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9. Normal Shock Waves 
 
Consider the movement of a piston in a cylinder: 
 
 
 
 
 
 
 
 
 
 
When we first move the piston, an infinitesimal (compression) pressure wave travels down the cylinder at 
the sonic speed.  Behind the wave, the pressure, temperature, density, and increase slightly and the fluid has 
a small velocity following the wave. 
 
If we continue to increase the piston velocity, additional pressure waves will propagate down the cylinder.  
However, these waves travel at a slightly increased speed relative to a fixed observer due to the increased 
fluid temperature and fluid movement.  The result is that the waves formed later catch up to the previous 
waves.  When the waves catch up to the first wave, their effects add together so that the small changes 
across the individual waves now become a sudden and finite change called a shock wave. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x, position 

t, time 
piston 

shock wave 

pressure wave 
(sound wave) 

stagnant gas 

x compression wave 

c1 c2 

2nd wave 1st wave 

c2 > c1 since T1 > T0 and  u1 moves to  the right 

T0 T1 

u1 u0 = 0 
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Notes: 
 
1. The velocity of a shock wave is greater than the speed of sound since: 

2 1pc ρ
ρ ρ
⎛ ⎞Δ Δ= +⎜ ⎟Δ ⎝ ⎠

 

For a sound wave, Δρ → dρ ⇒ Δρ/ρ → 0.  For a shock wave, Δρ/ρ > 0, so that cshock wave > csound wave. 
2. A shock wave is a pressure wave across which there is a finite change in the flow properties. 
3. Shock waves only occur in supersonic flows. 
4. Shock waves are typically very thin with thicknesses on the order of 1 µm.  Thus, we consider the 

changes in the flow properties across the wave to be discontinuous. 
5. The sudden change in flow properties across the shock wave occurs non-isentropically since the 

thermal and velocity gradients are large within the shock wave itself. 
 
To analyze a shock wave, we’ll use an approach similar to that used to examine a sound wave.  Let’s 
consider a fixed shock wave across which flow properties change: 
 
 
 
 
 
 
 
 
 
 
 
COM: 

1 1 2 2V A V Aρ ρ=  

1 1 2 2V Vρ ρ=  (143) 
 
LME (in x-direction): 

   !mV2 − !mV1 = p1A− p2 A    

( ) ( )1 1 2 1 2 2 2 1 1 2V V V V V V p pρ ρ− = − = −  (144)  
 
COE: 

2 21 1
1 1 2 22 2h V h V+ = +  (145) 

Also, 01 02h h= .  Note that no heat is added to the CV, i.e., the process is adiabatic. 
 
2nd Law: 

2 1s s>  (since the process is adiabatic but irreversible) (146) 
 
Thermal Equation of State (ideal gas law): 

1 2

1 1 2 2

p p R
T Tρ ρ

= =  (147) 

 
Caloric Equation of State (for a perfect gas): 

ph c T=    (148) 

 

p1, T1, ρ1, V1 p2, T2, ρ2, V2 

downstream 
(isentropic flow) 

upstream 
(isentropic flow) 

fixed shock wave 
(non-isentropic process) 

very thin CV so there is no flow 
out of the top and bottom 
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Combining Eqs. (143) and (144): 
1 2

2 1
1 1 2 2

p p V V
V Vρ ρ

− = −  (149) 

Substituting Eq. (147): 
1 2

2 1
1 2

RT RT V V
V V

− = −  

Substituting Eqs. (145) and (148) then re-arranging: 

( )

( ) ( ) ( )

( ) ( )

2 2
1 2

0 0 2 1
1 2

2 2
2 1 1 2

2 0 1 0 1 2 2 1

1 2
1 2 2 1 2 1 0 2 1

1 2
1 2 2 1 2 1 0

1 2
1 2 0

1 2

2 2

2 2

2

2

2

1
2

p p

p p

p

p

p

p

V VR RT T V V
V c V c

RV V RVVRV T RV T VV V V
c c

VVVV V V R V V T V V
c

VVVV V V R V V T
c

VVVV R T
c

RVV
c

⎛ ⎞ ⎛ ⎞
− − − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

− − − = −

⎡ ⎤
− = − + −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

− = − +⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
⎛ ⎞

−⎜⎜⎝
0

0
1 2

1
2 p

RT

RT
VV

R
c

=⎟⎟⎠

=
⎛ ⎞

−⎜ ⎟⎜ ⎟⎝ ⎠  

Finally, substituting the relation: 
1p v

p p

c cR
c c

γ
γ

− −= =  

and re-arranging we have: 
0

1 2
2

1
RT

VV
γ
γ

=
+

 Prandtl’s Equation (150) 
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Dividing both sides of the equation by the sound speed on either side of the shock wave and utilizing the 
definition for the Mach # for a perfect gas: 

0 01 2

1 2 1 2

0 0
1 2

1 2

2
1

2Ma Ma
1

RT RTV V
RT RT RT RT

T T
T T

γ γ
γγ γ γ γ

γ

=
+

=
+

 

Recall that for the adiabatic flow of a perfect gas: 
1

2

0

11 Ma
2

T
T

γ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

So that: 

1 1
2 2

0 0
1 2

1 2

2 2
1 2

2Ma Ma
1

2 1 11 Ma 1 Ma
1 2 2

T T
T Tγ

γ γ
γ

=
+

− −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠

 

 
After additional algebra we can reduce this equation to the following: 

( )
( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1

γ
γ γ
− +

=
− −

 (151) 

Relation between upstream Mach # (Ma1) and downstream Mach # (Ma2) across a normal shock 
wave. 

 
Notes: 
1. When Ma1>1, then Ma2<1 (supersonic to subsonic flow) and when Ma1<1, then Ma2>1 (subsonic to 

supersonic flow). 
2. From experiments, we observe that shock waves never form in subsonic flows (Ma1<1) even though 

Eq. (151) does not give any indication of this.  We’ll use the 2nd law in a moment to show that shock 
waves can only form in supersonic flows (Ma1>1). 

 
 
The temperature ratio across the shock wave can be determined using the adiabatic stagnation temperature 
relation for a perfect gas and noting that the stagnation temperature remains constant across a shock: 

1
22 2

0
1

1 2
10

11 Ma
2
11 Ma
2

T
T

T
T

γ

γ

−

−

−⎛ ⎞⎛ ⎞ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠=
⎛ ⎞ −⎛ ⎞⎜ ⎟ +⎜ ⎟⎝ ⎠ ⎝ ⎠

 

2
1

2

21
2

11 Ma
2
11 Ma
2

T
T

γ

γ

−⎛ ⎞+⎜ ⎟⎝ ⎠=
−⎛ ⎞+⎜ ⎟⎝ ⎠

 (152) 
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The pressure ratio across the shock can be determined by combining Eqs. (152), (147), and (143) along 
with the definition of the Mach number for a perfect gas: 

( )
( )

1 1 22 2 2 1 2

1 1 1 2 1 2 2 1

1 2

2 1

Ma

Ma

Ma
Ma

RT Tp T V T
p T V T RT T

T
T

γρ
ρ γ

= = =

=

 

1
2

2
1

2 1

21 2
2

11 MaMa 2
1Ma 1 Ma
2

p
p

γ

γ

−⎛ ⎞+⎜ ⎟
= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (153) 

 
1
2

2 2
1 1

2 1 2 1 1

2 21 2 1 2 2
2 2

1 11 Ma 1 MaMa 2 2
1 1Ma 1 Ma 1 Ma
2 2

V p T
V p T

γ γ
ρ

γ γρ

− −⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
= = = ⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

3
2

2
1

2 1 1

21 2 2
2

11 MaMa 2
1Ma 1 Ma
2

V
V

γ
ρ

γρ

−⎛ ⎞+⎜ ⎟
= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (154) 

 
We can also determine the ratio of the isentropic stagnation pressures and densities across the shock wave: 

1
2

0

11 Ma
2

p
p

γ
γγ −−⎛ ⎞= +⎜ ⎟⎝ ⎠
 

1
21
101

22
2

02

11 Ma
2
11 Ma
2

p
p

p
p

γ
γγ

γ

−−⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎝ ⎠ = ⎜ ⎟−⎛ ⎞ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

1
1 2 1

2 2 2
1 1 1

02 2 1

2 2 201 1 2
2 2 2

1 1 11 Ma 1 Ma 1 MaMa2 2 2
1 1 1Ma1 Ma 1 Ma 1 Ma
2 2 2

p p
p p

γ γ
γ γγ γ γ

γ γ γ

− −− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ − − −⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( )
( )
1
2 12

1
02 1

201 2
2

11 MaMa 2
1Ma 1 Ma
2

p
p

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (155) 
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02 02 01

01 01 02

p T
p T

ρ
ρ

=  

but since T01 = T02 
( )
( )
1
2 12

1
02 02 1

201 01 2
2

11 MaMa 2
1Ma 1 Ma
2

p
p

γ
γγ

ρ
γρ

+
−−⎛ ⎞+⎜ ⎟

= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (156) 

 
The sonic area ratio across the shock can be determined from the fact that the mass flow rate across the 
shock must remain constant (COM): 

   

!m1 = !m2

ρ1
*V1

*A1
* = ρ2

*V2
*A2

*

A2
*

A1
* =

ρ1
*

ρ2
*

V1
*

V2
*

 

The sonic ratios can be determined from the following: 

( )

( )
( )

1* * 11 2

01 02
1

2 12
* 1

011 1
* 202 22 2

11
2

11 MaMa 2
1Ma 1 Ma
2

γ

γ
γ

ρ ρ γ
ρ ρ

γ
ρρ

γρρ

−

+
−

−⎛ ⎞= = +⎜ ⎟⎝ ⎠

−⎛ ⎞+⎜ ⎟
= = ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 

and 
*
1

* * * 01 1 1
* * * *
2 2 2 2

0

1

T
TV c T

V c T T
T

⎛ ⎞
⎜ ⎟
⎝ ⎠= = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Note that T01 = T02 has been used in the previous equation.  Substituting these two sonic ratios and 
simplifying: 

( )
( )
1

2 12
* 1
2 2
* 211 2

11 MaMa 2
1Ma 1 Ma
2

A
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 (157) 
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Note that we could have also used the isentropic area ratios on either side of the shock wave: 
( )
( )
1

2 12
1

1
*

11

11 Ma1 2
1Ma 1
2

A
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 and 

( )
( )
1

2 12
2

2
*

22

11 Ma1 2
1Ma 1
2

A
A

γ
γγ

γ

+
−−⎛ ⎞+⎜ ⎟

= ⎜ ⎟−⎜ ⎟+⎜ ⎟⎝ ⎠

 

so that: 
( )
( )
1

2 11 2** 112 2
* 211 2 2*

2

11 MaMa 2
1Ma 1 Ma
2

A
AA

A A
A

γ
γγ

γ

+
−⎛ ⎞ −⎛ ⎞⎜ ⎟ +⎜ ⎟⎝ ⎠= = ⎜ ⎟−⎛ ⎞ ⎜ ⎟+⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 where A1=A2 

 
Notes: 
1. Equations (152)-(157) may be written only in terms of Ma1 by substituting Eq. (151).  The resulting 

equations are: 

( )
( )
2
12

2 2
1

1 Ma 2
Ma

2 Ma 1

γ
γ γ
− +

=
− −

 (158) 

 

( ) ( )
( )

2
122

1 2 2
1 1

2 Ma 1
2 1 Ma

1 Ma

T
T

γ γ
γ

γ

⎡ ⎤− −⎡ ⎤ ⎢ ⎥= + −⎣ ⎦ ⎢ ⎥+⎣ ⎦
 (159) 

 

( )
( )

2
12 1

2
1 2 1

1 Ma

1 Ma 2
V
V

γρ
ρ γ

+
= =

− +
 (160) 

 
22
1

1

2 1Ma
1 1

p
p

γ γ
γ γ

−= −
+ +

 (161) 

 

02

01
1

T
T

=  (162) 

 
1

1
1

2
* 1

202 02 1
1* 201 01 2 1

1Ma 2 12 Ma
1 1 11 Ma
2

p A
p A

γ
γ

γ
γ

ρ γ γ
γρ γ γ

−

−
+⎡ ⎤

⎢ ⎥ ⎡ ⎤−= = = −⎢ ⎥ ⎢ ⎥− + +⎣ ⎦⎢ ⎥+⎢ ⎥⎣ ⎦

 (163) 
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2. Now let’s examine the change in entropy across the shock using: 

2 2
2 1

1 1
ln lnp
T ps s c R
T p

− = −  (164) 

If we substitute Eqs. (159) and (161) into Eq. (164) and plot: 

 
We observe that for Ma1 < 1 the entropy decreases across the shock. The 2nd law, however, states that 
the entropy must increase across the shock (refer to Eq. (146)).  Thus, shock waves can only form 
when Ma1>1. 

 
Also note that as the upstream Mach number approaches one (Ma1→1), the flow through the shock 
approaches an isentropic process.  An infinitesimally weak shock wave, one occurring when Ma1=1, 
results in an isentropic process.  This type of shock is, in fact, just a sound wave. 
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3. Plots of Eqs. (159)-(163) as a function of Ma1 are shown below: 

 
The plot shows the following relations: 

T2 > T1 and  T2/T1 ↑ as Ma1 ↑ 
p2 > p1 and  p2/p1 ↑ as Ma1 ↑ 
ρ2 > ρ1 and  ρ2/ρ1 ↑ as Ma1 ↑ 
V2 < V1 and  V2/V1 ↓ as Ma1 ↑ 
T02 = T01 

p02 < p01 and  p02/p01 ↓ as Ma1 ↑ 
ρ02 < ρ01 and  ρ02/ρ01 ↓ as Ma1 ↑ 
A2

* > A1
* and A2

*/A1
* ↑ as Ma1 ↑ 

Ma2 ↓ as Ma1 ↑   Furthermore, ( )
1
2

1
2Ma

1lim Ma
2
γ
γ→∞

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

 

 
4. The shock strength is defined as the change in pressure across the shock wave relative to the upstream 

pressure:  Δp/p1=p2/p1-1.  Viewing the trends shown in the previous plot, the larger the incoming Mach 
number the stronger the shock wave. 
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