating coordinate system, call it frame xyz, in terms of a non-
accelerating coordinate system, call it frame XYZ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The position of a particle in XYZ is given by rXYZ and in xyz the particle’s position is given by rxyz.  The two 
position vectors are related by the position vector of the origin of xyz in XYZ, rxyz/XYZ, 

/XYZ xyz XYZ xyz= +r r r . (34) 

The velocity of the particle in XYZ can be found by taking the time derivative of the position vector, rXYZ, 
with respect to XYZ (as indicated by the subscript XYZ in the equation below), 

/xyz XYZ xyzXYZ

XYZ XYZ XYZ

d dd
dt dt dt

= +
r rr

. (35) 

The time derivative of rxyz/XYZ is simply the velocity of the origin of xyz with respect to XYZ, uxyz/XYZ, i.e., 

/
/

xyz XYZ
xyz XYZ

XYZ

d

dt
=

r
u . (36) 

We must be careful, however, when evaluating the time derivative of rxyz in XYZ since both the magnitude 
of rxyz and the basis vectors of xyz can change with time (the basis vectors of xyz can change due to rotation 
of the xyz with respect to XYZ).  To calculate the time derivative of rxyz in XYZ, let’s first write rxyz as a 
magnitude, rxyz, multiplied by the basis vectors of xyz, ˆ xyze , then use the product rule to evaluate the time 

derivative, 

( )ˆ ˆ
ˆxyz xyzxyz xyz xyz
xyz xyz

XYZ XYZ XYZXYZ

d rd dr d
r

dt dt dt dt
= = +

er e
e . (37) 

Note that, 

ˆxyz
xyz xyz

XYZ

dr

dt
=e u , (38) 

is the velocity of the particle in xyz.   
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The time derivative of the xyz basis vectors is found from geometric considerations.  Consider the drawing 
shown below of the change in the x-basis vector as a function of time.  For simplicity, we’ll assume that the 
rotation only occurs in the xy plane (i.e., Δθx = Δθy = 0): 
 
The time derivative of the basis vector is given by, 

( ) ( )
0

ˆ ˆˆ
lim x xx

t

t t td
dt tΔ →

+Δ −
=

Δ
e ee

. 

Note from the diagram that, 
( ) ( ) ( ) ( ) ( )

( )( ) ( )
ˆ ˆ ˆ ˆ ˆcos sin

ˆ ˆcos 1 sin
x x x z y z x

x z y z

t t t t t t

t t

θ θ

θ θ

+Δ − = Δ + Δ −

= Δ − + Δ

e e e e e

e e
 

In addition, as Δt → 0, Δθz → 0 and, 

( ) ( ) ( )2 21
2cos 1 1 / 2 1z z zθ θ θΔ − ≈ − Δ − = − Δ  and sin z zθ θΔ ≈ Δ , 

so that, 

( ) ( ) ( ) ( )21
2

0 0

ˆ ˆˆ ˆˆ
lim lim

ˆ

z x z yx xx

t t

z
y

tt t td
dt t t

d
dt

θ θ

θ
Δ → Δ →

− Δ +Δ+Δ −
= =

Δ Δ

=

e ee ee

e

 

ˆ
ˆx
z y

d
dt

ω∴ =
e

e   (where ωz = dθz/dt). (39) 

In general, it can be shown that, 

   

dêxyz

dt
XYZ

= ω xyz/ XYZ × êxyz  (40) 

so that, 

( )/ /

ˆ
ˆxyz

xyz xyz xyz XYZ xyz xyz XYZ xyz
XYZ

d
r r

dt
= × = ×

e
ω e ω r . (41) 

 
Combining Eqs. (35) – (38) and (41) we find that the velocity of a fluid particle in the inertial coordinate 
system XYZ is, 

    

uXYZ

velocity of particle
in XYZ

! = uxyz/ XYZ

velocity of xyz
w/r/t XYZ

"#$ %$
+ uxyz

velocity of particle
in xyz

!
+ ω xyz/ XYZ × rxyz

velocity of particle in XYZ
due to rotation of xyz

w/r/t XYZ

" #$$ %$$
 (42) 

where uxyz is the particle velocity in non-inertial coordinate system xyz, 
/xyz XYZω  is the angular velocity of 

xyz with respect to XYZ, and rxyz is the position vector of the particle from the origin of xyz.   
 
The acceleration of a particle in XYZ in terms of xyz quantities can be found in a similar manner, 

    

duXYZ

dt
XYZ

=a XYZ

! "# $#

=
duxyz/ XYZ

dt
XYZ

=axyz/ XYZ

! "## $##

+
duxyz

dt
XYZ

= d
dt

uxyzêxyz( )
XYZ

! "# $#

+ d
dt

ω xyz/ XYZ × rxyz( )
XYZ

= %ω xyz/ XYZ ×rxyz+ω xyz/ XYZ ×
d rxyzêxyz( )

dt
XYZ

! "#### $####
 (43) 

where the results from Eqs. (37), (38), (40), and (41) are used to simplify the last two expressions in Eq. 
(43), 

( )
/

ˆ
ˆ ˆxyz xyz

xyz xyz xyz xyz
XYZ

xyz xyz XYZ xyz

du dd
u u

dt dt dt
= +

= + ×

e
e e

a ω u
 (44) 

and, 

Δθz 
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!ω xyz/ XYZ ×
d rxyzêxyz( )

dt
XYZ

= ω xyz/ XYZ × uxyz +ω xyz/ XYZ × rxyz( )
= ω xyz/ XYZ × uxyz +ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )

 (45) 

 
Substituting Eqs. (44) and (45) into Eq. (43) and simplifying gives, 

    

a XYZ

rectilinear acceleration
of particle in XYZ

! = a xyz/ XYZ

rectilinear acceleration
of xyz  w/r/t XYZ

"#$
+ a xyz

rectilinear acceleration
of particle in xyz

!
+ %ω xyz/ XYZ × rxyz( )

tangential acceleration of
particle in XYZ  due to

rotational acceleration of xyz

" #&& $&&

                              + 2ω xyz/ XYZ × uxyz( )
Coriolis acceleration of
particle in XYZ  due to

rectilinear motion of particle
in xyz

" #&& $&&
+ ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )⎡
⎣

⎤
⎦

centripital acceleration of particle
in XYZ  due to rotation of xyz

" #&&&& $&&&&

 (46) 

 
Now let’s use these relations to determine an expression for the LME using a non-inertial coordinate 
system.  Recall that the Lagrangian statement for the LME is (refer to Eq. (26)), 

system

on systemXYZ
V

D dV
Dt

ρ
⎛ ⎞
⎜ ⎟ =⎜ ⎟⎜ ⎟⎝ ⎠
∫ u F . (47) 

Substitute Eq. (42) into Eq. (47) and re-arrange, 

( )

( )

system

system system

on system / /

/ /

xyz XYZ xyz xyz XYZ xyz
V

xyz xyz XYZ xyz XYZ xyz
V V

D
dV

Dt

D D
dV dV

Dt Dt

ρ

ρ ρ

⎡ ⎤
⎢ ⎥= + + ×⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + + ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫

∫ ∫

F u u ω r

u u ω r

 (48) 

Now use the Reynolds Transport Theorem to convert the first term on the right hand side to a control 
volume perspective and re-arrange, 

( )

( )
system

body on CV surface on CV / /

rel
CV CS

                  

xyz XYZ xyz XYZ xyz
V

xyz xyz

D
dV

Dt

d
dV d

dt

ρ

ρ ρ

⎡ ⎤
⎢ ⎥+ − + ×⎢ ⎥
⎢ ⎥⎣ ⎦

= + ⋅

∫

∫ ∫

F F u ω r

u u u A

 (49) 
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The remaining Lagrangian term can be simplified by changing the volume integral to a mass integral and 
noting that the mass of the system doesn’t change with time, 

( )

( )

( )

system

system

system

/ /

/ /

/ /

/ /

                =

                =

                =

xyz XYZ xyz XYZ xyz
V

xyz XYZ xyz XYZ xyz
M

xyz XYZ xyz XYZ xyz
M

xyz XYZ xyz XYZ x

D
dV

Dt

D
dm

Dt

D
dm

Dt

D
Dt

ρ
⎡ ⎤
⎢ ⎥+ ×⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥+ ×⎢ ⎥
⎢ ⎥⎣ ⎦

+ ×

+ ×

∫

∫

∫

u ω r

u ω r

u ω r

u ω r( )
system

yz
V

dVρ∫

 (50) 

Since uxyz/XYZ  and ω xyz/XYZ are functions only of time (these variables describe the motion of the coordinate 
system xyz and not the fluid field), and because Drxyz/Dt=uxyz

1, we can replace the Lagrangian time 
derivative with an Eulerian time derivative and substitute in our result from Eq. (46), 

    

D
Dt

uxyz/ XYZ +ω xyz/ XYZ × rxyz( )ρ dV
Vsystem

∫

               = d
dt

uxyz/ XYZ +ω xyz/ XYZ × rxyz( )ρ dV
Vsystem

∫

               = a xyz/ XYZ + !ω xyz/ XYZ × rxyz + 2ω xyz/ XYZ × uxyz +ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )⎡
⎣

⎤
⎦ρ dV

Vsystem

∫

 (51) 

 
Substituting Eqs. (50) and (51) back into Eq. (49) and noting that when we apply the Reynolds Transport 
Theorem the control volume and system volume are coincident (so that the system volume integral in Eq. 
(51) can be replaced by a control volume integral),  we find that the LME can be applied using a non-
inertial coordinate, xyz, if the following form is used, 

    

Fbody on CV +Fsurface on CV

  − a xyz/ XYZ + !ω xyz/ XYZ × rxyz( ) + 2ω xyz/ XYZ × uxyz( ) + ω xyz/ XYZ × ω xyz/ XYZ × rxyz( )⎡
⎣

⎤
⎦{ }ρ dV

CV
∫

                                            = d
dt

uxyzρ dV
CV
∫ + uxyz ρurel ⋅dA( )

CS
∫

 (52) 

 
Let’s consider a few examples to see how this form of the LME is applied. 

                                                             

1  

    

Drxyz

Dt
=
∂rxyz

∂t
=0
!

+ ux

∂rxyz

∂x
=êx

!
+ uy

∂rxyz

∂y
=ê y

!
+ uz

∂rxyz

∂z
=êz

!
= uxyz  

where ˆ ˆ ˆxyz x y zx y z= + +r e e e  
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