
C. Wassgren  Last Updated:  27 Nov 2016 
Chapter 02:  Fluid Statics 

Pressure Forces on Submerged Surfaces and Center of Pressure 
Recall from Chapter 01 that the small pressure force dFp acting on a surface with a small area dA is,  

		
dFp = −pdA . (2.31)  
 
 
 
 
 

 
 
This force relationship was written specifically for a small area since it’s possible that over a large area, the 
pressure and the direction of the area could vary over the area (shown in the figure above).  Thus, to find 
the total pressure force on the whole area, the (small) force on a small area, where the area direction and 
pressure are well defined, is calculated first and then these are added, or integrated, over the whole area, 
i.e., 

		
Fp = dFp

A
∫ = −pdA

A
∫ . (2.32)  

 
Let’s consider the example of a fish tank completely filled with water, as shown in the figure below.  We 
wish to determine the net pressure force acting on bottom and right tank walls.   
 
 
 
 
 
 
 
 
 
 
Start first with the pressure force on the tank bottom,  

			 
Fp ,bottom = −p dxdz ĵ( )⎡

⎣
⎤
⎦

=dA
! "# $#x=0

x=L

∫
z=0

z=W

∫ = − ĵ ρgH
=pgage

%dxdz
x=0

x=L

∫
z=0

z=W

∫ = − ĵρgHWL , (2.33) 

where, at the bottom of the tank, the gage pressure remains constant at, 

		
pbottom,
gage

= ρgH .  (2.34) 

 
Notes: 
1. The magnitude of the pressure force on the bottom is equal to the weight of the water in the tank.  This 

makes sense because if there are no shear stresses at the side walls, then the pressure force at the 
bottom of the tank must support all of the weight of the liquid sitting above it. 

2. A gage pressure is used in Eq. (2.33) to simplify the pressure force calculation.  Since there is 
atmosphere on the other side of the tank bottom, then the gage pressure due to the atmosphere is zero 
(patm,gage = 0) and the corresponding pressure force is zero.  We get the same result as Eq. (2.33) if 
absolute pressures are used everywhere instead, 

			 

Fp ,bottom = − patm + ρgH( ) dxdzĵ( )
x=0

x=L

∫
z=0

z=W

∫
pressure	force	due	to	water
using	an	absolute	pressure

! "##### $#####
+ − patm( ) dxdz − ĵ( )⎡

⎣
⎤
⎦

x=0

x=L

∫
z=0

z=W

∫
pressure	force	on	bottom	due	to	atmosphere

using	an	absolute	pressure

! "#### $####
= − ĵρgHWL . (2.35) 

Note that the unit normal vector for the atmospheric side (bottom side, second integral) is in the 
opposite direction of the unit normal vector for the water side (first integral) since we’re on opposite 
sides of the wall.   
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On this small area element, the 
pressure magnitude and area 
direction are constant and well 
defined. 
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Now let’s calculate the pressure force acting on the right side wall.   

			 

Fp ,right = −p dydz − î( )⎡
⎣

⎤
⎦

=dA
! "# $#y=0

y=H

∫
z=0

z=W

∫ = î ρg H − y( )
=pgage

! "# $#
dydz

y=0

y=H

∫
z=0

z=W

∫ = îρg12H
2W . (2.36) 

 
Notes: 
1. Recall from the diagram that the coordinate system is located at the bottom of the tank.  Thus, the 

(gage) pressure varies as, 

		pgage = ρg H − y( ) . (2.37) 
This pressure still varies linearly with depth, as shown in the following figure. 

 
 
 
 
 
 
 

2. The small area element dA = dydz (in the picture at the top of the page) is used since the pressure has a 
well-defined value on this area.  Since the pressure only varies in the y direction, we could have also 
used the area element dA = Wdy.  The pressure is well defined on this “strip” of area too. 

			 

Fp ,right = −p dyW − î( )⎡
⎣

⎤
⎦

=dA
! "# $#y=0

y=H

∫ = îW ρg H − y( )
=pgage

! "# $#
dy

y=0

y=H

∫ = îρg12H
2W . (2.38) 

 
 

 
A vertical strip of area, i.e., dA = Hdz, can’t be used to determine the pressure force since the pressure 
isn’t well defined on this surface.  The pressure varies in the y direction so over this vertical strip, the 
pressure doesn’t remain constant. 

3. The pressure force is equal in magnitude to the area under the pressure curve shown in Note #1, 

			 
dFp =

1
2 ρgH( )

base
!"#

H( )
height
$

W( )
depth
$

= 12ρgH
2W . (2.39) 

This same behavior is true for the pressure force on the base. 
 

Now that we’ve determined the resultant pressure forces on the bottom and right surfaces, let’s determine 
where these resultant forces act.  This location is known as the center of pressure (CP).  The center of 
pressure is found by ensuring that the moment generated by the resultant pressure force will equal the 
moment generated by the actual, distributed pressure forces.  Consider the right side of the tank.  Balancing 
moments about the z axis, 

		 
Fp ,right yCP = y pdA( )

=dFp

!y=0

y=H

∫ = y ρg H − y( )⋅dyW⎡
⎣

⎤
⎦

y=0

y=H

∫ = 16ρgH
3W , (2.40) 

		
1
2ρgH

2W
⎛
⎝⎜

⎞
⎠⎟
yCP =

1
6ρgH

3W   (making use of Eq. (2.38)), (2.41) 

		
yCP =

1
3H . (2.42) 

  

  H 

W 

y 

z 

dA = (dydz)(-i) 

dFp 

  H 

W 

y 

z 

dA = (dyW)(-i) 

dFp 

y 

pgage ρgH 

Η 

ρgH 

Η 

rig
ht

 w
al

l  

ρgH 

Η Fp 

yCP 

 121 



C. Wassgren  Last Updated:  27 Nov 2016 
Chapter 02:  Fluid Statics 

Notes: 
1. The center of pressure is also equal to the center of area under the pressure distribution curve. 
2. We can take moments about any location and get the same result. 
3. The center of pressure for the right wall in the z direction is zCP = W/2.  This result may be found using 

a similar method as shown above, or can be determined from symmetry. 
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The resultant pressure force and center of pressure location for curved surfaces may be found in the 
same way as for straight surfaces.  The only significant difference is that the unit normal vectors for the 
differentially small area elements may change with position.  For example, let’s determine the net pressure 
force and center of pressure on the parabolically-shaped wall shown in the figure below.  Assume the wall 
is planar and has a depth W into the page. 
 
 
 
 
 
 
 
 
 
 

			 

Fp = −pdA
A
∫ = −ρg H − y( )

=pgage

! "# $#
Wdxĵ−Wdyî( )

=dA
! "## $##A

∫ = −ρgW H − y( ) dxĵ−dyî( )
A
∫ . (2.43) 

Before setting the limits on the integral, note that y is a function of x on the wall surface, which also means 
that a small displacement in the y direction is related to a small displacement in the x direction, 

		
y =H x

L
⎛
⎝⎜

⎞
⎠⎟

2

⇒dy = 2H
L2
xdx . (2.44)  

We can use this information to express the integral in terms of a single variable (we’ll use x, but we could 
use y instead too).  Substituting Eq. (2.44) into Eq. (2.43) gives, 

			
Fp = −ρgW H −H x

L
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dxĵ− 2H

L2
xdxî

⎛
⎝⎜

⎞
⎠⎟x=0

x=L

∫ = −ρgWH ĵ 1− x
2

L2
⎛

⎝⎜
⎞

⎠⎟
dx

x=0

x=L

∫ − î2H
L2

x − x
3

L2
⎛

⎝⎜
⎞

⎠⎟
dx

x=0

x=L

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (2.45) 

			
Fp = −ρgWH ĵ L− 13

L3

L2
⎛

⎝⎜
⎞

⎠⎟
− î2H

L2
1
2L

2 − 14
L4

L2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (2.46) 

			
Fp = ρgWH 1

2Hî−
2
3Lĵ

⎛
⎝⎜

⎞
⎠⎟
= 12ρgWH

2î− 23ρgWHLĵ . (2.47) 

This result is the pressure force the fluid exerts on the wall. 
 

The center of pressure is found by balancing moments, identical to what was used for planar surfaces.  
Balance moments about the origin, 

			 

rCP ×Fp = xî+ yĵ( )
moment	arm
!"# $#

× −ρg H − y( )
=pgage

! "# $#
Wdxĵ−Wdyî( )

=dA
! "## $##

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥A

∫ = −ρgW H − y( ) xdx + ydy⎡⎣ ⎤⎦k̂
A
∫ , (2.48) 

			
xCP î+ yCP ĵ( )× 1

2ρgWH
2î− 23ρgWHLĵ

⎛
⎝⎜

⎞
⎠⎟
= −ρgWk̂ H 1− x

2

L2
⎛

⎝⎜
⎞

⎠⎟
xdx +H 1− x

2

L2
⎛

⎝⎜
⎞

⎠⎟
H x2

L2
⎛

⎝⎜
⎞

⎠⎟
2H
L2
xdx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥x=0

x=L

∫ , (2.49) 

			
−ρgWH xCP

2
3L+ yCP

1
2H

⎛
⎝⎜

⎞
⎠⎟
k̂ = −ρgWHk̂ x − x

3

L2
⎛

⎝⎜
⎞

⎠⎟
+ 2H

2

L4
x3 − x

5

L2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

x=0

x=L

∫ , (2.50) 

		
xCP

2
3L+ yCP

1
2H = 12L

2 − 14
L4

L2
+ 2H

2

L4
1
4L

4 − 16
L6

L2
⎛

⎝⎜
⎞

⎠⎟
= 14L

2 + 16H
2 , (2.51) 

dA = W(dxj – dyi) 
x  

y dx  
dy  

g  
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yCP = −43

L
H

⎛
⎝⎜

⎞
⎠⎟
xCP +

1
2
L2

H
+ 13H

⎛

⎝⎜
⎞

⎠⎟
. (2.52) 

This previous equation, which is the equation of a line, is known as the line of action.  It is the line along 
which the resultant forces act.  This line of action is shown graphically in the following figure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to find (xCP, yCP), we would need to find the intersection of the line of action with the equation of 
the wall (Eq. (2.44)).  This calculation is tedious for the current example and will not be performed here.   
 
Notes: 
1. An alternate method for determining the resultant force and center of pressure is to balance forces on a 

region of fluid bordered by the wall.  For example, balance forces on the region of fluid identified by 
the dotted line in the figure below. 
 

 
 

 
 

 
 
 

		
Fx∑ =0= 12ρgH

2W −FR ,x ⇒ FR ,x =
1
2ρgH

2W , (2.53) 

		 Fy∑ =0= −G+FR ,y ⇒ FR ,y =G , (2.54)  

where, 

		 
G = ρg H − y( )dxW

=dV
! "## $##x=0

x=L

∫ = ρg H −H x
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dxW

x=0

x=L

∫ = ρgHW 1− x
2

L2
⎛

⎝⎜
⎞

⎠⎟
dx

x=0

x=L

∫ = ρgHW L− 13
L3

L2
⎛

⎝⎜
⎞

⎠⎟
, (2.55)  

		
G = 23ρgHWL , (2.56) 

(dV is a small amount of volume),  
so that,  

		
FR ,y =

2
3ρgHWL . (2.57) 

These magnitudes for FR,x and FR,y are exactly the same as what was found in Eq. (2.47).  Note that 
here FR,x and FR,y are the force components the wall exerts on the fluid so, from Newton’s 3rd Law, the 
fluid exerts equal and opposite force components on the wall. 
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The center of pressure about the z axis is found by balancing moments about the origin, the same as 
what was done for planar walls, 

			 

rCP ×Fp =
1
3Hĵ

CP 	for
pressure
on	left	side

!
× 12ρgH

2Wî

resultant	pressure
force	on	left	side

" #$ %$

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+ xCM î+ yCM ĵ( )
center	of	mass
" #$$ %$$

×−23ρgHWLĵ
weight	of
fluid	region

" #$$ %$$

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. (2.58)  

Since the weight has no x component, we need not worry about calculating yCM.  However, we do need 
the x component of the center of mass, which we can find via integration (refer to the previous figure), 

		 
xCMG = xρg H − y( )Wdx

=dV
! "# $#x=0

x=L

∫ = xρg H −H x
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Wdx

x=0

x=L

∫ = ρgHW x − x
3

L2
⎛

⎝⎜
⎞

⎠⎟
dx

x=0

x=L

∫ , (2.59) 

		
xCM

2
3ρgHWL= ρgHW 1

2L
2 − 14

L4

L2
⎛

⎝⎜
⎞

⎠⎟
= 14 ρgHWL

2 , (2.60) 

		
xCM = 38L . (2.61) 

Substituting this value back into Eq. (2.58), making use of the resultant pressure force, and 
simplifying, 

			
xCP î+ yCP ĵ( )× 1

2ρgH
2Wî− 23ρgHWLĵ

⎛
⎝⎜

⎞
⎠⎟
= 1
3Hĵ×

1
2ρgH

2Wî
⎛
⎝⎜

⎞
⎠⎟
+ 3
8Lî×−

2
3ρgHWLĵ

⎛
⎝⎜

⎞
⎠⎟

, (2.62) 

			
−xCP

2
3ρgHWLk̂− yCP

1
2ρgH

2Wk̂ = −16ρgH
3Wk̂− 14 ρgHWL

2k̂ , (2.63) 

		
yCP = −43

L
H

⎛
⎝⎜

⎞
⎠⎟
xCP +

1
3H + 12

L2

H
⎛

⎝⎜
⎞

⎠⎟
, (2.64) 

which is the same result found previously. 
2. Either approach to finding the resultant force and center of pressure (integration or balancing forces on 

a wisely chosen region of fluid) is fine.  One method may be easier than the other, depending on the 
geometry of the problem. 

3. Yet another method to finding the resultant pressure force and center of pressure relies on calculating 
the center of area of the wall surface and calculating moments of inertia.  This approach isn’t described 
in these notes since it’s a more “formulaic” approach to the solving the problem and is less connected 
to the actual physics of the problem.  Moreover, this moment-of-inertia approach often requires access 
to moment of inertia tables, which may be inconvenient.  A number of texts that discuss fluid statics 
present this “moments-of-inertia” approach. 
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